1932

Abstract

The recent literature on photochemical and photoelectrochemical reductions of CO is reviewed. The different methods of achieving light absorption, electron-hole separation, and electrochemical reduction of CO are considered. Energy gap matching for reduction of CO to different products, including CO, formic acid, and methanol, is used to identify the most promising systems. Different approaches to lowering overpotentials and achieving high chemical selectivities by employing catalysts are described and compared.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-032511-143759
2012-05-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/63/1/annurev-physchem-032511-143759.html?itemId=/content/journals/10.1146/annurev-physchem-032511-143759&mimeType=html&fmt=ahah

Literature Cited

  1. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. 1.  2009. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38:89–99 [Google Scholar]
  2. Kedzierzawski P, Augustynski J. 2.  1994. Poisoning and activation of the gold cathode during electroreduction of CO2. J. Electrochem. Soc. 141:L58–60 [Google Scholar]
  3. Leitner W.3.  1996. The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord. Chem. Rev. 153:257–84 [Google Scholar]
  4. Savéant J-M.4.  2008. Molecular catalysis of electrochemical reactions: mechanistic aspects. Chem. Rev. 108:2348–78 [Google Scholar]
  5. Halmann M.5.  1978. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–16 [Google Scholar]
  6. Taniguchi Y, Yoneyama H, Tamura H. 6.  1982. Photoelectrochemical reduction of carbon dioxide at p-type gallium phosphide electrodes in the presence of crown ether. Bull. Chem. Soc. Jpn. 55:2034–39 [Google Scholar]
  7. Aurian-Blajeni B, Ahsan Habib M, Taniguchi I, Bockris JOM. 7.  1983. The study of adsorbed species during the photoassisted reduction of carbon dioxide at a p-CdTe electrode. J. Electroanal. Chem. 157:399–404 [Google Scholar]
  8. Canfield D, Frese JKW. 8.  1983. Reduction of carbon dioxide to methanol on n- and p-GaAs and p-InP: effect of crystal face, electrolyte and current density. J. Electrochem. Soc. 130:1772–73 [Google Scholar]
  9. Frese KW Jr, Canfield D. 9.  1984. Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J. Electrochem. Soc. 131:2518–22 [Google Scholar]
  10. Taniguchi I, Aurian-Blajeni B, Bockris JOM. 10.  1984. The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media. Electrochim. Acta 29:923–32 [Google Scholar]
  11. Yoneyama H, Sugimura K, Kuwabata S. 11.  1988. Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions. J. Electroanal. Chem. 249:143–53 [Google Scholar]
  12. Bockris JOM, Wass JC. 12.  1989. The photoelectrocatalytic reduction of carbon dioxide. J. Electrochem. Soc. 136:2521–28 [Google Scholar]
  13. Bockris JOM, Wass JC. 13.  1989. On the photoelectrocatalytic reduction of carbon dioxide. Mater. Chem. Phys. 22:249–80 [Google Scholar]
  14. Noda H, Yamamoto A, Ikeda S, Maeda M, Ito K. 14.  1990. Influence of light intensity on photoelectroreduction of CO2 at a p-GaP photocathode. Chem. Lett. 19:1757–60 [Google Scholar]
  15. Junfu L, Baozhu C. 15.  1992. Photoelectrochemical reduction of carbon dioxide on a p+/p-Si photocathode in aqueous electrolyte. J. Electroanal. Chem. 324:191–200 [Google Scholar]
  16. Ikeda S, Yamamoto A, Noda H, Maeda M, Ito K. 16.  1993. Influence of surface treatment of the p-GaP photocathode on the photoelectrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 66:2473–77 [Google Scholar]
  17. Hirota K, Tryk DA, Yamamoto T, Hashimoto K, Okawa M, Fujishima A. 17.  1998. Photoelectrochemical reduction of CO2 in a high-pressure CO2 + methanol medium at p-type semiconductor electrodes. J. Phys. Chem. B 102:9834–43 [Google Scholar]
  18. Hirota K, Tryk DA, Hashimoto K, Okawa M, Fujishima A. 18.  1998. Photoelectrochemical reduction of CO2 at high current densities at p-InP electrodes. J. Electrochem. Soc. 145:L82–84 [Google Scholar]
  19. Hirota K, Tryk DA, Hashimoto K, Okawa M, Fujishima A. 19.  1998. Photoelectrochemical reduction of highly concentrated CO2 in methanol solution. See Ref. 155 589–92
  20. Kaneco S, Katsumata H, Suzuki T, Ohta K. 20.  2006. Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem. Eng. J. 116:227–31 [Google Scholar]
  21. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC. 21.  2011. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158:E45–49 [Google Scholar]
  22. Ono H, Yokosuka A, Tasiro T, Morisaki H, Yugo S. 22.  2002. Characterization of diamond-coated Si electrodes for photoelectrochemical reduction of CO2. New Diam. Front. Carbon Technol. 12:141–44 [Google Scholar]
  23. Taniguchi I, Aurian-Blajeni B, Bockris JOM. 23.  1984. The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions. J. Electroanal. Chem. 161:385–88 [Google Scholar]
  24. Taniguchi I, Aurian-Blajeni B, Bockris JOM. 24.  1983. Photo-aided reduction of carbon dioxide to carbon monoxide. J. Electroanal. Chem. Interfacial Electrochem. 157:179–82 [Google Scholar]
  25. Aurian-Blajeni B, Halmann M, Manassen J. 25.  1983. Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-gallium phosphide and p-gallium arsenide semiconductor electrodes. Solar Energy Mater. 8:425–40 [Google Scholar]
  26. Halmann M, Aurian-Blajeni B. 26.  1994. Electrochemical reduction of carbon dioxide at elevated pressure on semiconductor electrodes in aqueous solution. J. Electroanal. Chem. 375:379–82 [Google Scholar]
  27. Hinogami R, Nakamura Y, Yae S, Nakato Y. 27.  1998. An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J. Phys. Chem. B 102:974–80 [Google Scholar]
  28. Flaisher H, Tenne R, Halmann M. 28.  1996. Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection. J. Electroanal. Chem. 402:97–105 [Google Scholar]
  29. Ikeda S, Saito Y, Yoshida M, Noda H, Maeda M, Ito K. 29.  1989. Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 260:335–45 [Google Scholar]
  30. Noda HIS, Saito Y, Nakamura T, Maeda M, Ito K. 30.  1989. Photoelectrochemical reduction of carbon dioxide at metal-coated p-InP photocathodes. Denki Kagaku 57:1117–20 [Google Scholar]
  31. Kaneco S, Katsumata H, Suzuki T, Ohta K. 31.  2006. Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl. Catal. B 64:139–45 [Google Scholar]
  32. Kaneco S, Ueno Y, Katsumata H, Suzuki T, Ohta K. 32.  2009. Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol. Chem. Eng. J. 148:57–62 [Google Scholar]
  33. Nakamura Y, Hinogami R, Yae S, Nakato Y. 33.  1998. Photoelectrochemical reduction of CO2 at a metal-particle modified p-Si electrode in non-aqueous solutions. See Ref. 155 565–68
  34. Ikeda S, Yoshida M, Ito K. 34.  1985. Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in aqueous electrolytes. Bull. Chem. Soc. Jpn. 58:1353–57 [Google Scholar]
  35. Cottineau T, Morin M, Belanger D. 35.  2009. Modification of p-type silicon for the photoelectrochemical reduction of CO2. ECS Trans. 19:1–7 [Google Scholar]
  36. Barton EE, Rampulla DM, Bocarsly AB. 36.  2008. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130:6342–44 [Google Scholar]
  37. Kumar B, Smieja JM, Kubiak CP. 37.  2010. Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J. Phys. Chem. C 114:14220–23 [Google Scholar]
  38. Petit J-P, Chartier P, Beley M, Deville J-P. 38.  1989. Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium. J. Electroanal. Chem. 269:267–81 [Google Scholar]
  39. Petit JP, Chartier P, Beley M, Sauvage JP. 39.  1987. Selective photoelectrochemical reduction of CO2 to CO in an aqueous medium on p-GaP, mediated by Ni cyclam2+. Nouv. J. Chim. 11:751 [Google Scholar]
  40. Beley M, Collin J-P, Sauvage J-P, Petit J-P, Chartier P. 40.  1986. Photoassisted electro-reduction of CO2 on p-GaAs in the presence of Ni cyclam2+. J. Electroanal. Chem. 206:333–39 [Google Scholar]
  41. Parkinson BA, Weaver PF. 41.  1984. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:148–49 [Google Scholar]
  42. Zafrir M, Ulman M, Zuckerman Y, Halmann M. 42.  1983. Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system. J. Electroanal. Chem. 159:373–89 [Google Scholar]
  43. Bradley MG, Tysak T, Graves DJ, Viachiopoulos NA. 43.  1983. Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconducting electrodes. J. Chem. Soc. Chem. Commun. 7:349–50 [Google Scholar]
  44. Cabrera CR, Abruña HD. 44.  1986. Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes. J. Electroanal. Chem. 209:101–7 [Google Scholar]
  45. Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T. 45.  2010. Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem. Commun. 46:6944–46 [Google Scholar]
  46. Aurian-Blajeni B, Taniguchi I, Bockris JOM. 46.  1983. Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J. Electroanal. Chem. Interfacial Electrochem. 149:291–93 [Google Scholar]
  47. Bilgen E.47.  2001. Solar hydrogen from photovoltaic-electrolyzer systems. Energy Convers. Manag. 42:1047–57 [Google Scholar]
  48. Gibson TL, Kelly NA. 48.  2010. Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrog. Energy 35:900–11 [Google Scholar]
  49. Atlam O, Barbir F, Bezmalinovic D. 49.  2011. A method for optimal sizing of an electrolyzer directly connected to a PV module. Int. J. Hydrog. Energy 36:7012–18 [Google Scholar]
  50. Ogura K, Yamada M, Nakayama M, Endo N. 50.  1998. Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source. See Ref. 155 207–12
  51. Ogura K, Yoshida I. 51.  1987. Electrocatalytic reduction of carbon dioxide to methanol. VI. Use of a solar cell and comparison with that of carbon monoxide. Electrochim. Acta 32:1191–95 [Google Scholar]
  52. Ogura K, Yoshida I. 52.  1986. Catalytic conversion of CO and CO2 into methanol with a solar cell. J. Mol. Catal. 34:309–11 [Google Scholar]
  53. Halmann M, Ulman M, Aurian-Blajeni B. 53.  1983. Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy 31:429–31 [Google Scholar]
  54. Bard AJ, Fox MA. 54.  1995. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28:141–45 [Google Scholar]
  55. Delacourt C, Ridgway PL, Kerr JB, Newman J. 55.  2008. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155:B42–49 [Google Scholar]
  56. Durham B, Caspar JV, Nagle JK, Meyer TJ. 56.  1982. Photochemistry of Ru(bpy)32+. J. Am. Chem. Soc. 104:4803–10 [Google Scholar]
  57. Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E. 57.  2010. Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord. Chem. Rev. 254:2472–82 [Google Scholar]
  58. Morris AJ, Meyer GJ, Fujita E. 58.  2009. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42:1983–94 [Google Scholar]
  59. Takeda H, Ishitani O. 59.  2010. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord. Chem. Rev. 254:346–54 [Google Scholar]
  60. Grodkowski J, Neta P. 60.  2000. Cobalt corrin catalyzed photoreduction of CO2. J. Phys. Chem. A 104:1848–53 [Google Scholar]
  61. Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z. 61.  2002. Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J. Phys. Chem. A 106:4772–78 [Google Scholar]
  62. Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS. 62.  et al. 2000. Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J. Phys. Chem. A 104:11332–39 [Google Scholar]
  63. Craig CA, Spreer LO, Otvos JW, Calvin M. 63.  1990. Photochemical reduction of carbon dioxide using nickel tetraazamacrocycles. J. Phys. Chem. 94:7957–60 [Google Scholar]
  64. Kimura E, Bu X, Shionoya M, Wada S, Maruyama S. 64.  1992. A new nickel(II) cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex covalently attached to tris(1,10-phenanthroline)ruthenium(2+). A new candidate for the catalytic photoreduction of carbon dioxide. Inorg. Chem. 31:4542–46 [Google Scholar]
  65. Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A. 65.  1984. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recl. Trav. Chim. Pays-Bas 103:288–95 [Google Scholar]
  66. Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N. 66.  et al. 1993. Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide. J. Am. Chem. Soc. 115:601–9 [Google Scholar]
  67. Ogata T, Yamamoto Y, Wada Y, Murakoshi K, Kusaba M. 67.  et al. 1995. Phenazine-photosensitized reduction of CO2 mediated by a cobalt-cyclam complex through electron and hydrogen transfer. J. Phys. Chem. 99:11916–22 [Google Scholar]
  68. Hawecker J, Lehn J-M, Ziessel R. 68.  1983. Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+-Co2+ combinations as homogeneous catalysts. J. Chem. Soc. Chem. Commun. 9:536–38 [Google Scholar]
  69. Hawecker J, Lehn J-M, Ziessel R. 69.  1986. Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv. Chim. Acta 69:1990–2012 [Google Scholar]
  70. Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T. 70.  1996. Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+. J. Photochem. Photobiol. A Chem. 96:171–74 [Google Scholar]
  71. Takeda H, Koike K, Inoue H, Ishitani O. 71.  2008. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 130:2023–31 [Google Scholar]
  72. Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O. 72.  2005. Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Inorg. Chem. 44:2326–36 [Google Scholar]
  73. Sato S, Koike K, Inoue H, Ishitani O. 73.  2007. Highly efficient supramolecular photocatalysts for CO2 reduction using visible light. Photochem. Photobiol. Sci. 6:454–61 [Google Scholar]
  74. Ishida H, Terada T, Tanaka K, Tanaka T. 74.  1990. Photochemical carbon dioxide reduction catalyzed by [Ru(bpy)2 (CO)2]2+ using triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an electron donor. Inorg. Chem. 29:905–11 [Google Scholar]
  75. Lehn J-M, Ziessel R. 75.  1990. Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t′-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes. J. Organomet. Chem. 382:157–73 [Google Scholar]
  76. Agarwal J, Johnson RP, Li G. 76.  2011. Reduction of CO2 on a tricarbonyl rhenium(I) complex: modeling a catalytic cycle. J. Phys. Chem. A 115:2877–81 [Google Scholar]
  77. Nozik AJ.77.  1978. Photoelectrochemistry: applications to solar energy conversion. Annu. Rev. Phys. Chem. 29:189–222 [Google Scholar]
  78. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q. 78.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73 [Google Scholar]
  79. Beley M, Collin JP, Ruppert R, Sauvage JP. 79.  1986. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J. Am. Chem. Soc. 108:7461–67 [Google Scholar]
  80. Ishida H, Tanaka K, Tanaka T. 80.  1987. Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+: effect of pH on the formation of CO and HCOO. Organometallics 6:181–86 [Google Scholar]
  81. Haines RJ, Wittrig RE, Kubiak CP. 81.  1994. Electrocatalytic reduction of carbon dioxide by the binuclear copper complex [Cu2(6-(diphenylphosphino-2,2′-bipyridyl)2(MeCN)2][PF6]2. Inorg. Chem. 33:4723–28 [Google Scholar]
  82. Kushi Y, Nagao H, Nishioka T, Isobe K, Tanaka K. 82.  1995. Remarkable decrease in overpotential of oxalate formation in electrochemical CO2 reduction by a metal-sulfide cluster. J. Chem. Soc. Chem. Commun. 12:1223–24 [Google Scholar]
  83. Tanaka K, Kushi Y, Tsuge K, Toyohara K, Nishioka T, Isobe K. 83.  1998. Catalytic generation of oxalate through a coupling reaction of two CO2 molecules activated on [(Ir(η5-C5Me5))2(Ir(η4-C5Me5)CH2CN)(μ3-S)2]. Inorg. Chem. 37:120–26 [Google Scholar]
  84. Rakowski Dubois M, Dubois DL. 84.  2009. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc. Chem. Res. 42:1974–82 [Google Scholar]
  85. DuBois DL, Miedaner A, Haltiwanger RC. 85.  1991. Electrochemical reduction of CO2 catalyzed by [Pd(triphosphine) (solvent)] (BF4)2 complexes: synthetic and mechanistic studies. J. Am. Chem. Soc. 113:8753–64 [Google Scholar]
  86. Morgenstern DA, Wittrig RE, Fanwick PE, Kubiak CP. 86.  1993. Photoreduction of carbon dioxide to its radical anion by nickel cluster [Ni33-I)2(dppm)3]: formation of two carbon-carbon bonds via addition of carbon dioxide radical anion to cyclohexene. J. Am. Chem. Soc. 115:6470–71 [Google Scholar]
  87. Smieja JM, Kubiak CP. 87.  2010. Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. Inorg. Chem. 49:9283–89 [Google Scholar]
  88. Kumar A, Wilisch WCA, Lewis NS. 88.  1993. The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts. Crit. Rev. Solid State Mater. Sci. 18:327–53 [Google Scholar]
  89. Bak T, Nowotny J, Rekas M, Sorrell CC. 89.  2002. Photo-electrochemical hydrogen generation from water using solar energy: materials-related aspects. Int. J. Hydrog. Energy 27:991–1022 [Google Scholar]
  90. Roy SC, Varghese OK, Paulose M, Grimes CA. 90.  2010. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–78 [Google Scholar]
  91. Hinogami R, Mori T, Yae S, Nakato Y. 91.  1994. Efficient photoelectrochemical reduction of carbon dioxide on a p-type silicon (p-Si) electrode modified with very small copper particles. Chem. Lett. 23:1725–28 [Google Scholar]
  92. Hinogami R, Nakamura Y, Yae S, Nakato Y. 92.  1997. Modification of semiconductor surface with ultrafine metal particles for efficient photoelectrochemical reduction of carbon dioxide. Appl. Surface Sci. 121/122:301–4 [Google Scholar]
  93. Gennaro A, Isse AA, Vianello E. 93.  1990. Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. J. Electroanal. Chem. Interfacial Electrochem. 289:203–15 [Google Scholar]
  94. Taniguchi I.94.  1989. Electrochemical and photochemical reduction of carbon dioxide. Modern Aspects of Electrochemistry JO Bockris, RE White, BE Conway 20327–400 New York: Plenum [Google Scholar]
  95. Mikkelsen M, Jorgensen M, Krebs FC. 95.  2010. The teraton challenge: a review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3:43–81 [Google Scholar]
  96. Tomita Y, Hori Y. 96.  1998. Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. See Ref. 155 581–84
  97. Hara K, Kudo A, Sakata T. 97.  1995. Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J. Electroanal. Chem. 391:141–47 [Google Scholar]
  98. Todoroki M, Hara K, Kudo A, Sakata T. 98.  1995. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J. Electroanal. Chem. 394:199–203 [Google Scholar]
  99. Hara K, Kudo A, Sakata T, Watanabe M. 99.  1995. High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J. Electrochem. Soc. 142:L57–59 [Google Scholar]
  100. Hara K, Sakata T. 100.  1997. Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J. Electrochem. Soc. 144:539–45 [Google Scholar]
  101. Sears WM, Morrison SR. 101.  1985. Carbon dioxide reduction on gallium arsenide electrodes. J. Phys. Chem. A 89:3295–98 [Google Scholar]
  102. Gattrell M, Gupta N, Co A. 102.  2006. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594:1–19 [Google Scholar]
  103. Hori Y, Wakebe H, Tsukamoto T, Koga O. 103.  1994. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39:1833–39 [Google Scholar]
  104. Amatore C, Savéant JM. 104.  1981. Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc. 103:5021–23 [Google Scholar]
  105. Tryk DA, Yamamoto T, Kokubun M, Hirota K, Hashimoto K. 105.  et al. 2001. Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2–dimer radical anion. Appl. Organometallic Chem. 15:113–20 [Google Scholar]
  106. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L. 106.  1997. Electrochemical reduction of carbon dioxide on flat metallic cathodes. J. Appl. Electrochem. 27:875–89 [Google Scholar]
  107. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK. 107.  2010. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3:1311–15 [Google Scholar]
  108. Harris LA, Wilson RH. 108.  1978. Semiconductors for photoelectrolysis. Annu. Rev. Mater. Sci. 8:99–134 [Google Scholar]
  109. Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS. 109.  1980. Photoreduction at illuminated p-type semiconducting silicon photoelectrodes: evidence for Fermi level pinning. J. Am. Chem. Soc. 102:3683–88 [Google Scholar]
  110. Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS. 110.  1980. The concept of Fermi level pinning at semiconductor/liquid junctions: consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 1023671–77 [Google Scholar]
  111. Fan FRF, Bard AJ. 111.  1980. Semiconductor electrodes. 24. Behavior of photoelectrochemical cells based on p-type gallium arsenide in aqueous solutions. J. Am. Chem. Soc. 1023677–83 [Google Scholar]
  112. Nagasubramanian G, Wheeler BL, Bard AJ. 112.  1983. Semiconductor electrodes. J. Electrochem. Soc. 130:1680–88 [Google Scholar]
  113. Bradley MG, Tysak T. 113.  1982. p-Type silicon based photoelectrochemical cells for optical energy conversion: electrochemistry of tetra-azomacrocyclic metal complexes at illuminated. J. Electroanal. Chem. 135:153–57 [Google Scholar]
  114. Heller A, Miller B, Lewerenz HJ, Bachmann KJ. 114.  1980. An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C. J. Am. Chem. Soc. 102:6555–56 [Google Scholar]
  115. Heller A, Lewerenz HJ, Miller B. 115.  1981. Silicon photocathode behavior in acidic vanadium(II)-vanadium(III) solutions. J. Am. Chem. Soc. 103:200–1 [Google Scholar]
  116. Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E. 116.  1994. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98:5552–56 [Google Scholar]
  117. Savéant JM, Vianello E. 117.  1962. Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim. Acta 8:905–23 [Google Scholar]
  118. Bard AJ, Faulkner LR. 118.  2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  119. Lieber CM, Lewis NS. 119.  1984. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106:5033–34 [Google Scholar]
  120. Stalder CJ, Chao S, Wrighton MS. 120.  1984. Electrochemical reduction of aqueous bicarbonate to formate with high current efficiency near the thermodynamic potential at chemically derivatized electrodes. J. Am. Chem. Soc. 106:3673–75 [Google Scholar]
  121. O'Toole TR, Margerum LD, Westmoreland TD, Vining WJ, Murray RW, Meyer TJ. 121.  1985. Electrocatalytic reduction of CO2 at a chemically modified electrode. J. Chem. Soc. Chem. Commun. 20:1416–17 [Google Scholar]
  122. Cosnier S, Deronzier A, Moutet J-C. 122.  1988. Electrocatalytic reduction of CO2 on electrodes modified by fac-Re(2,2′-bipyridine)(CO)3Cl complexes bonded to polypyrrole films. J. Mol. Catalysis 45:381–91 [Google Scholar]
  123. O'Toole TR, Sullivan BP, Bruce MRM, Margerum LD, Murray RW, Meyer TJ. 123.  1989. Electrocatalytic reduction of CO2 by a complex of rhenium in thin polymeric films. J. Electroanal. Chem. 259:217–39 [Google Scholar]
  124. Chardon-Noblat S, Collomb-Dunand-Sauthier MN, Deronzier A, Ziessel R, Zsoldos D. 124.  1994. Formation of polymeric [{Ru0(bpy)(CO)2}n] films by electrochemical reduction of [Ru(bpy)2(CO)2](PF6)2: its implication in CO2 electrocatalytic reduction. Inorg. Chem. 33:4410–12 [Google Scholar]
  125. Collomb-Dunand-Sauthier M-N, Deronzier A, Ziessel R. 125.  1994. Electrocatalytic reduction of carbon dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin films. Inorg. Chem. 33:2961–67 [Google Scholar]
  126. Ramos Sende JA, Arana CR, Hernandez L, Potts KT, Keshevarz-K M, Abruna HD. 126.  1995. Electrocatalysis of CO2 reduction in aqueous media at electrodes modified with electropolymerized films of vinylterpyridine complexes of transition metals. Inorg. Chem. 34:3339–48 [Google Scholar]
  127. Chardon-Noblat S, Deronzier A, Ziessel R, Zsoldos D. 127.  1998. Electroreduction of CO2 catalyzed by polymeric [Ru(bpy)(CO)2]n films in aqueous media: parameters influencing the reaction selectivity. J. Electroanal. Chem. 444:253–60 [Google Scholar]
  128. Ziessel R.128.  1998. Molecular tailoring of organometallic polymers for efficient catalytic CO2 reduction: mode of formation of the active species. See Ref. 155 219–24
  129. Cecchet F, Alebbi M, Bignozzi CA, Paolucci F. 129.  2006. Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes. Inorg. Chim. Acta 359:3871–74 [Google Scholar]
  130. Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. 130.  2007. Rapid and efficient electrocatalytic CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 129:10328–29 [Google Scholar]
  131. Cheung K-C, Guo P, So M-H, Lee LYS, Ho K-P. 131.  et al. 2009. Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine. J. Organomet. Chem. 694:2842–45 [Google Scholar]
  132. Smith RDL, Pickup PG. 132.  2010. Nitrogen-rich polymers for the electrocatalytic reduction of CO2. Electrochem. Commun. 12:1749–51 [Google Scholar]
  133. Collin JP, Sauvage JP. 133.  1989. Electrochemical reduction of carbon dioxide mediated by molecular catalysts. Coord. Chem. Rev. 93:245–68 [Google Scholar]
  134. Abe T, Kaneko M. 134.  2003. Reduction catalysis by metal complexes confined in a polymer matrix. Prog. Polym. Sci. 28:1441–88 [Google Scholar]
  135. Abe T, Yoshida T, Tokita S, Taguchi F, Imaya H, Kaneko M. 135.  1996. Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 412:125–32 [Google Scholar]
  136. Chen Z, Concepcion JJ, Jurss JW, Meyer TJ. 136.  2009. Single-site, catalytic water oxidation on oxide surfaces. J. Am. Chem. Soc. 131:15580–81 [Google Scholar]
  137. Yoshida T, Tsutsumida K, Teratani S, Yasufuku K, Kaneko M. 137.  1993. Electrocatalytic reduction of CO2 in water by [Re(bpy)(CO)3Br] and [Re(terpy)(CO)3Br] complexes incorporated into coated nafion membrane (bpy = 2,2′-bipyridine; terpy = 2,2′;6′,2″-terpyridine). J. Chem. Soc. Chem. Commun. 7:631–33 [Google Scholar]
  138. Dominey RN, Lewis NS, Bruce JA, Bookbinder DC, Wrighton MS. 138.  1982. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 104:467–82 [Google Scholar]
  139. Wrighton MS.139.  1983. Chemically derivatized semiconductor photoelectrodes. J. Chem. Educ. 60:335–37 [Google Scholar]
  140. Wrighton MS.140.  1986. Surface functionalization of electrodes with molecular reagents. Science 231:32–37 [Google Scholar]
  141. Lewis NS.141.  2005. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg. Chem. 44:6900–11 [Google Scholar]
  142. Kumar A, Wilisch WCA, Lewis NS. 142.  1993. The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts. Crit. Rev. Solid State Mater. Sci. 18:327–53 [Google Scholar]
  143. Huang J, Stockwell D, Huang Z, Mohler DL, Lian T. 143.  2008. Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes. J. Am. Chem. Soc. 130:5632–33 [Google Scholar]
  144. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. 144.  2010. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem. Int. Ed. 49:5101–5 [Google Scholar]
  145. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA. 145.  2010. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132:2132–33 [Google Scholar]
  146. Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D. 146.  et al. 2011. Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J. Am. Chem. Soc. 133:6922–25 [Google Scholar]
  147. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. 147.  2000. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104:8920–24 [Google Scholar]
  148. Khaselev O, Bansal A, Turner JA. 148.  2001. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy 26:127–32 [Google Scholar]
  149. Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M. 149.  et al. 2003. One chip photovoltaic water electrolysis device. Int. J. Hydrog. Energy 28:1167–69 [Google Scholar]
  150. Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S. 150.  et al. 2009. Efficient solar water splitting with a composite n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2 semiconductor electrode. J. Phys. Chem. C 113:14575–81 [Google Scholar]
  151. Dang T, Ramsaran R, Roy S, Froehlich J, Wang J, Kubiak C. 151.  2011. Design of a high throughput 25-well parallel electrolyzer for the accelerated discovery of CO2 reduction catalysts via a combinatorial approach. Electroanalysis 23:2335–42 [Google Scholar]
  152. Ellis WW, Raebiger JW, Curtis CJ, Bruno JW, DuBois DL. 152.  2004. Hydricities of BzNADH, C5H5MO(PMe3)(CO)(2)H, and C5Me5Mo(PMe3)(CO)(2)H in acetonitrile. J. Am. Chem. Soc. 126:2738–43 [Google Scholar]
  153. Zhu XQ, Tan Y, Cao CT. 153.  2010. Thermodynamic diagnosis of the properties and mechanism of dihydropyridine-type compounds as hydride source in acetonitrile with “molecule ID card.”. J. Phys. Chem. B 114:2058–75 [Google Scholar]
  154. Creutz C, Chou MH. 154.  2009. Hydricities of d(6) metal hydride complexes in water. J. Am. Chem. Soc. 131:2794–95 [Google Scholar]
  155. Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T. 155.  1998. Studies in Surface Science and Catalysis 114 Amsterdam: Elsevier
/content/journals/10.1146/annurev-physchem-032511-143759
Loading
/content/journals/10.1146/annurev-physchem-032511-143759
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error