1932

Abstract

The mammalian lung has an enormous environmental-epithelial interface that is optimized to accomplish the principal function of the respiratory system, gas exchange. One consequence of evolving such a large surface area is that the lung epithelium is continuously exposed to toxins, irritants, and pathogens. Maintaining homeostasis in this environment requires a delicate balance of cellular signaling between the epithelium and innate immune system. Following injury, the epithelium can be either fully regenerated in form and function or repaired by forming dysplastic scar tissue. In this review, we describe the major mechanisms of damage, regeneration, and repair within the alveolar niche where gas exchange occurs. With a focus on viral infection, we summarize recent work that has established how epithelial proliferation is arrested during infection and how the innate immune system guides its reconstitution during recovery. The consequences of these processes going awry are also considered, with an emphasis on how this will impact postpandemic pulmonary biology and medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031621-024344
2023-01-24
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031621-024344.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031621-024344&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP et al. 2022. Update on the features and measurements of experimental acute lung injury in animals: an official American Thoracic Society workshop report. Am. J. Respir. Cell Mol. Biol. 66:e1–14
    [Google Scholar]
  2. 2.
    Aegerter H, Lambrecht BN, Jakubzick CV. 2022. Biology of lung macrophages in health and disease. Immunity 55:91564–80
    [Google Scholar]
  3. 3.
    Allard B, Panariti AP, Martin JG. 2018. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front. Immunol. 9:1777
    [Google Scholar]
  4. 4.
    Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ et al. 2020. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26:482–502
    [Google Scholar]
  5. 5.
    Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R et al. 2014. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–38
    [Google Scholar]
  6. 6.
    Sun X, Perl AK, Li R, Bell SM, Sajti E et al. 2022. A census of the lung: CellCards from LungMAP. Dev. Cell 57:112–45.e2
    [Google Scholar]
  7. 7.
    Jin X, Ren J, Li R, Gao Y, Zhang H et al. 2021. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine 37:100986
    [Google Scholar]
  8. 8.
    Shah VS, Chivukula RR, Lin B, Waghray A, Rajagopal J. 2022. Cystic fibrosis and the cells of the airway epithelium: What are ionocytes and what do they do?. Annu. Rev. Pathol. Mech. Dis. 17:23–46
    [Google Scholar]
  9. 9.
    Busse WW, Lemanske RF Jr., Gern JE. 2010. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–34
    [Google Scholar]
  10. 10.
    Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. 2020. Mechanisms of virus-induced airway immunity dysfunction in the pathogenesis of COPD disease, progression, and exacerbation. Front. Immunol. 11:1205
    [Google Scholar]
  11. 11.
    Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J et al. 2022. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604:120–26
    [Google Scholar]
  12. 12.
    Salwig I, Spitznagel B, Vazquez-Armendariz AI, Khalooghi K, Guenther S et al. 2019. Bronchioalveolar stem cells are a main source for regeneration of distal lung epithelia in vivo. EMBO J. 38:e102099
    [Google Scholar]
  13. 13.
    Gomez R, Colas C, Sebastian A, Arribas J. 2004. Respiratory repercussions in adults with a history of infantile bronchiolitis. Ann. Allergy Asthma Immunol. 93:447–51
    [Google Scholar]
  14. 14.
    Beers MF, Moodley Y. 2017. When is an alveolar type 2 cell an alveolar type 2 cell? A conundrum for lung stem cell biology and regenerative medicine. Am. J. Respir. Cell Mol. Biol. 57:18–27
    [Google Scholar]
  15. 15.
    Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BK et al. 2020. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27:366–82.e7
    [Google Scholar]
  16. 16.
    Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF et al. 2020. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22:934–46
    [Google Scholar]
  17. 17.
    Hiemstra PS, Amatngalim GD, van der Does AM, Taube C. 2016. Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest 149:545–51
    [Google Scholar]
  18. 18.
    Silva-Sanchez A, Randall TD. 2020. Role of iBALT in respiratory immunity. Curr. Top. Microbiol. Immunol. 426:21–43
    [Google Scholar]
  19. 19.
    Erle DJ, Pabst R. 2000. Intraepithelial lymphocytes in the lung: a neglected lymphocyte population. Am. J. Respir. Cell Mol. Biol. 22:398–400
    [Google Scholar]
  20. 20.
    Hussell T, Bell TJ. 2014. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14:81–93
    [Google Scholar]
  21. 21.
    Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:1977–92
    [Google Scholar]
  22. 22.
    Van de Laar L, Saelens W, De Projck S, Martens L, Scott CL et al. 2016. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44:4755–68
    [Google Scholar]
  23. 23.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91
    [Google Scholar]
  24. 24.
    Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM et al. 2017. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214:2387–404
    [Google Scholar]
  25. 25.
    Schyns J, Bureau F, Marichal T. 2018. Lung interstitial macrophages: past, present, and future. J. Immunol. Res. 2018:5160794
    [Google Scholar]
  26. 26.
    Basil MC, Morrisey EE. 2020. Lung regeneration: a tale of mice and men. Semin. Cell Dev. Biol. 100:88–100
    [Google Scholar]
  27. 27.
    Polack FP, Stein RT, Custovic A. 2019. The syndrome we agreed to call bronchiolitis. J. Infect. Dis. 220:184–86
    [Google Scholar]
  28. 28.
    Raju SV, Kim H, Byzek SA, Tang LP, Trombley JE et al. 2016. A ferret model of COPD-related chronic bronchitis. JCI Insight 1:e87536
    [Google Scholar]
  29. 29.
    Villar J, Ferrando C, Martinez D, Ambros A, Munoz T et al. 2020. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir. Med. 8:267–76
    [Google Scholar]
  30. 30.
    Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND et al. 2012. Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–33
    [Google Scholar]
  31. 31.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. 1967. Acute respiratory distress in adults. Lancet 2:319–23
    [Google Scholar]
  32. 32.
    Thompson BT. 2017. Acute respiratory distress syndrome in another 50 years: historical footnote or persistent malady?. Curr. Opin. Crit. Care 23:1–3
    [Google Scholar]
  33. 33.
    Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP. 2014. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur. Respir. J. 43:276–85
    [Google Scholar]
  34. 34.
    Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N et al. 2003. One-year outcomes in survivors of the acute respiratory distress syndrome. N. Engl. J. Med. 348:683–93
    [Google Scholar]
  35. 35.
    Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. 2018. Host immune response to influenza A virus infection. Front. Immunol. 9:320
    [Google Scholar]
  36. 36.
    Iwasaki A, Pillai PS. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14:315–28
    [Google Scholar]
  37. 37.
    Troeger CE, Blacker BF, Khalil IA, Zimsen SRM, Albertson SB et al. 2019. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 7:69–89
    [Google Scholar]
  38. 38.
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. 2006. Avian flu: influenza virus receptors in the human airway. Nature 440:435–36
    [Google Scholar]
  39. 39.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA et al. 2007. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol. 171:1215–23
    [Google Scholar]
  40. 40.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA et al. 2006. H5N1 virus attachment to lower respiratory tract. Science 312:399
    [Google Scholar]
  41. 41.
    Srivastava B, Blazejewska P, Hessmann M, Bruder D, Geffers R et al. 2009. Host genetic background strongly influences the response to influenza A virus infections. PLOS ONE 4:e4857
    [Google Scholar]
  42. 42.
    Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O. 1988. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8:4518–23
    [Google Scholar]
  43. 43.
    Kaminski MM, Ohnemus A, Cornitescu M, Staeheli P. 2012. Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus. J. Gen. Virol. 93:555–59
    [Google Scholar]
  44. 44.
    Dou D, Revol R, Ostbye H, Wang H, Daniels R. 2018. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9:1581
    [Google Scholar]
  45. 45.
    Atkin-Smith GK, Duan M, Chen W, Poon IKH 2018. The induction and consequences of influenza A virus-induced cell death. Cell Death Dis. 9:1002
    [Google Scholar]
  46. 46.
    Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E et al. 2013. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLOS Pathog. 9:e1003256
    [Google Scholar]
  47. 47.
    Pan W, Dong Z, Li F, Meng W, Feng L et al. 2013. Visualizing influenza virus infection in living mice. Nat. Commun. 4:2369
    [Google Scholar]
  48. 48.
    Major J, Crotta S, Llorian M, McCabe TM, Gad HH et al. 2020. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369:712–17
    [Google Scholar]
  49. 49.
    V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19:155–70
    [Google Scholar]
  50. 50.
    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–80.e8
    [Google Scholar]
  51. 51.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–54
    [Google Scholar]
  52. 52.
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203:631–37
    [Google Scholar]
  53. 53.
    Jiang RD, Liu MQ, Chen Y, Shan C, Zhou YW et al. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182:50–58.e8
    [Google Scholar]
  54. 54.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:114–19
    [Google Scholar]
  55. 55.
    Bharat A, Querrey M, Markov NS, Kim S, Kurihara C et al. 2020. Lung transplantation for patients with severe COVID-19. Sci. Transl. Med. 12:eabe4282
    [Google Scholar]
  56. 56.
    Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE et al. 2020. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell 27:890–904.e8
    [Google Scholar]
  57. 57.
    De Mello Costa MF, Weiner AI, Vaughan AE. 2020. Basal-like progenitor cells: a review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Rep. 15:1015–25
    [Google Scholar]
  58. 58.
    Hers JF, Masurel N, Mulder J. 1958. Bacteriology and histopathology of the respiratory tract and lungs in fatal Asian influenza. Lancet 2:1141–43
    [Google Scholar]
  59. 59.
    Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS et al. 2011. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147:525–38
    [Google Scholar]
  60. 60.
    Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA et al. 2015. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature 517:616–20
    [Google Scholar]
  61. 61.
    Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG et al. 2015. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517:621–25
    [Google Scholar]
  62. 62.
    Ray S, Chiba N, Yao C, Guan X, McConnell AM et al. 2016. Rare SOX2+ airway progenitor cells generate KRT5+ cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Rep. 7:817–25
    [Google Scholar]
  63. 63.
    Ogino S, Franks TJ, Yong M, Koss MN 2002. Extensive squamous metaplasia with cytologic atypia in diffuse alveolar damage mimicking squamous cell carcinoma: a report of 2 cases. Hum. Pathol. 33:1052–54
    [Google Scholar]
  64. 64.
    Taylor MS, Chivukula RR, Myers LC, Jeck WR, Tata PR et al. 2018. Delayed alveolar epithelialization: a distinct pathology in diffuse acute lung injury. Am. J. Respir. Crit. Care Med. 197:522–24
    [Google Scholar]
  65. 65.
    Xi Y, Kim T, Brumwell AN, Driver IH, Wei Y et al. 2017. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19:904–14
    [Google Scholar]
  66. 66.
    Kathiriya JJ, Wang C, Zhou M, Brumwell A, Cassandras M et al. 2022. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat. Cell Biol. 24:10–23
    [Google Scholar]
  67. 67.
    Kanegai CM, Xi Y, Donne ML, Gotts JE, Driver IH et al. 2016. Persistent pathology in influenza-infected mouse lungs. Am. J. Respir. Cell Mol. Biol. 55:613–15
    [Google Scholar]
  68. 68.
    Yee M, Domm W, Gelein R, Bentley KL, Kottmann RM et al. 2017. Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells. Am. J. Respir. Cell Mol. Biol. 56:453–64
    [Google Scholar]
  69. 69.
    Shivaraju M, Chitta UK, Grange RMH, Jain IH, Capen D et al. 2021. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science 371:52–57
    [Google Scholar]
  70. 70.
    Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL et al. 2016. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 17:2312–25
    [Google Scholar]
  71. 71.
    Quantius J, Schmoldt C, Vazquez-Armendariz AI, Becker C, El Agha E et al. 2016. Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on Fgfr2b-driven epithelial repair. PLOS Pathog. 12:e1005544
    [Google Scholar]
  72. 72.
    Yuan T, Volckaert T, Redente EF, Hopkins S, Klinkhammer K et al. 2019. FGF10-FGFR2B signaling generates basal cells and drives alveolar epithelial regeneration by bronchial epithelial stem cells after lung injury. Stem Cell Rep. 12:1041–55
    [Google Scholar]
  73. 73.
    Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA et al. 2018. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555:251–55
    [Google Scholar]
  74. 74.
    Keeler SP, Agapov EV, Hinojosa ME, Letvin AN, Wu K, Holtzman MJ. 2018. Influenza A virus infection causes chronic lung disease linked to sites of active viral RNA remnants. J. Immunol. 201:2354–68
    [Google Scholar]
  75. 75.
    Clavario P, De Marzo V, Lotti R, Barbara C, Porcile A et al. 2021. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 340:113–18
    [Google Scholar]
  76. 76.
    Lombardi F, Calabrese A, Iovene B, Pierandrei C, Lerede M et al. 2021. Residual respiratory impairment after COVID-19 pneumonia. BMC Pulm. Med. 21:241
    [Google Scholar]
  77. 77.
    Chen Y, Ding C, Yu L, Guo W, Feng X et al. 2021. One-year follow-up of chest CT findings in patients after SARS-CoV-2 infection. BMC Med. 19:191
    [Google Scholar]
  78. 78.
    Zhao Z, Zhao Y, Zhou Y, Wang X, Zhang T, Zuo W. 2020. Single-cell analysis identified lung progenitor cells in COVID-19 patients. Cell Prolif. 53:e12931
    [Google Scholar]
  79. 79.
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25:1153–63
    [Google Scholar]
  80. 80.
    Zepp JA, Morley MP, Loebel C, Kremp MM, Chaudhry FN et al. 2021. Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science 371:eabc3172
    [Google Scholar]
  81. 81.
    Adamson IY, Bowden DH. 1974. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Investig. 30:35–42
    [Google Scholar]
  82. 82.
    Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR et al. 2013. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 123:3025–36
    [Google Scholar]
  83. 83.
    Penkala IJ, Liberti DC, Pankin J, Sivakumar A, Kremp MM et al. 2021. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell 28:1775–89.e5
    [Google Scholar]
  84. 84.
    Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. 2018. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359:1118–23
    [Google Scholar]
  85. 85.
    Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M et al. 2020. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588:151–56
    [Google Scholar]
  86. 86.
    Dorry SJ, Ansbro BO, Ornitz DM, Mutlu GM, Guzy RD. 2020. FGFR2 is required for AEC2 homeostasis and survival after bleomycin-induced lung injury. Am. J. Respir. Cell Mol. Biol. 62:608–21
    [Google Scholar]
  87. 87.
    Liberti DC, Kremp MM, Liberti WA 3rd, Penkala IJ, Li S et al. 2021. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 35:109092
    [Google Scholar]
  88. 88.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  89. 89.
    Lange AW, Sridharan A, Xu Y, Stripp BR, Perl AK, Whitsett JA. 2015. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J. Mol. Cell Biol. 7:35–47
    [Google Scholar]
  90. 90.
    Nantie LB, Young RE, Paltzer WG, Zhang Y, Johnson RL et al. 2018. Lats1/2 inactivation reveals Hippo function in alveolar type I cell differentiation during lung transition to air breathing. Development 145:dev163105
    [Google Scholar]
  91. 91.
    LaCanna R, Liccardo D, Zhang P, Tragesser L, Wang Y et al. 2019. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J. Clin. Investig. 129:2107–22
    [Google Scholar]
  92. 92.
    Chung MI, Bujnis M, Barkauskas CE, Kobayashi Y, Hogan BLM. 2018. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 145:dev163014
    [Google Scholar]
  93. 93.
    Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW et al. 2019. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14:518–40
    [Google Scholar]
  94. 94.
    Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H et al. 2015. Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 6:6727
    [Google Scholar]
  95. 95.
    Jiang P, Gil de Rubio R, Hrycaj SM, Gurczynski SJ, Riemondy KA et al. 2020. Ineffectual type 2-to-type 1 alveolar epithelial cell differentiation in idiopathic pulmonary fibrosis: persistence of the KRT8hi transitional state. Am. J. Respir. Crit. Care Med. 201:1443–47
    [Google Scholar]
  96. 96.
    Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I et al. 2020. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11:3559
    [Google Scholar]
  97. 97.
    Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. 2018. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9:419
    [Google Scholar]
  98. 98.
    Isaacs A, Fulton F. 1953. Interference in the chick chorion. J. Gen. Microbiol. 9:132–39
    [Google Scholar]
  99. 99.
    Wang J, Oberley-Deegan R, Wang S, Nikrad M, Funk CJ et al. 2009. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-λ 1) in response to influenza A infection. J. Immunol. 182:1296–304
    [Google Scholar]
  100. 100.
    Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T et al. 2010. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J. Virol. 84:5670–77
    [Google Scholar]
  101. 101.
    Sommereyns C, Paul S, Staeheli P, Michiels T. 2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLOS Pathog. 4:e1000017
    [Google Scholar]
  102. 102.
    Stegemann-Koniszewski S, Jeron A, Gereke M, Geffers R, Kroger A et al. 2016. Alveolar type II epithelial cells contribute to the anti-influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. mBio 7:3e00276–16
    [Google Scholar]
  103. 103.
    Perng YC, Lenschow DJ. 2018. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16:423–39
    [Google Scholar]
  104. 104.
    Krammer S, Sicorschi Gutu C, Grund JC, Chiriac MT, Zirlik S, Finotto S 2021. Regulation and function of interferon-lambda (IFNλ) and its receptor in asthma. Front. Immunol. 12:731807
    [Google Scholar]
  105. 105.
    Katsura H, Kobayashi Y, Tata PR, Hogan BLM. 2019. IL-1 and TNFα contribute to the inflammatory niche to enhance alveolar regeneration. Stem Cell Rep. 12:657–66
    [Google Scholar]
  106. 106.
    Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M. 1995. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 13:257–61
    [Google Scholar]
  107. 107.
    Fernandez S, Jose P, Avdiushko MG, Kaplan AM, Cohen DA. 2004. Inhibition of IL-10 receptor function in alveolar macrophages by Toll-like receptor agonists. J. Immunol. 172:2613–20
    [Google Scholar]
  108. 108.
    Sabatel C, Radermecker C, Fievez L, Paulissen G, Chakarov S et al. 2017. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46:457–73
    [Google Scholar]
  109. 109.
    Murray PJ. 2005. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. PNAS 102:8686–91
    [Google Scholar]
  110. 110.
    van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM et al. 2004. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J. Immunol. 172:7603–9
    [Google Scholar]
  111. 111.
    Woods PS, Doolittle LM, Rosas LE, Joseph LM, Calomeni EP, Davis IC. 2016. Lethal H1N1 influenza A virus infection alters the murine alveolar type II cell surfactant lipidome. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L1160–69
    [Google Scholar]
  112. 112.
    Han S, Mallampalli RK. 2015. The role of surfactant in lung disease and host defense against pulmonary infections. Ann. Am. Thorac. Soc. 12:765–74
    [Google Scholar]
  113. 113.
    Wright JR, Clements JA. 1987. Metabolism and turnover of lung surfactant. Am. Rev. Respir. Dis. 136:426–44
    [Google Scholar]
  114. 114.
    Trapnell BC, Nakata K, Bonella F, Campo I, Griese M et al. 2019. Pulmonary alveolar proteinosis. Nat. Rev. Dis. Primers 5:16
    [Google Scholar]
  115. 115.
    Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A et al. 1994. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–16
    [Google Scholar]
  116. 116.
    Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G et al. 1994. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. PNAS 91:5592–96
    [Google Scholar]
  117. 117.
    Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D et al. 1995. Mice deficient for the IL-3/GM-CSF/IL-5 βc receptor exhibit lung pathology and impaired immune response, while βIL3 receptor-deficient mice are normal. Immunity 2:211–22
    [Google Scholar]
  118. 118.
    Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS et al. 2010. Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. J. Lipid Res. 51:1325–31
    [Google Scholar]
  119. 119.
    Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M. 2014. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15:1026–37
    [Google Scholar]
  120. 120.
    Huang S, Zhu B, Cheon IS, Goplen NP, Jiang L et al. 2019. PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J. Virol. 93:e00030–19
    [Google Scholar]
  121. 121.
    Cakarova L, Marsh LM, Wilhelm J, Mayer K, Grimminger F et al. 2009. Macrophage tumor necrosis factor-α induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am. J. Respir. Crit. Care Med. 180:521–32
    [Google Scholar]
  122. 122.
    Sano H, Kuroki Y. 2005. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol. Immunol. 42:279–87
    [Google Scholar]
  123. 123.
    Wang Q, Wang Q, Zhao Z, Fan J, Qin L et al. 2021. Surfactant proteins A/D-CD14 on alveolar macrophages is a common pathway associated with phagocytosis of nanomaterials and cytokine production. Front. Immunol. 12:758941
    [Google Scholar]
  124. 124.
    Yamada C, Sano H, Shimizu T, Mitsuzawa H, Nishitani C et al. 2006. Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J. Biol. Chem. 281:21771–80
    [Google Scholar]
  125. 125.
    Janssen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K et al. 2008. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRPα. Am. J. Respir. Crit. Care Med. 178:158
    [Google Scholar]
  126. 126.
    Gardai SJ, Xiao Y, Dickinson M, Nick JA, Voelker DR et al. 2003. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115:1P13–23
    [Google Scholar]
  127. 127.
    Watson A, Madsen J, Clark HW. 2020. SP-A and SP-D: dual functioning immune molecules with antiviral and immunomodulatory properties. Front. Immunol. 11:622598
    [Google Scholar]
  128. 128.
    Jiang-Shieh YF, Chien HF, Chang CY, Wei TS, Chiu MM et al. 2010. Distribution and expression of CD200 in the rat respiratory system under normal and endotoxin-induced pathological conditions. J. Anat. 216:407–16
    [Google Scholar]
  129. 129.
    Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S et al. 2008. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 9:1074–83
    [Google Scholar]
  130. 130.
    Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. 2008. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180:2562–72
    [Google Scholar]
  131. 131.
    Yu X, Buttgereit A, Lelios I, Utz SG, Cansever D et al. 2017. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47:903–12.e4
    [Google Scholar]
  132. 132.
    Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL et al. 1999. The integrin αvβ6 binds and activates latent TGFb1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–28
    [Google Scholar]
  133. 133.
    Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD et al. 2003. Loss of integrin αvβ6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature 422:169–73
    [Google Scholar]
  134. 134.
    Meliopoulos VA, Van de Velde LA, Van de Velde NC, Karlsson EA, Neale G et al. 2016. An epithelial integrin regulates the amplitude of protective lung interferon responses against multiple respiratory pathogens. PLOS Pathog. 12:e1005804
    [Google Scholar]
  135. 135.
    Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS et al. 2014. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–6
    [Google Scholar]
  136. 136.
    Beckmann A, Grissmer A, Meier C, Tschernig T. 2020. Intercellular communication between alveolar epithelial cells and macrophages. Ann. Anat. 227:151417
    [Google Scholar]
  137. 137.
    Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A et al. 2017. Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21:120–34.e7
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031621-024344
Loading
/content/journals/10.1146/annurev-pathmechdis-031621-024344
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error