1932

Abstract

African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031621-025153
2023-01-24
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031621-025153.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031621-025153&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Franco JR, Cecchi G, Paone M, Diarra A, Grout L et al. 2022. The elimination of human African trypanosomiasis: achievements in relation to WHO road map targets for 2020. PLOS Negl. Trop. Dis. 16:e0010047
    [Google Scholar]
  2. 2.
    Magez S, Pinto Torres JE, Oh S, Radwanska M. 2021. Salivarian trypanosomes have adopted intricate host-pathogen interaction mechanisms that ensure survival in plain sight of the adaptive immune system. Pathogens 10:679
    [Google Scholar]
  3. 3.
    Verdi J, Zipkin R, Hillman E, Gertsch RA, Pangburn SJ et al. 2020. Inducible germline IgMs bridge trypanosome lytic factor assembly and parasite recognition. Cell Host Microbe 28:79–88
    [Google Scholar]
  4. 4.
    Müller N, Mansfield JM, Seebeck T. 1996. Trypanosome variant surface glycoproteins are recognized by self-reactive antibodies in uninfected hosts. Infect. Immun. 64:4593–97
    [Google Scholar]
  5. 5.
    Baral TN, De Baetselier P, Brombacher F, Magez S. 2007. Control of Trypanosoma evansi infection is IgM mediated and does not require a type I inflammatory response. J. Infect. Dis. 195:1513–20
    [Google Scholar]
  6. 6.
    Magez S, Schwegmann A, Atkinson R, Claes F, Drennan M et al. 2008. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei–infected mice. PLOS Pathog 4:e1000122
    [Google Scholar]
  7. 7.
    Lecordier L, Uzureau S, Vanwalleghem G, Deleu M, Crowet JM et al. 2020. The Trypanosoma brucei KIFC1 kinesin ensures the fast antibody clearance required for parasite infectivity. . iScience 23:101476
    [Google Scholar]
  8. 8.
    Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G et al. 2007. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–15
    [Google Scholar]
  9. 9.
    Cnops J, De Trez C, Stijlemans B, Keirsse J, Kauffmann F et al. 2015. NK-, NKT- and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in Trypanosomosis-associated acute anemia. PLOS Pathog 11:e1004964
    [Google Scholar]
  10. 10.
    Drennan MB, Stijlemans B, Van den Abbeele J, Quesniaux VJ, Barkhuizen M et al. 2005. The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J. Immunol. 175:2501–9
    [Google Scholar]
  11. 11.
    Harris TH, Mansfield JM, Paulnock DM. 2007. CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect. Immun. 75:2366–73
    [Google Scholar]
  12. 12.
    Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MA et al. 1998. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J. Immunol. 160:1949–56
    [Google Scholar]
  13. 13.
    Magez S, Truyens C, Merimi M, Radwanska M, Stijlemans B et al. 2004. P75 tumor necrosis factor-receptor shedding occurs as a protective host response during African trypanosomiasis. J. Infect. Dis. 189:527–39
    [Google Scholar]
  14. 14.
    Magez S, Geuskens M, Beschin A, del Favero H, Verschueren H et al. 1997. Specific uptake of tumor necrosis factor-α is involved in growth control of Trypanosoma brucei. J. Cell Biol. 137:715–27
    [Google Scholar]
  15. 15.
    Vanwalleghem G, Morias Y, Beschin A, Szymkowski DE, Pays E. 2017. Trypanosoma brucei growth control by TNF in mammalian host is independent of the soluble form of the cytokine. Sci. Rep. 7:6165
    [Google Scholar]
  16. 16.
    Magez S, Radwanska M, Drennan M, Fick L, Baral TN et al. 2007. Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing. J. Infect. Dis. 196:954–62
    [Google Scholar]
  17. 17.
    Magez S, Radwanska M, Drennan M, Fick L, Baral TN et al. 2006. Interferon-γ and nitric oxide in combination with antibodies are key protective host immune factors during Trypanosoma congolense Tc13 infections. J. Infect. Dis. 193:1575–83
    [Google Scholar]
  18. 18.
    Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C et al. 2012. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337:463–66
    [Google Scholar]
  19. 19.
    Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC et al. 2016. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164:246–57
    [Google Scholar]
  20. 20.
    De Muylder G, Daulouède S, Lecordier L, Uzureau P, Morias Y et al. 2013. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity. PLOS Pathog 9:e1003731
    [Google Scholar]
  21. 21.
    Diskin C, Corcoran SE, Tyrrell VJ, McGettrick AF, Zaslona Z et al. 2021. The trypanosome-derived metabolite indole-3-pyruvate inhibits prostaglandin production in macrophages by targeting COX2. J. Immunol. 207:2551–60
    [Google Scholar]
  22. 22.
    Torti FM, Dieckmann B, Beutler B, Cerami A, Ringold GM. 1985. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science 229:867–69
    [Google Scholar]
  23. 23.
    Wu H, Liu G, Shi M. 2017. Interferon gamma in African trypanosome infections: friends or foes?. Front. Immunol. 8:1105
    [Google Scholar]
  24. 24.
    Stijlemans B, Korf H, De Baetselier P, Brys L, Van Ginderachter JA et al. 2020. Hepatocyte-derived IL-10 plays a crucial role in attenuating pathogenicity during the chronic phase of T. congolense infection. PLOS Pathog 16:e1008170
    [Google Scholar]
  25. 25.
    Grob D, Conejeros I, Velásquez ZD, Preußer C, Gärtner U et al. 2020. Trypanosoma brucei brucei induces polymorphonuclear neutrophil activation and neutrophil extracellular traps release. Front. Immunol. 11:559561
    [Google Scholar]
  26. 26.
    Zhang K, Jiang N, Sang X, Feng Y, Chen R et al. 2021. Trypanosoma brucei lipophosphoglycan induces the formation of neutrophil extracellular traps and reactive oxygen species burst via Toll-like receptor 2, Toll-like receptor 4, and c-Jun N-terminal kinase activation. Front. Microbiol. 12:713531
    [Google Scholar]
  27. 27.
    Zhang K, Jiang N, Chen H, Zhang N, Sang X et al. 2021. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps. Sci. China Life Sci. 64:621–32
    [Google Scholar]
  28. 28.
    Caljon G, Mabille D, Stijlemans B, De Trez C, Mazzone M et al. 2018. Neutrophils enhance early Trypanosoma brucei infection onset. Sci. Rep. 8:11203
    [Google Scholar]
  29. 29.
    Naessens J, Leak SG, Kennedy DJ, Kemp SJ, Teale AJ. 2003. Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense. Vet. Parasitol. 111:125–42
    [Google Scholar]
  30. 30.
    Van Den Abbeele J, Caljon G, De Ridder K, De Baetselier P, Coosemans M. 2010. Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLOS Pathog 6:e1000926
    [Google Scholar]
  31. 31.
    Mabille D, Caljon G. 2020. Inflammation following trypanosome infection and persistence in the skin. Curr. Opin. Immunol. 66:65–73
    [Google Scholar]
  32. 32.
    Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van Den Abbeele J. 2010. Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLOS ONE 5:e9671
    [Google Scholar]
  33. 33.
    Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van den Abbeele J et al. 1998. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95:839–46
    [Google Scholar]
  34. 34.
    Uzureau P, Uzureau S, Lecordier L, Fontaine F, Tebabi P et al. 2013. Mechanism of Trypanosoma gambiense resistance to human serum. Nature 501:430–34
    [Google Scholar]
  35. 35.
    Pays E, Vanhollebeke B, Uzureau P, Lecordier L, Pérez-Morga D. 2014. The molecular arms race between African trypanosomes and humans. Nat. Rev. Microbiol. 12:575–84
    [Google Scholar]
  36. 36.
    Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L et al. 2003. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422:83–87
    [Google Scholar]
  37. 37.
    Smith EE, Malik HS. 2009. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions. Genome Res 19:850–58
    [Google Scholar]
  38. 38.
    Pays E. 2021. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 288:360–81
    [Google Scholar]
  39. 39.
    Nichols B, Jog P, Lee JH, Blackler D, Wilmot M et al. 2015. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 87:332–42
    [Google Scholar]
  40. 40.
    Uzureau S, Coquerelle C, Vermeiren C, Uzureau P, Van Acker A et al. 2016. Apolipoproteins L control cell death triggered by TLR3/TRIF signaling in dendritic cells. Eur. J. Immunol. 46:1854–66
    [Google Scholar]
  41. 41.
    Uzureau S, Lecordier L, Uzureau P, Hennig D, Graversen JH et al. 2020. APOL1 C-terminal variants may trigger kidney disease through interference with APOL3 control of actomyosin. Cell Rep 30:3821–36
    [Google Scholar]
  42. 42.
    Gaudet RG, Zhu S, Halder A, Kim B-H, Bradfield CJ et al. 2021. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 373:eabf8113
    [Google Scholar]
  43. 43.
    Pérez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L et al. 2005. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–72
    [Google Scholar]
  44. 44.
    Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K et al. 2015. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat. Commun. 6:8078
    [Google Scholar]
  45. 45.
    Fontaine F, Lecordier L, Vanwalleghem G, Uzureau P, Van Reet N et al. 2017. APOLs with low pH dependence can kill all African trypanosomes. Nat. Microbiol. 2:1500–6
    [Google Scholar]
  46. 46.
    Schaub C, Verdi J, Lee P, Terra N, Limon G et al. 2020. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J. Biol. Chem. 295:13138–49
    [Google Scholar]
  47. 47.
    Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S. 2018. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLOS Pathog 14:e1006855
    [Google Scholar]
  48. 48.
    Thomson R, Finkelstein A. 2015. Human trypanolytic factor APOL1 forms pH-gated cation selective channels in planar lipid bilayers: relevance to trypanosome lysis. PNAS 112:2894–99
    [Google Scholar]
  49. 49.
    Schwede A, Macleod OJS, MacGregor P, Carrington M. 2015. How does the VSG coat of bloodstream form African trypanosomes interact with external proteins?. PLOS Pathog. 11:e1005259
    [Google Scholar]
  50. 50.
    Aresta-Branco F, Erben E, Papavasiliou FN, Stebbins CE. 2019. Mechanistic similarities between antigenic variation and antibody diversification during Trypanosoma brucei infection. Trends Parasitol 35:302–15
    [Google Scholar]
  51. 51.
    Sima N, McLaughlin EJ, Hutchinson S, Glover L. 2019. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol 9:190182
    [Google Scholar]
  52. 52.
    La Greca F, Haynes C, Stijlemans B, De Trez C, Magez S 2014. Antibody-mediated control of Trypanosoma vivax infection fails in the absence of tumour necrosis factor. Parasite Immunol. 36:271–76
    [Google Scholar]
  53. 53.
    Magez S, Pinto Torres JE, Obishakin E, Radwanska M 2020. Infections with extracellular trypanosomes require control by efficient innate immune mechanisms and can result in the destruction of the mammalian humoral immune system. Front. Immunol. 11:382
    [Google Scholar]
  54. 54.
    Liu G, Fu Y, Yosri M, Chen Y, Sun P et al. 2019. CRIg plays an essential role in intravascular clearance of bloodborne parasites by interacting with complement. PNAS 116:24214–20
    [Google Scholar]
  55. 55.
    Nguyen HTT, Guevarra RB, Magez S, Radwanska M. 2021. Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLOS Pathog 17:e1010026
    [Google Scholar]
  56. 56.
    Bockstal V, Guirnalda P, Caljon G, Goenka R, Telfer JC et al. 2011. T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLOS Pathog 7:e1002089
    [Google Scholar]
  57. 57.
    Radwanska M, Guirnalda P, De Trez C, Ryffel B, Black S et al. 2008. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLOS Pathog 4:e1000078
    [Google Scholar]
  58. 58.
    Rivera-Correa J, Verdi J, Sherman J, Sternberg JM, Raper J et al. 2021. Autoimmunity to phosphatidylserine and anemia in African Trypanosome infections. PLOS Negl. Trop. Dis. 15:e0009814
    [Google Scholar]
  59. 59.
    Darji A, Beschin A, Sileghem M, Heremans H, Brys L et al. 1996. In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression. Infect. Immun. 64:1937–43
    [Google Scholar]
  60. 60.
    Hall JPJ, Wang H, Barry JD. 2013. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLOS Pathog 9:e1003502
    [Google Scholar]
  61. 61.
    Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM et al. 2009. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect. Immun. 77:141–51
    [Google Scholar]
  62. 62.
    Rurangirwa FR, Musoke AJ, Nantulya VM, Tabel H. 1983. Immune depression in bovine trypanosomiasis: effects of acute and chronic Trypanosoma congolense and chronic Trypanosoma vivax infections on antibody response to Brucella abortus vaccine. Parasite Immunol 5:267–76
    [Google Scholar]
  63. 63.
    Holland WG, Do TT, Huong NT, Dung NT, Thanh NG et al. 2003. The effect of Trypanosoma evansi infection on pig performance and vaccination against classical swine fever. Vet. Parasitol. 111:115–23
    [Google Scholar]
  64. 64.
    Lejon V, Mumba Ngoyi D, Kestens L, Boel L, Barbé B et al. 2014. Gambiense human African trypanosomiasis and immunological memory: effect on phenotypic lymphocyte profiles and humoral immunity. PLOS Pathog 10:e1003947
    [Google Scholar]
  65. 65.
    Rojas F, Silvester E, Young J, Milne R, Tettey M et al. 2019. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell 176:306–17
    [Google Scholar]
  66. 66.
    Briggs EM, Rojas F, McCulloch R, Matthews KR, Otto TD. 2021. Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nat. Commun. 12:5268
    [Google Scholar]
  67. 67.
    Radwanska M, Magez S, Michel A, Stijlemans B, Geuskens M et al. 2000. Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect. Immun. 68:848–60
    [Google Scholar]
  68. 68.
    Cox FE. 1979. Pathogenesis of animal trypanosomiasis. Nature 277:603–4
    [Google Scholar]
  69. 69.
    Naessens J. 2006. Bovine trypanotolerance: a natural ability to prevent severe anemia and haemophagocytic syndrome?. Int. J. Parasitol. 36:521–28
    [Google Scholar]
  70. 70.
    Chisi JE, Misiri H, Zverev Y, Nkhoma A, Sternberg JM. 2004. Anemia in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. East Afr. Med. J. 81:505–8
    [Google Scholar]
  71. 71.
    Paul M, Stefaniak J, Smuszkiewicz P, Van Esbroeck M, Geysen D et al. 2014. Outcome of acute East African trypanosomiasis in a Polish traveller treated with pentamidine. BMC Infect. Dis. 14:111
    [Google Scholar]
  72. 72.
    Kaboré J, Camara O, Koffi M, Sanou D, Ilboudo H et al. 2018. Differences in pathogenicity and virulence of Trypanosoma brucei gambiense field isolates in experimentally infected Balb/C mice. Infect. Genet. Evol. 63:269–76
    [Google Scholar]
  73. 73.
    Felli N, Pedini F, Zeuner A, Petrucci E, Testa U et al. 2005. Multiple members of the TNF superfamily contribute to IFN-γ-mediated inhibition of erythropoiesis. J. Immunol. 175:1464–72
    [Google Scholar]
  74. 74.
    Naessens J, Kitani H, Nakamura Y, Yagi Y, Sekikawa K et al. 2005. TNF-α mediates the development of anemia in a murine Trypanosoma brucei rhodesiense infection, but not the anemia associated with a murine Trypanosoma congolense infection. Clin. Exp. Immunol. 139:405–10
    [Google Scholar]
  75. 75.
    Stijlemans B, Beschin A, Magez S, Van Ginderachter JA, De Baetselier P. 2015. Iron homeostasis and Trypanosoma brucei associated immunopathogenicity development: a battle/quest for iron. Biomed. Res. Int. 2015:819389
    [Google Scholar]
  76. 76.
    Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. 2018. African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Front. Immunol. 9:218
    [Google Scholar]
  77. 77.
    Stijlemans B, Vankrunkelsven A, Brys L, Magez S, De Baetselier P. 2008. Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology 213:823–35
    [Google Scholar]
  78. 78.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A et al. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–93
    [Google Scholar]
  79. 79.
    Neves JV, Gomes AC, Costa DM, Barroso C, Vaulont S et al. 2021. A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica 106:806–18
    [Google Scholar]
  80. 80.
    Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW et al. 2007. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–58
    [Google Scholar]
  81. 81.
    Witola WH, Lovelace CE. 2001. Demonstration of erythrophagocytosis in Trypanosoma congolense-infected goats. Vet. Parasitol. 96:115–26
    [Google Scholar]
  82. 82.
    Coustou V, Plazolles N, Guegan F, Baltz T. 2012. Sialidases play a key role in infection and anemia in Trypanosoma congolense animal trypanosomiasis. Cell. Microbiol. 14:431–45
    [Google Scholar]
  83. 83.
    Guegan F, Plazolles N, Baltz T, Coustou V. 2013. Erythrophagocytosis of desialylated red blood cells is responsible for anemia during Trypanosoma vivax infection. Cell. Microbiol. 15:1285–303
    [Google Scholar]
  84. 84.
    Stijlemans B, Cnops J, Naniima P, Vaast A, Bockstal V et al. 2015. Development of a pHrodo-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis. PLOS Negl. Trop. Dis. 9:e0003561
    [Google Scholar]
  85. 85.
    Rifkin MR, Landsberger FR. 1990. Trypanosome variant surface glycoprotein transfer to target membranes: a model for the pathogenesis of trypanosomiasis. PNAS 87:801–5
    [Google Scholar]
  86. 86.
    Michels K, Nemeth E, Ganz T, Mehrad B. 2015. Hepcidin and host defense against infectious diseases. PLOS Pathog 11:e1004998
    [Google Scholar]
  87. 87.
    Kennedy PGE, Rodgers J. 2019. Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front. Immunol. 10:39
    [Google Scholar]
  88. 88.
    MacLean LM, Odiit M, Chisi JE, Kennedy PG, Sternberg JM. 2010. Focus-specific clinical profiles in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. PLOS Negl. Trop. Dis. 4:e906
    [Google Scholar]
  89. 89.
    Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M et al. 2012. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLOS Negl. Trop. Dis. 6:e1691
    [Google Scholar]
  90. 90.
    Masocha W, Kristensson K. 2019. Human African trypanosomiasis: How do the parasites enter and cause dysfunctions of the nervous system in murine models?. Brain Res. Bull. 145:18–29
    [Google Scholar]
  91. 91.
    Grab DJ, Nikolskaia O, Kim YV, Lonsdale-Eccles JD, Ito S et al. 2004. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J. Parasitol. 90:970–79
    [Google Scholar]
  92. 92.
    MacLean L, Reiber H, Kennedy PG, Sternberg JM. 2012. Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response. PLOS Negl. Trop. Dis. 6:e1857
    [Google Scholar]
  93. 93.
    Masocha W, Kristensson K. 2012. Passage of parasites across the blood-brain barrier. Virulence 3:202–12
    [Google Scholar]
  94. 94.
    Abdulla MH, O'Brien T, Mackey ZB, Sajid M, Grab DJ et al. 2008. RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLOS Negl. Trop. Dis. 2:e298
    [Google Scholar]
  95. 95.
    Olivera GC, Vetter L, Tesoriero C, Del Gallo F, Hedberg G et al. 2021. Role of T cells during the cerebral infection with Trypanosoma brucei. PLOS Negl. Trop. Dis. 15:e0009764
    [Google Scholar]
  96. 96.
    Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C et al. 2009. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J. Infect. Dis. 200:1556–65
    [Google Scholar]
  97. 97.
    Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M et al. 2005. Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J. Neuroimmunol. 167:81–89
    [Google Scholar]
  98. 98.
    Masocha W, Amin DN, Kristensson K, Rottenberg ME. 2008. Differential invasion of Trypanosoma brucei brucei and lymphocytes into the brain of C57BL/6 and 129Sv/Ev mice. Scand. J. Immunol. 68:484–91
    [Google Scholar]
  99. 99.
    Cespuglio R, Amrouni D, Raymond EF, Bouteille B, Buguet A. 2019. Cerebral inducible nitric oxide synthase protein expression in microglia, astrocytes and neurons in Trypanosoma brucei brucei-infected rats. PLOS ONE 14:e0215070
    [Google Scholar]
  100. 100.
    Olivera GC, Ren X, Vodnala SK, Lu J, Coppo L et al. 2016. Nitric oxide protects against infection-induced neuroinflammation by preserving the stability of the blood-brain barrier. PLOS Pathog 12:e1005442
    [Google Scholar]
  101. 101.
    Frevert U, Movila A, Nikolskaia OV, Raper J, Mackey ZB et al. 2012. Early invasion of brain parenchyma by African trypanosomes. PLOS ONE 7:e43913
    [Google Scholar]
  102. 102.
    Mogk S, Meiwes A, Boßelmann CM, Wolburg H, Duszenko M. 2014. The lane to the brain: how African trypanosomes invade the CNS. Trends Parasitol 30:470–77
    [Google Scholar]
  103. 103.
    Rodgers J, Steiner I, Kennedy PGE. 2019. Generation of neuroinflammation in human African trypanosomiasis. Neurol. Neuroimmunol. Neuroinflamm. 6:e610
    [Google Scholar]
  104. 104.
    Bentivoglio M, Kristensson K, Rottenberg ME. 2018. Circumventricular organs and parasite neurotropism: neglected gates to the brain?. Front. Immunol. 9:2877
    [Google Scholar]
  105. 105.
    Kristensson K, Nygård M, Bertini G, Bentivoglio M. 2010. African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Prog. Neurobiol. 91:152–71
    [Google Scholar]
  106. 106.
    Lejon V, Büscher P. 2005. Review article: Cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop. Med. Int. Health 10:395–403
    [Google Scholar]
  107. 107.
    Lindner AK, Lejon V, Chappuis F, Seixas J, Kazumba L et al. 2020. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect. Dis. 20:E38–46
    [Google Scholar]
  108. 108.
    Büscher P, Cecchi G, Jamonneau V, Priotto G. 2017. Human African trypanosomiasis. Lancet 390:2397–409
    [Google Scholar]
  109. 109.
    Claustrat B, Buguet A, Geoffriau M, Bogui P, Mouanga G et al. 1998. Plasma melatonin rhythm is maintained in human African trypanosomiasis. Neuroendocrinology 68:64–70
    [Google Scholar]
  110. 110.
    Rijo-Ferreira F, Takahashi JS. 2020. Sleeping sickness: a tale of two clocks. Front. Cell. Infect. Microbiol. 10:525097
    [Google Scholar]
  111. 111.
    Tesoriero C, Xu YZ, Mumba Ngoyi D, Bentivoglio M 2018. Neural damage in experimental Trypanosoma brucei gambiense infection: the suprachiasmatic nucleus. Front. Neuroanat. 12:6
    [Google Scholar]
  112. 112.
    Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM et al. 2018. Sleeping sickness is a circadian disorder. Nat. Commun. 9:62
    [Google Scholar]
  113. 113.
    Rijo-Ferreira F, Bjorness TE, Cox KH, Sonneborn A, Greene RW et al. 2020. Sleeping sickness disrupts the sleep-regulating adenosine system. . J. Neurosci. 40:9306–16
    [Google Scholar]
  114. 114.
    Lundkvist GB, Sellix MT, Nygård M, Davis E, Straume M et al. 2010. Clock gene expression during chronic inflammation induced by infection with Trypanosoma brucei brucei in rats. J. Biol. Rhythms 25:92–102
    [Google Scholar]
  115. 115.
    Guilding C, Piggins HD. 2007. Challenging the omnipotence of the suprachiasmatic timekeeper: Are circadian oscillators present throughout the mammalian brain?. Eur. J. Neurosci. 25:3195–216
    [Google Scholar]
  116. 116.
    Robertson B, Kong G, Peng Z, Bentivoglio M, Kristensson K. 2000. Interferon-γ-responsive neuronal sites in the normal rat brain: receptor protein distribution and cell activation revealed by Fos induction. Brain Res. Bull. 52:61–74
    [Google Scholar]
  117. 117.
    Radomski MW, Buguet A, Montmayeur A, Bogui P, Bourdon L et al. 1995. Twenty-four-hour plasma cortisol and prolactin in human African trypanosomiasis patients and healthy African controls. Am. J. Trop. Med. Hyg. 52:281–86
    [Google Scholar]
  118. 118.
    Brandenberger G, Buguet A, Spiegel K, Stanghellini A, Muanga G et al. 1996. Disruption of endocrine rhythms in sleeping sickness with preserved relationship between hormonal pulsatility and the REM-NREM sleep cycles. . J. Biol. Rhythms 11:258–67
    [Google Scholar]
  119. 119.
    Pentreath VW, Rees K, Owolabi OA, Philip KA, Doua F. 1990. The somnogenic T lymphocyte suppressor prostaglandin D2 is selectively elevated in cerebrospinal fluid of advanced sleeping sickness patients. Trans R. Soc. Trop. Med. Hyg. 84:795–99
    [Google Scholar]
  120. 120.
    Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C et al. 2009. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J. Infect. Dis. 200:1556–65
    [Google Scholar]
  121. 121.
    Laperchia C, Tesoriero C, Seke-Etet PF, La Verde V, Colavito V et al. 2017. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis. PLOS Negl. Trop. Dis. 11:e0005854
    [Google Scholar]
  122. 122.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P et al. 2010. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–45
    [Google Scholar]
  123. 123.
    Cooper A, Ilboudo H, Alibu VP, Ravel S, Enyaru J et al. 2017. APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. Elife 6:e25461
    [Google Scholar]
  124. 124.
    Kopp JB, Heymann J, Winkler CA. 2017. APOL1 renal risk variants: fertile soil for HIV-associated nephropathy. Semin. Nephrol. 37:514–19
    [Google Scholar]
  125. 125.
    Friedman DJ, Pollak MR. 2020. APOL1 and kidney disease: from genetics to biology. Annu. Rev. Physiol. 82:323–42
    [Google Scholar]
  126. 126.
    Velez JC, Caza T, Larsen C. 2020. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat. Rev. Nephr. 16:565–67
    [Google Scholar]
  127. 127.
    Beckerman P, Bi-Karchin J, Park ASD, Qiu C, Dummer PD et al. 2017. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23:429–38
    [Google Scholar]
  128. 128.
    Datta S, Kataria R, Zhang JY, Moore S, Petitpas K et al. 2020. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function. J. Am. Soc. Nephrol. 31:2083–96
    [Google Scholar]
  129. 129.
    Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N et al. 2020. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. Elife 9:e51185
    [Google Scholar]
  130. 130.
    O'Toole JF, Schilling W, Kunze D, Madhavan SM, Konieczkowski M et al. 2018. ApoL1 overexpression drives variant-independent cytotoxicity. J. Am. Soc. Nephrol. 29:869–79
    [Google Scholar]
  131. 131.
    Pays E. 2022. Distinct APOL1 functions in trypanosomes and kidney podocytes. Trends Parasitol 38:104–8
    [Google Scholar]
  132. 132.
    Khatua AK, Cheatham AM, Kruzel ED, Singhal PC, Skorecki K et al. 2015. Exon 4-encoded sequence is a major determinant of cytotoxicity of apolipoprotein L1. Am. J. Physiol. Cell Physiol. 309:C22–37
    [Google Scholar]
  133. 133.
    Skorecki KL, Lee JH, Langefel CD, Rosset S, Tzur S et al. 2018. A null variant in the apolipoprotein L3 gene is associated with non-diabetic nephropathy. Nephrol. Dial. Transplant. 33:323–30
    [Google Scholar]
  134. 134.
    Brown EJ, Schlöndorff JS, Becker DJ, Tsukaguchi H, Tonna SJ et al. 2010. Mutations in the form in gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42:72–76
    [Google Scholar]
  135. 135.
    Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. 2019. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J. Cell Biol. 218:1634–52
    [Google Scholar]
  136. 136.
    Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H et al. 2020. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367:1366–71
    [Google Scholar]
  137. 137.
    Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T et al. 2017. Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. PNAS 114:E3462–71
    [Google Scholar]
  138. 138.
    Olasunkanmi OI, Chen S, Mageto J, Zhong Z. 2020. Virus-induced cytoplasmic aggregates and inclusions are critical cellular regulatory and antiviral factors. Viruses 12:399
    [Google Scholar]
  139. 139.
    Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T et al. 2010. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Investig. 120:1084–96
    [Google Scholar]
  140. 140.
    Ma L, Ainsworth HC, Snipes JA, Murea M, Choi YA et al. 2020. APOL1 kidney-risk variants induce mitochondrial fission. Kidney Int. Rep. 5:891–904
    [Google Scholar]
  141. 141.
    Madhavan SM, O'Toole JF, Konieczkowski M, Barisoni L, Thomas DB et al. 2017. APOL1 variants change C-terminal conformational dynamics and binding to SNARE protein VAMP8. JCI Insight 2:e92581
    [Google Scholar]
  142. 142.
    Ma L, Chou JW, Snipes JA, Bharadwaj MS, Craddock AL et al. 2017. APOL1 renal-risk variants induce mitochondrial dysfunction. J. Am. Soc. Nephrol. 28:1093–105
    [Google Scholar]
  143. 143.
    Wu J, Ma Z, Raman A, Beckerman P, Dhillon P et al. 2021. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 54:2632–49
    [Google Scholar]
  144. 144.
    Magez S, Li Z, Nguyen HTT, Pinto Torres JE, Van Wielendaele P et al. 2021. The history of anti-trypanosome vaccine development shows that highly immunogenic and exposed pathogen-derived antigens are not necessarily good target candidates: enolase and ISG75 as examples. Pathogens 10:1050
    [Google Scholar]
  145. 145.
    Ziegelbauer K, Overath P. 1993. Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect. Immun. 61:4540–45
    [Google Scholar]
  146. 146.
    Autheman D, Crosnier C, Clare S, Goulding DA, Brandt C et al. 2021. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature 595:96–100
    [Google Scholar]
  147. 147.
    Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ et al. 2020. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27:1
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031621-025153
Loading
/content/journals/10.1146/annurev-pathmechdis-031621-025153
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error