1932

Abstract

Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-085014
2023-01-20
2024-06-01
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-085014.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-085014&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Haeggstrom JZ, Funk CD. 2011. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111:5866–98
    [Google Scholar]
  2. 2.
    Nakamura M, Shimizu T. 2011. Leukotriene receptors. Chem. Rev. 111:6231–98
    [Google Scholar]
  3. 3.
    Peters-Golden M, Henderson WR Jr. 2007. Leukotrienes. N. Engl. J. Med. 357:1841–54
    [Google Scholar]
  4. 4.
    Araujo AC, Wheelock CE, Haeggstrom JZ. 2018. The eicosanoids, redox-regulated lipid mediators in immunometabolic disorders. Antioxid. Redox Signal. 29:275–96
    [Google Scholar]
  5. 5.
    Leslie CC. 2015. Cytosolic phospholipase A2: physiological function and role in disease. J. Lipid. Res. 56:1386–402
    [Google Scholar]
  6. 6.
    Radmark O, Werz O, Steinhilber D, Samuelsson B. 2015. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta 1851:331–39
    [Google Scholar]
  7. 7.
    Rouzer CA, Matsumoto T, Samuelsson B. 1986. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. PNAS 83:857–61
    [Google Scholar]
  8. 8.
    Peters-Golden M, Brock TG. 2001. Intracellular compartmentalization of leukotriene synthesis: unexpected nuclear secrets. FEBS Lett. 487:323–26
    [Google Scholar]
  9. 9.
    Luo M, Jones SM, Peters-Golden M, Brock TG. 2003. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity. PNAS 100:12165–70
    [Google Scholar]
  10. 10.
    Stsiapanava A, Samuelsson B, Haeggstrom JZ. 2017. Capturing LTA4 hydrolase in action: insights to the chemistry and dynamics of chemotactic LTB4 synthesis. PNAS 114:9689–94
    [Google Scholar]
  11. 11.
    Qiu H, Straat K, Rahbar A, Wan M, Soderberg-Naucler C, Haeggstrom JZ. 2008. Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells. J. Exp. Med. 205:19–24
    [Google Scholar]
  12. 12.
    Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H. 2001. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91:737–43
    [Google Scholar]
  13. 13.
    Sveinbjornsson B, Rasmuson A, Baryawno N, Wan M, Pettersen I et al. 2008. Expression of enzymes and receptors of the leukotriene pathway in human neuroblastoma promotes tumor survival and provides a target for therapy. FASEB J. 22:3525–36
    [Google Scholar]
  14. 14.
    Wang D, Dubois RN. 2010. Eicosanoids and cancer. Nat. Rev. Cancer 10:181–93
    [Google Scholar]
  15. 15.
    Funk CD, Hoshiko S, Matsumoto T, Radmark O, Samuelsson B. 1989. Characterization of the human 5-lipoxygenase gene. PNAS 86:2587–91
    [Google Scholar]
  16. 16.
    Hoshiko S, Radmark O, Samuelsson B. 1990. Characterization of the human 5-lipoxygenase gene promoter. PNAS 87:9073–77
    [Google Scholar]
  17. 17.
    Silverman ES, Drazen JM. 2000. Genetic variations in the 5-lipoxygenase core promoter. Description and functional implications. Am. J. Respir. Crit. Care Med. 161:S77–80
    [Google Scholar]
  18. 18.
    Kalayci O, Birben E, Sackesen C, Keskin O, Tahan F et al. 2006. ALOX5 promoter genotype, asthma severity and LTC4 production by eosinophils. Allergy 61:97–103
    [Google Scholar]
  19. 19.
    Steinhilber D, Radmark O, Samuelsson B. 1993. Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. PNAS 90:5984–88
    [Google Scholar]
  20. 20.
    Busch S, Auth E, Scholl F, Huenecke S, Koehl U et al. 2015. 5-Lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J. Immunol. 194:1646–53
    [Google Scholar]
  21. 21.
    Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D et al. 2006. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. PNAS 103:13150–55
    [Google Scholar]
  22. 22.
    Smyrniotis CJ, Barbour SR, Xia Z, Hixon MS, Holman TR. 2014. ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid. Biochemistry 53:4407–19
    [Google Scholar]
  23. 23.
    Werz O, Burkert E, Fischer L, Szellas D, Dishart D et al. 2002. Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J. 16:1441–43
    [Google Scholar]
  24. 24.
    Werz O, Klemm J, Samuelsson B, Radmark O. 2000. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. PNAS 97:5261–66
    [Google Scholar]
  25. 25.
    Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG. 2004. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J. Biol. Chem. 279:41512–20
    [Google Scholar]
  26. 26.
    Werz O, Burkert E, Samuelsson B, Radmark O, Steinhilber D. 2002. Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood 99:1044–52
    [Google Scholar]
  27. 27.
    Werz O, Szellas D, Steinhilber D, Radmark O. 2002. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J. Biol. Chem. 277:14793–800
    [Google Scholar]
  28. 28.
    Luo M, Jones SM, Flamand N, Aronoff DM, Peters-Golden M, Brock TG. 2005. Phosphorylation by protein kinase A inhibits nuclear import of 5-lipoxygenase. J. Biol. Chem. 280:40609–16
    [Google Scholar]
  29. 29.
    Flamand N, Surette ME, Picard S, Bourgoin S, Borgeat P. 2002. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol. Pharmacol. 62:250–56
    [Google Scholar]
  30. 30.
    Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J et al. 2017. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J. Clin. Investig. 127:3167–76
    [Google Scholar]
  31. 31.
    Hafner AK, Cernescu M, Hofmann B, Ermisch M, Hornig M et al. 2011. Dimerization of human 5-lipoxygenase. Biol. Chem. 392:1097–111
    [Google Scholar]
  32. 32.
    Rouzer CA, Samuelsson B. 1985. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. PNAS 82:6040–44
    [Google Scholar]
  33. 33.
    Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE et al. 2011. The structure of human 5-lipoxygenase. Science 331:217–19
    [Google Scholar]
  34. 34.
    Allard JB, Brock TG. 2005. Structural organization of the regulatory domain of human 5-lipoxygenase. Curr. Protein Pept. Sci. 6:125–31
    [Google Scholar]
  35. 35.
    Mitra S, Bartlett SG, Newcomer ME. 2015. Identification of the substrate access portal of 5-lipoxygenase. Biochemistry 54:6333–42
    [Google Scholar]
  36. 36.
    Gerstmeier J, Newcomer ME, Dennhardt S, Romp E, Fischer J et al. 2016. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB J. 30:1892–900
    [Google Scholar]
  37. 37.
    Chen XS, Sheller JR, Johnson EN, Funk CD 1994. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372:179–82
    [Google Scholar]
  38. 38.
    McMillan RM, Walker ER. 1992. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol. Sci. 13:323–30
    [Google Scholar]
  39. 39.
    Drazen JF, Israel E, O'Byrne P. 1999. Treatment of asthma with drugs modifying the leukotriene pathway. N. Engl. J. Med. 340:197–206
    [Google Scholar]
  40. 40.
    Joshi EM, Heasley BH, Chordia MD, Macdonald TL. 2004. In vitro metabolism of 2-acetylbenzothiophene: relevance to zileuton hepatotoxicity. Chem. Res. Toxicol. 17:137–43
    [Google Scholar]
  41. 41.
    Evans JF, Ferguson AD, Mosley RT, Hutchinson JH. 2008. What's all the FLAP about?: 5-Lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol. Sci. 29:72–78
    [Google Scholar]
  42. 42.
    Poeckel D, Funk CD. 2010. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc. Res. 86:243–53
    [Google Scholar]
  43. 43.
    Chu J, Pratico D. 2016. The 5-lipoxygenase as modulator of Alzheimer's γ-secretase and therapeutic target. Brain Res. Bull. 126:207–12
    [Google Scholar]
  44. 44.
    Roos J, Oancea C, Heinssmann M, Khan D, Held H et al. 2014. 5-Lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia. Cancer Res. 74:5244–55
    [Google Scholar]
  45. 45.
    Steinhilber D, Hofmann B. 2014. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol. 114:70–77
    [Google Scholar]
  46. 46.
    Werz O, Gerstmeier J, Garscha U. 2017. Novel leukotriene biosynthesis inhibitors (2012–2016) as anti-inflammatory agents. Expert Opin. Ther. Pat. 27:607–20
    [Google Scholar]
  47. 47.
    Gilbert NC, Newcomer ME, Werz O. 2021. Untangling the web of 5-lipoxygenase-derived products from a molecular and structural perspective: the battle between pro- and anti-inflammatory lipid mediators. Biochem. Pharmacol. 193:114759
    [Google Scholar]
  48. 48.
    Rouzer CA, Ford-Hutchinson AW, Morton HE, Gillard JW. 1990. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J. Biol. Chem. 265:1436–42
    [Google Scholar]
  49. 49.
    Miller DK, Gillard JW, Vickers PJ, Sadowski S, Léveillé C et al. 1990. Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343:278–81
    [Google Scholar]
  50. 50.
    Mancini JA, Abramovitz M, Cox ME, Wong E, Charleson S et al. 1993. 5-lipoxygenase-activating protein is an arachidonate binding protein. FEBS Lett. 318:277–81
    [Google Scholar]
  51. 51.
    Charleson S, Evans JF, Leger S, Perrier H, Prasit P et al. 1994. Structural requirements for the binding of fatty acids to 5-lipoxygenase-activating protein. Eur. J. Pharmacol. 267:275–80
    [Google Scholar]
  52. 52.
    Woods JW, Coffey MJ, Brock TG, Singer II, Peters-Golden M. 1995. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation. J. Clin. Investig. 95:2035–46
    [Google Scholar]
  53. 53.
    Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG, Isakson PC. 1994. Molecular cloning end expression of human leukotriene C4 synthase. PNAS 91:9745–49
    [Google Scholar]
  54. 54.
    Jakobsson P-J, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B. 1998. Common structural features of MAPEG-A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci. 8:689–92
    [Google Scholar]
  55. 55.
    Mandal AK, Jones PB, Bair AM, Christmas P, Miller D et al. 2008. The nuclear membrane organization of leukotriene synthesis. PNAS 105:20434–39
    [Google Scholar]
  56. 56.
    Strid T, Svartz J, Franck N, Hallin E, Ingelsson B et al. 2009. Distinct parts of leukotriene C4 synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys. Res. Commun. 381:518–22
    [Google Scholar]
  57. 57.
    Hafner AK, Gerstmeier J, Hornig M, George S, Ball AK et al. 2015. Characterization of the interaction of human 5-lipoxygenase with its activating protein FLAP. Biochim. Biophys. Acta 1851:1465–72
    [Google Scholar]
  58. 58.
    Gerstmeier J, Weinigel C, Rummler S, Radmark O, Werz O, Garscha U. 2016. Time-resolved in situ assembly of the leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes. FASEB J. 30:276–85
    [Google Scholar]
  59. 59.
    Rinaldo-Matthis A, Wetterholm A, Molina DM, Holm J, Niegowski D et al. 2010. Arginine 104 is a key catalytic residue in leukotriene C4 synthase. J. Biol. Chem. 285:40771–76
    [Google Scholar]
  60. 60.
    Thulasingam M, Orellana L, Nji E, Ahmad S, Rinaldo-Matthis A, Haeggstrom JZ 2021. Crystal structures of human MGST2 reveal synchronized conformational changes regulating catalysis. Nat. Commun. 12:1728
    [Google Scholar]
  61. 61.
    Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK et al. 2007. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317:510–12
    [Google Scholar]
  62. 62.
    Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS et al. 2021. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim. Biophys. Acta Gen. Subj. 1865:129800
    [Google Scholar]
  63. 63.
    Chaudhuri R, Norris V, Kelly K, Zhu CQ, Ambery C et al. 2014. Effects of a FLAP inhibitor, GSK2190915, in asthmatics with high sputum neutrophils. Pulm. Pharmacol. Ther. 27:62–69
    [Google Scholar]
  64. 64.
    Gur ZT, Caliskan B, Banoglu E. 2018. Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur. J. Med. Chem. 153:34–48
    [Google Scholar]
  65. 65.
    Lemurell M, Ulander J, Emtenas H, Winiwarter S, Broddefalk J et al. 2019. Novel chemical series of 5-lipoxygenase-activating protein inhibitors for treatment of coronary artery disease. J. Med. Chem. 62:4325–49
    [Google Scholar]
  66. 66.
    Pettersen D, Broddefalk J, Emtenas H, Hayes MA, Lemurell M et al. 2019. Discovery and early clinical development of an inhibitor of 5-lipoxygenase activating protein (AZD5718) for treatment of coronary artery disease. J. Med. Chem. 62:4312–24
    [Google Scholar]
  67. 67.
    Ericsson H, Nelander K, Heijer M, Kjaer M, Lindstedt EL et al. 2020. Phase 1 pharmacokinetic study of AZD5718 in healthy volunteers: effects of coadministration with rosuvastatin, formulation and food on oral bioavailability. Clin. Pharmacol. Drug Dev. 9:411–21
    [Google Scholar]
  68. 68.
    Rout A, Sukhi A, Chaudhary R, Bliden KP, Tantry US, Gurbel PA. 2020. Investigational drugs in phase II clinical trials for acute coronary syndromes. Expert Opin. Investig. Drugs 29:33–47
    [Google Scholar]
  69. 69.
    Heerspink HJL, Law G, Psachoulia K, Connolly K, Whatling C et al. 2021. Design of FLAIR: a Phase 2b study of the 5-lipoxygenase activating protein inhibitor AZD5718 in patients with proteinuric CKD. Kidney Int. Rep. 6:2803–10
    [Google Scholar]
  70. 70.
    Khan HA, Jabeen I. 2022. Combined machine learning and GRID-independent molecular descriptor (GRIND) models to probe the activity profiles of 5-lipoxygenase activating protein inhibitors. Front. Pharmacol. 13:825741
    [Google Scholar]
  71. 71.
    Blevitt JM, Hack MD, Herman K, Chang L, Keith JM et al. 2016. A single amino acid difference between mouse and human 5-lipoxygenase activating protein (FLAP) explains the speciation and differential pharmacology of novel FLAP inhibitors. J. Biol. Chem. 291:12724–31
    [Google Scholar]
  72. 72.
    Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75
    [Google Scholar]
  73. 73.
    Haeggstrom JZ. 2004. Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J. Biol. Chem. 279:50639–42
    [Google Scholar]
  74. 74.
    Mancini JA, Evans JF. 1995. Cloning and characterization of the human leukotriene A4 hydrolase gene. Eur. J. Biochem. 231:65–71
    [Google Scholar]
  75. 75.
    Zaitsu M, Hamasaki Y, Matsuo M, Kukita A, Tsuji K et al. 2000. New induction of leukotriene A4 hydrolase by interleukin-4 and interleukin-13 in human polymorphonuclear leukocytes. Blood 96:601–9
    [Google Scholar]
  76. 76.
    Chen X, Li N, Wang S, Wu N, Hong J et al. 2003. Leukotriene A4 hydrolase in rat and human esophageal adenocarcinomas and inhibitory effects of bestatin. J. Natl. Cancer Inst. 95:1053–61
    [Google Scholar]
  77. 77.
    Tholander F, Muroya A, Roques BP, Fournié-Zaluski MC, Thunnissen MM, Haeggström JZ. 2008. Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem. Biol. 15:920–29
    [Google Scholar]
  78. 78.
    Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A et al. 2010. A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330:90–94
    [Google Scholar]
  79. 79.
    Numao S, Hasler F, Laguerre C, Srinivas H, Wack N et al. 2017. Feasibility and physiological relevance of designing highly potent aminopeptidase-sparing leukotriene A4 hydrolase inhibitors. Sci. Rep. 7:13591
    [Google Scholar]
  80. 80.
    Thunnissen MMGM, Nordlund P, Haeggström JZ. 2001. Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Mol. Biol. 8:131–35
    [Google Scholar]
  81. 81.
    Stsiapanava A, Olsson U, Wan M, Kleinschmidt T, Rutishauser D et al. 2014. Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. PNAS 111:4227–32
    [Google Scholar]
  82. 82.
    Kester WR, Matthews BW. 1977. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16:2506–16
    [Google Scholar]
  83. 83.
    Örning L, Krivi G, Fitzpatrick FA. 1991. Leukotriene A4 hydrolase: Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J. Biol. Chem. 266:1375–78
    [Google Scholar]
  84. 84.
    Yuan W, Wong C-H, Haeggström JZ, Wetterholm A, Samuelsson B. 1992. Novel tight-binding inhibitors of leukotriene A4 hydrolase. J. Am. Chem. Soc. 114:6552–53
    [Google Scholar]
  85. 85.
    Yuan W, Munoz B, Wong C-H, Haeggström JZ, Wetterholm A, Samuelsson B. 1993. Development of selective tight-binding inhibitors of leukotriene A4 hydrolase. J. Med. Chem. 36:211–20
    [Google Scholar]
  86. 86.
    Hogg JH, Ollmann IR, Wetterholm A, Blomster Andberg M, Haeggström J et al. 1998. Probing the activities and mechanisms of leukotriene A4 hydrolase with synthetic inhibitors. Chem. Eur. J. 4:1697–713
    [Google Scholar]
  87. 87.
    Penning TD. 2001. Inhibitors of leukotriene A4 (LTA4) hydrolase as potential anti-inflammatory agents. Curr. Pharm. Des. 7:163–79
    [Google Scholar]
  88. 88.
    Sandanayaka V, Mamat B, Mishra RK, Winger J, Krohn M et al. 2010. Discovery of 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. J. Med. Chem. 53:573–85
    [Google Scholar]
  89. 89.
    Kirkland TA, Adler M, Bauman JG, Chen M, Haeggstrom JZ et al. 2008. Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorg. Med. Chem. 16:4963–83
    [Google Scholar]
  90. 90.
    Rao NL, Riley JP, Banie H, Xue X, Sun B et al. 2010. Leukotriene A4 hydrolase inhibition attenuates allergic airway inflammation and hyperresponsiveness. Am. J. Respir. Crit. Care Med. 181:899–907
    [Google Scholar]
  91. 91.
    Rohn TA, Numao S, Otto H, Loesche C, Thoma G. 2021. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. Expert Opin. Drug Discov. 16:1483–95
    [Google Scholar]
  92. 92.
    Elborn JS, Konstan MW, Taylor-Cousar JL, Fajac I, Horsley A et al. 2021. Empire-CF study: a phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis. J. Cyst. Fibros. 20:1026–34
    [Google Scholar]
  93. 93.
    Markert C, Thoma G, Srinivas H, Bollbuck B, Luond RM et al. 2021. Discovery of LYS006, a potent and highly selective inhibitor of leukotriene A4 hydrolase. J. Med. Chem. 64:1889–903
    [Google Scholar]
  94. 94.
    Lam BK, Austen KF. 2002. Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat. 68–9:511–20
    [Google Scholar]
  95. 95.
    Jedlitschky G, Keppler D. 2002. Transport of leukotriene C4 and structurally related conjugates. Vitam. Horm. 64:153–84
    [Google Scholar]
  96. 96.
    Johnson ZL, Chen J. 2017. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168:1075–85.e9
    [Google Scholar]
  97. 97.
    Anderson ME, Allison RD, Meister A. 1982. Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids. PNAS 79:1088–91
    [Google Scholar]
  98. 98.
    Lee CW, Lewis RA, Corey EJ, Austen KF 1983. Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leucocytes. Immunology 48:27–35
    [Google Scholar]
  99. 99.
    Capra V, Rovati GE, Mangano P, Buccellati C, Murphy RC, Sala A. 2015. Transcellular biosynthesis of eicosanoid lipid mediators. Biochim. Biophys. Acta 1851:377–82
    [Google Scholar]
  100. 100.
    McGeehan M, Bush RK. 2002. The mechanisms of aspirin-intolerant asthma and its management. Curr. Allergy Asthma Rep. 2:117–25
    [Google Scholar]
  101. 101.
    Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF et al. 2006. Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J. Pathol. 209:392–99
    [Google Scholar]
  102. 102.
    Sjolinder M, Stenke L, Nasman-Glaser B, Widell S, Doucet J et al. 2000. Aberrant expression of active leukotriene C4 synthase in CD16+ neutrophils from patients with chronic myeloid leukemia. Blood 95:1456–64
    [Google Scholar]
  103. 103.
    Bach MK, Brashler JR, Morton DR Jr. 1984. Solubilization and characterization of the leukotriene C4 synthase of rat basophilic leukemia cells: a novel, particulate glutathione S-transferase. Arch. Biochem. Biophys. 230:455–65
    [Google Scholar]
  104. 104.
    Gupta N, Nicholson DW, Ford-Hutchinson AW. 1999. Demonstration of cell-specific phosphorylation of LTC4 synthase. FEBS Lett. 449:66–70
    [Google Scholar]
  105. 105.
    Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggstrom JZ et al. 2011. Zymosan suppresses leukotriene C4 synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J. 25:1417–27
    [Google Scholar]
  106. 106.
    Ahmad S, Ytterberg AJ, Thulasingam M, Tholander F, Bergman T et al. 2016. Phosphorylation of leukotriene C4 synthase at serine 36 impairs catalytic activity. J. Biol. Chem. 291:18410–18
    [Google Scholar]
  107. 107.
    Martinez Molina D, Wetterholm A, Kohl A, McCarthy AA, Niegowski D et al. 2007. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448:613–16
    [Google Scholar]
  108. 108.
    Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T et al. 2007. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448:609–12
    [Google Scholar]
  109. 109.
    Fitzpatrick FA, Morton DR, Wynalda MA. 1982. Albumin stabilizes leukotriene A4. J. Biol. Chem. 257:4680–83
    [Google Scholar]
  110. 110.
    Saino H, Ukita Y, Ago H, Irikura D, Nisawa A et al. 2011. The catalytic architecture of leukotriene C4 synthase with two arginine residues. J. Biol. Chem. 286:16392–401
    [Google Scholar]
  111. 111.
    Niegowski D, Kleinschmidt T, Olsson U, Ahmad S, Rinaldo-Matthis A, Haeggstrom JZ 2014. Crystal structures of leukotriene C4 synthase in complex with product analogs: implications for the enzyme mechanism. J. Biol. Chem. 289:5199–207
    [Google Scholar]
  112. 112.
    Nilsson P, Pelcman B, Katkevics M, Suna E, Popvs I. 2016. Bis aromatic compounds for use as LTC4 synthase inhibitors WO Patent 2010/103283
  113. 113.
    Nilsson P, Pelcman B, Katkevics M. 2011. Bis-aryl compounds for use as medicaments US Patent Appl. 2011/0112193 A1
  114. 114.
    Pelcman B, Nilsson P. 2008. New methylenebisphenyl compounds useful in the treatment of inflammation WO Patent 2008/107661
  115. 115.
    Biolipox Nilsson P 2010. Indoles useful in the treatment of inflammation WO Patent 2010/076566
  116. 116.
    Kleinschmidt TK, Haraldsson M, Basavarajappa D, Lundeberg E, Thulasingam M et al. 2015. Tandem benzophenone amino pyridines, potent and selective inhibitors of human leukotriene C4 synthase. J. Pharmacol. Exp. Ther. 355:108–16
    [Google Scholar]
  117. 117.
    Liening S, Scriba GK, Rummler S, Weinigel C, Kleinschmidt TK et al. 2016. Development of smart cell-free and cell-based assay systems for investigation of leukotriene C4 synthase activity and evaluation of inhibitors. Biochim. Biophys. Acta 1861:1605–13
    [Google Scholar]
  118. 118.
    Munck af Rosenschöld M, Johannesson P, Nikitidis A, Tyrchan C, Chang HF et al. 2019. Discovery of the oral leukotriene C4 synthase inhibitor (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-met hoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) as a new treatment for asthma. J. Med. Chem. 62:7769–87
    [Google Scholar]
  119. 119.
    Jakobsson PJ, Mancini JA, Fordhutchinson AW. 1996. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J. Biol. Chem. 271:22203–10
    [Google Scholar]
  120. 120.
    Ahmad S, Thulasingam M, Palombo I, Daley DO, Johnson KA et al. 2015. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity. Biochim. Biophys. Acta 1854:1365–71
    [Google Scholar]
  121. 121.
    Scoggan KA, Jakobsson P-J, Ford-Hutchinson AW. 1997. Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. J. Biol. Chem. 272:10182–87
    [Google Scholar]
  122. 122.
    Dvash E, Har-Tal M, Barak S, Meir O, Rubinstein M. 2015. Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage. Nat. Commun. 6:10112
    [Google Scholar]
  123. 123.
    Vishnupriya P, Aparna A, Viswanadha VP. 2021. Lipoxygenase (LOX) pathway: a promising target to combat cancer. Curr. Pharm. Des. 27:3349–69
    [Google Scholar]
  124. 124.
    Itadani S, Yashiro K, Aratani Y, Sekiguchi T, Kinoshita A et al. 2015. Discovery of gemilukast (ONO-6950), a dual CysLT1 and CysLT2 antagonist as a therapeutic agent for asthma. J. Med. Chem. 58:6093–113
    [Google Scholar]
  125. 125.
    Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A et al. 1999. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: a randomized, controlled trial. Ann. Intern. Med. 130:487–95
    [Google Scholar]
  126. 126.
    Austen KF, Maekawa A, Kanaoka Y, Boyce JA. 2009. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J. Allergy Clin. Immunol. 124:415–16
    [Google Scholar]
  127. 127.
    Gauvreau GM, Parameswaran KN, Watson RM, O'Byrne PM. 2001. Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am. J. Respir. Crit. Care Med. 164:1495–500
    [Google Scholar]
  128. 128.
    Shirasaki H, Kanaizumi E, Seki N, Himi T. 2015. Leukotriene E4 induces MUC5AC release from human airway epithelial NCI-H292 cells. Allergol. Int. 64:169–74
    [Google Scholar]
  129. 129.
    Rao NL, Dunford PJ, Xue X, Jiang X, Lundeen KA et al. 2007. Anti-inflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. 321:1154–60
    [Google Scholar]
  130. 130.
    Gilbert NC, Gerstmeier J, Schexnaydre EE, Borner F, Garscha U et al. 2020. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 16:783–90
    [Google Scholar]
  131. 131.
    Whittle BJ, Varga C, Berko A, Horvath K, Posa A et al. 2008. Attenuation of inflammation and cytokine production in rat colitis by a novel selective inhibitor of leukotriene A4 hydrolase. Br. J. Pharmacol. 153:983–91
    [Google Scholar]
  132. 132.
    Kanaoka Y, Maekawa A, Penrose JF, Austen KF, Lam BK. 2001. Attenuated zymosan-induced peritoneal vascular permeability and IgE dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J. Biol. Chem. 276:22608–13
    [Google Scholar]
  133. 133.
    Yokomizo T, Nakamura M, Shimizu T. 2018. Leukotriene receptors as potential therapeutic targets. J. Clin. Investig. 128:2691–701
    [Google Scholar]
  134. 134.
    Kanaoka Y, Austen KF. 2019. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv. Immunol. 142:65–84
    [Google Scholar]
  135. 135.
    He R, Chen Y, Cai Q. 2020. The role of the LTB4-BLT1 axis in health and disease. Pharmacol. Res. 158:104857
    [Google Scholar]
  136. 136.
    Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y et al. 2018. Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat. Chem. Biol. 14:262–69
    [Google Scholar]
  137. 137.
    Michaelian N, Sadybekov A, Besserer-Offroy E, Han GW, Krishnamurthy H et al. 2021. Structural insights on ligand recognition at the human leukotriene B4 receptor 1. Nat. Commun. 12:2971
    [Google Scholar]
  138. 138.
    Wang N, He X, Zhao J, Jiang H, Cheng X et al. 2022. Structural basis of leukotriene B4 receptor 1 activation. Nat. Commun. 13:1156
    [Google Scholar]
  139. 139.
    Luginina A, Gusach A, Marin E, Mishin A, Brouillette R et al. 2019. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 5:eaax2518
    [Google Scholar]
  140. 140.
    Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy E et al. 2019. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 10:5573
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-085014
Loading
/content/journals/10.1146/annurev-pharmtox-051921-085014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error