1932

Abstract

The role of β-adrenergic receptors (βARs) in adipose tissue to promote lipolysis and the release of fatty acids and nonshivering thermogenesis in brown fat has been studied for so many decades that one would think there is nothing left to discover. With the rediscovery of brown fat in humans and renewed interest in UCP1 and uncoupled mitochondrial respiration, it seems that a review of adipose tissue as an organ, pivotal observations, and the investigators who made them would be instructive to understanding where the field stands now. The discovery of the β-adrenergic receptor was important for accurately defining the pharmacology of the adipocyte, while the clinical targeting of this receptor for obesity and metabolic disease has had its highs and lows. Many questions still remain about how βARs regulate adipocyte metabolism and the signaling molecules through which they do it.

Keyword(s): adiposecAMPkinasesobesitysignaling
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-060721-092939
2022-02-10
2024-05-15
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-060721-092939.html?itemId=/content/journals/10.1146/annurev-physiol-060721-092939&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Shaw HB. 1901. A contribution to the study of the morphology of adipose tissue. J Anat. Physiol 36:1–13
    [Google Scholar]
  2. 2. 
    Wells HG. 1940. Adipose tissue, a neglected subject. J. Am. Med. Assoc 114:2177–83
    [Google Scholar]
  3. 3. 
    Afzelius BJ 1970. Brown adipose tissue: its gross anatomy, histology, and cytology. Brown Adipose Tissue O Lindberg 1–31 New York: Elsevier
    [Google Scholar]
  4. 4. 
    Rasmussen AT. 1923. The so-called hibernating gland. J. Morphol. 38:147–205
    [Google Scholar]
  5. 5. 
    Smith RE. 1964. Thermoregulatory and adaptive behavior of brown adipose tissue. Science 146:1686–89
    [Google Scholar]
  6. 6. 
    Ball E, Jungas R. 1961. On the action of hormones which accelerate the rate of oxygen consumption and fatty acid release in rat adipose tissue in vitro. PNAS 47:932–41
    [Google Scholar]
  7. 7. 
    Coleman DL. 1973. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–98
    [Google Scholar]
  8. 8. 
    Coleman DL. 1978. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–48
    [Google Scholar]
  9. 9. 
    Coleman DL, Hummel KP. 1969. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217:1298–304
    [Google Scholar]
  10. 10. 
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–32
    [Google Scholar]
  11. 11. 
    Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J et al. 1995. Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–71
    [Google Scholar]
  12. 12. 
    Lee G-H, Proenca R, Montez JM, Carroll KM, Darbishzadeh JG et al. 1996. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–35
    [Google Scholar]
  13. 13. 
    Friedman J. 2014. Douglas Coleman (1931–2014). Nature 509:564
    [Google Scholar]
  14. 14. 
    Laudat MH, Pairault J. 1975. An impaired response of adenylate cyclase to stimulation by epinephrine in adipocyte plasma membranes from genetically obese mice (ob/ob). Eur. J. Biochem. 56:583–89
    [Google Scholar]
  15. 15. 
    Dehaye JP, Winand J, Christophe J 1977. Lipolysis and cyclic AMP levels in epididymal adipose tissue of obese hyperglycemic mice. Diabetologia 13:553–61
    [Google Scholar]
  16. 16. 
    Trayhurn P, James WPT. 1978. Thermoregulation and non-shivering thermogenesis in the genetically obese (ob/ob) mouse. PflügersArch. Eur. J. Physiol. 373:189–93
    [Google Scholar]
  17. 17. 
    Shepherd RE, Malbon CC, Smith CJ, Fain JN. 1977. Lipolysis and adenosine 3′:5′-monophosphate metabolism in isolated white fat cells from genetically obese-hyperglycemic mice (ob/ob). J. Biol. Chem. 252:7243–48
    [Google Scholar]
  18. 18. 
    Harms HH, Zaagsma J, Wal BVD. 1974. β-Adrenoceptor studies. III. On the β-adrenoceptors in rat adipose tissue. Eur. J. Pharm. 25:87–91
    [Google Scholar]
  19. 19. 
    Arch JRS, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV et al. 1984. Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–65
    [Google Scholar]
  20. 20. 
    Bojanic D, Jansen JD, Nahorski SR, Zaagsma J. 1985. Atypical characteristics of the β-adrenoceptor mediating cyclic AMP generation and lipolysis in the rat adipocyte. Br. J. Pharmacol. 84:131–37
    [Google Scholar]
  21. 21. 
    Muzzin P, Seydoux J, Giacobino J-P, Venter J-C, Fraser C. 1988. Discrepancies between the affinities of binding and action of the novel β-adrenergic agonist BRL 37344 in rat brown adipose tissue. Biochem. Biophys. Res. Comm. 156:375–82
    [Google Scholar]
  22. 22. 
    Hollenga C, Zaagsma J. 1989. Direct evidence for the atypical nature of functional β-adrenoceptors in rat adipocytes. Br. J. Pharmacol. 98:1420–24
    [Google Scholar]
  23. 23. 
    Lefkowitz RJ. 2007. Seven transmembrane receptors: something old, something new. Acta Physiol 190:9–19
    [Google Scholar]
  24. 24. 
    Arch JR, Ainsworth AT. 1983. Thermogenic and antiobesity activity of a novel β-adrenoceptor agonist (BRL 26830A) in mice and rats. Am. J. Clin. Nutr. 38:549–58
    [Google Scholar]
  25. 25. 
    Granneman JG. 1990. Norepinephrine and BRL 37344 stimulate adenylate cyclase by different receptors in rat brown adipose tissue. J. Pharm. Exp. Ther. 254:508–13
    [Google Scholar]
  26. 26. 
    Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K et al. 1989. Molecular characterization of the human β3-adrenergic receptor. Science 245:1118–21
    [Google Scholar]
  27. 27. 
    Granneman JG, Lahners KN, Chaudhry A. 1991. Molecular cloning and expression of the rat β3-adrenergic receptor. Mol. Pharmacol. 40:895–99
    [Google Scholar]
  28. 28. 
    Nahmias C, Blin N, Elalouf J-M, Mattei MG, Strosberg AD, Emorine LJ. 1991. Molecular characterization of the mouse β3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 10:3721–27
    [Google Scholar]
  29. 29. 
    Muzzin P, Revelli JP, Kuhne F, Gocayne JD, McCombie WR et al. 1991. An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 266:24053–58
    [Google Scholar]
  30. 30. 
    Collins S, Daniel KW, Rohlfs EM, Ramkumar V, Taylor IL, Gettys TW 1994. Impaired expression and functional activity of the β3- and β1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 8:518–27
    [Google Scholar]
  31. 31. 
    Tate KM, Briend-Sutren M-M, Emorine LM, Delavier-Klutchko C, Marullo S, Strosberg AD 1991. Expression of three human β-adrenergic receptor subtypes in transfected Chinese hamster ovary cells. Eur. J. Biochem. 196:357–61
    [Google Scholar]
  32. 32. 
    Germack R, Starzec AB, Vassy R, Perret GY. 1997. β-Adrenoceptor subtype expression and function in rat white adipocytes. Br. J. Pharmacol. 120:201–10
    [Google Scholar]
  33. 33. 
    Collins S, Daniel KW, Rohlfs EM. 1999. Depressed expression of adipocyte β-adrenergic receptors is a common feature of congenital and diet-induced obesity in rodents. Int. J. Obes. Relat. Metab. Disord. 23:669–77
    [Google Scholar]
  34. 34. 
    Collins S, Daniel KW, Petro AE, Surwit RS. 1997. Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138:405–13
    [Google Scholar]
  35. 35. 
    Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG et al. 1992. Disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate(CL 316, 243). A potent β-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J. Med. Chem. 35:3081–84
    [Google Scholar]
  36. 36. 
    Himms-Hagen J, Cui J, Danforth E Jr., Taatjes DJ, Lang SS et al. 1994. Effect of CL-316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. 266:R1371–82
    [Google Scholar]
  37. 37. 
    Parmee ER, HO Ok, Candelore MR, Tota L, Deng L et al. 1998. Discovery of L-755,507: a subnanomolar human β3 adrenergic receptor agonist. Bioorg. Med. Chem. Lett. 8:1107–12
    [Google Scholar]
  38. 38. 
    Fisher MH, Amend AM, Bach TJ, Barker JM, Brady EJ et al. 1998. A selective human β3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J. Clin. Investig. 101:2387–93
    [Google Scholar]
  39. 39. 
    Forrest MJ, Hom G, Bach T, Candelore MR, Cascieri MA et al. 2000. L-750355, a human β3-adrenoceptor agonist; in vitro pharmacology and profile of activity in vivo in the rhesus monkey. Eur. J. Pharmacol. 407:175–81
    [Google Scholar]
  40. 40. 
    van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM et al. 2002. Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 71:272–79
    [Google Scholar]
  41. 41. 
    Weyer C, Gautier JF, Danforth E Jr 1999. Development of beta 3-adrenoceptor agonists for the treatment of obesity and diabetes—an update. Diabetes Metab. 25:11–21
    [Google Scholar]
  42. 42. 
    de Souza CJ, Burkey BF. 2001. β3-Adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr. Pharm. Des. 7:1433–49
    [Google Scholar]
  43. 43. 
    Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P et al. 2002. Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 76:780–88
    [Google Scholar]
  44. 44. 
    Arch JR. 2008. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β3-adrenoceptor agonists. Naunyn Schmiedebergs Arch. Pharmacol. 378:225–40
    [Google Scholar]
  45. 45. 
    Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T et al. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–31
    [Google Scholar]
  46. 46. 
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D et al. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360:1509–17
    [Google Scholar]
  47. 47. 
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R et al. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360:1518–25
    [Google Scholar]
  48. 48. 
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ et al. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360:1500–8
    [Google Scholar]
  49. 49. 
    Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B et al. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Investig. 122:545–52
    [Google Scholar]
  50. 50. 
    Blondin DP, Labbé SM, Christian Tingelstad H, Noll C, Kunach M et al. 2014. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99:E438–46
    [Google Scholar]
  51. 51. 
    Blondin DP, Daoud A, Taylor T, Tingelstad HC, Bezaire V et al. 2017. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J. Physiol. 595:2099–113
    [Google Scholar]
  52. 52. 
    Blondin DP, Frisch F, Phoenix S, Guerin B, Turcotte EE et al. 2017. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 25:438–47
    [Google Scholar]
  53. 53. 
    Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S et al. 2017. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat. Commun. 8:14146
    [Google Scholar]
  54. 54. 
    Opar A. 2012. Overactive bladder, under scrutiny, gets a new treatment. Nat. Med. 18:1159
    [Google Scholar]
  55. 55. 
    Cypess AM, Weiner LS, Roberts-Toler C, Elia EF, Kessler SH et al. 2015. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21:33–38
    [Google Scholar]
  56. 56. 
    Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B et al. 2018. Human adipose beiging in response to cold and mirabegron. JCI Insight 3:e121510
    [Google Scholar]
  57. 57. 
    Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ et al. 2020. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Investig. 130:2319–31
    [Google Scholar]
  58. 58. 
    Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. 2021. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 6:e139160
    [Google Scholar]
  59. 59. 
    Riis-Vestergaard MJ, Richelsen B, Bruun JM, Li W, Hansen JB, Pedersen SB 2020. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. J. Clin. Endocrinol. Metab. 105:e994–1005
    [Google Scholar]
  60. 60. 
    Blondin DP, Nielsen S, Kuipers EN, Severinsen MC, Jensen VH et al. 2020. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 32:287–300.e7
    [Google Scholar]
  61. 61. 
    Cypess AM, Chen YC, Sze C, Wang K, English J et al. 2012. Cold but not sympathomimetics activates human brown adipose tissue in vivo. PNAS 109:10001–5
    [Google Scholar]
  62. 62. 
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P et al. 2012. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 122:1022–36
    [Google Scholar]
  63. 63. 
    Carper D, Coue M, Nascimento EBM, Barquissau V, Lagarde D et al. 2020. Atrial natriuretic peptide orchestrates a coordinated physiological response to fuel non-shivering thermogenesis. Cell Rep. 32:108075
    [Google Scholar]
  64. 64. 
    Ceddia RP, Collins S. 2020. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin. Sci. 134:473–512
    [Google Scholar]
  65. 65. 
    Johansen OS, Ma T, Hansen JB, Markussen LK, Schreiber R et al. 2021. Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell 184:3502–18.e33
    [Google Scholar]
  66. 66. 
    Collins S. 2012. β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 2:102
    [Google Scholar]
  67. 67. 
    Shenoy SK, Lefkowitz RJ. 2011. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32:521–33
    [Google Scholar]
  68. 68. 
    Lefkowitz RJ. 2013. Arrestins come of age: a personal historical perspective. Prog. Mol. Biol. Transl. Sci. 118:3–18
    [Google Scholar]
  69. 69. 
    Soeder KS, Snedden SK, Cao W, Della Rocca GJ, Daniel KW et al. 1999. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem. 274:12017–22
    [Google Scholar]
  70. 70. 
    Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S et al. 1999. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283:655–61
    [Google Scholar]
  71. 71. 
    Cao W, Luttrell LM, Medvedev AV, Pierce KL, Daniel KW et al. 2000. Direct binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275:38131–34
    [Google Scholar]
  72. 72. 
    Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M et al. 2006. Maximal β3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J. Biol. Chem. 281:37794–802
    [Google Scholar]
  73. 73. 
    Hong S, Song W, Zushin PH, Liu B, Jedrychowski MP et al. 2018. Phosphorylation of beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. Mol. Metab. 12:25–38
    [Google Scholar]
  74. 74. 
    Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. 2018. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19:638–53
    [Google Scholar]
  75. 75. 
    Wingler LM, Lefkowitz RJ. 2020. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30:736–47
    [Google Scholar]
  76. 76. 
    Zarubin T, Han J. 2005. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15:11–18
    [Google Scholar]
  77. 77. 
    Davies SP, Reddy H, Caivano M, Cohen P. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351:95–105
    [Google Scholar]
  78. 78. 
    Cao W, Medvedev AV, Daniel KW, Collins S 2001. β-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein-1 (UCP1) gene requires p38 MAP kinase. J. Biol. Chem. 276:27077–82
    [Google Scholar]
  79. 79. 
    Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV et al. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057–67
    [Google Scholar]
  80. 80. 
    Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F et al. 2005. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38α MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol. Cell. Biol. 25:5466–79
    [Google Scholar]
  81. 81. 
    Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8:971–82
    [Google Scholar]
  82. 82. 
    Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN et al. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–4
    [Google Scholar]
  83. 83. 
    Zhang W, Wu X, Pei Z, Kiess W, Yang Y et al. 2019. GDF5 promotes white adipose tissue thermogenesis via p38 MAPK signaling pathway. DNA Cell Biol. 38:1303–12
    [Google Scholar]
  84. 84. 
    Rahman MS, Kim YS 2020. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism 107:154228
    [Google Scholar]
  85. 85. 
    Muller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K et al. 2013. p62 links β-adrenergic input to mitochondrial function and thermogenesis. J. Clin. Investig. 123:469–78
    [Google Scholar]
  86. 86. 
    Fischer K, Fenzl A, Liu D, Dyar KA, Kleinert M et al. 2020. The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nat. Commun. 11:2306
    [Google Scholar]
  87. 87. 
    Zhang S, Cao H, Li Y, Jing Y, Liu S et al. 2018. Metabolic benefits of inhibition of p38α in white adipose tissue in obesity. PLOS Biol. 16:e2004225
    [Google Scholar]
  88. 88. 
    Matesanz N, Nikolic I, Leiva M, Pulgarin-Alfaro M, Santamans AM et al. 2018. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLOS Biol. 16:e2004455
    [Google Scholar]
  89. 89. 
    El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: a phenomenon in search of mechanisms. PLOS Genet. 13:e1006780
    [Google Scholar]
  90. 90. 
    Barbaric I, Miller G, Dear TN. 2007. Appearances can be deceiving: phenotypes of knockout mice. Brief. Funct. Genom. Proteom. 6:91–103
    [Google Scholar]
  91. 91. 
    Liu D, Bordicchia M, Zhang C, Fang H, Wei W et al. 2016. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J. Clin. Investig. 126:1704–16
    [Google Scholar]
  92. 92. 
    Scott PH, Lawrence JC Jr. 1998. Attenuation of mammalian target of rapamycin activity by increased cAMP in 3T3-L1 adipocytes. J. Biol. Chem. 273:34496–501
    [Google Scholar]
  93. 93. 
    Ikenoue T, Hong S, Inoki K 2009. Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol. 4552:165–80
    [Google Scholar]
  94. 94. 
    Jewell JL, Fu V, Hong AW, Yu FX, Meng D et al. 2019. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. eLife 8:e43038
    [Google Scholar]
  95. 95. 
    Liu D, Ceddia RP, Collins S 2018. Cardiac natriuretic peptides promote adipose ‘browning’ through mTOR complex-1. Mol. Metab 9:192–98
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-060721-092939
Loading
/content/journals/10.1146/annurev-physiol-060721-092939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error