1932

Abstract

The centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060454
2017-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060454.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060454&mimeType=html&fmt=ahah

Literature Cited

  1. Agircan FG, Schiebel E, Mardin BR. 2014. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. B Biol. Sci. 369:165020130461 [Google Scholar]
  2. Allen RD. 1969. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J. Cell Biol. 40:3716–33 [Google Scholar]
  3. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:6966570–74 [Google Scholar]
  4. Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E. et al. 2015. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4:July1948–54 [Google Scholar]
  5. Arquint C, Nigg EA. 2016. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem. Soc. Trans. 44:51253–63 [Google Scholar]
  6. Arquint C, Sonnen KF, Stierhof YD, Nigg EA. 2012. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 125:Pt. 51342–52 [Google Scholar]
  7. Bauer M, Cubizolles F, Schmidt A, Nigg EA. 2016. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 35:192152–66 [Google Scholar]
  8. Bayless BA, Giddings THJr., Winey M, Pearson CG. 2012. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol. Biol. Cell 23:244820–32 [Google Scholar]
  9. Bernhard W, de Harven E. 1956. Electron microscopic study of the ultrastructure of centrioles in vertebra. Z. Zellforsch. Mikrosk. Anat. 45:3378–98 [Google Scholar]
  10. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. 2011. Centrosomes and cilia in human disease. Trends Genet 27:8307–15 [Google Scholar]
  11. Bornens M. 2012. The centrosome in cells and organisms. Science 335:6067422–26 [Google Scholar]
  12. Bornens M, Paintrand M, Berges J, Marty M-C, Karsenti E. 1987. Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskelet. 8:3238–49 [Google Scholar]
  13. Boveri T. 1900. Ueber die Natur der Centrosomen Jena, Ger: G. Fischer
  14. Brito DA, Gouveia SM, Bettencourt-Dias M. 2012. Deconstructing the centriole: structure and number control. Curr. Opin. Cell Biol. 24:14–13 [Google Scholar]
  15. Brown NJ, Marjanović M, Lüders J, Stracker TH, Costanzo V. 2013. Cep63 and Cep152 cooperate to ensure centriole duplication. PLOS ONE 8:7e69986 [Google Scholar]
  16. Brownlee CW, Klebba JE, Buster DW, Rogers GC. 2011. The protein phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. J. Cell Biol. 195:2231–43 [Google Scholar]
  17. Carvalho-Santos Z, Machado P, Alvarez-Martins I, Gouveia SM, Jana SC. et al. 2012. BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev. Cell 23:2412–24 [Google Scholar]
  18. Cavalier-Smith T. 1974. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J. Cell Sci. 16:3529–56 [Google Scholar]
  19. Chang J, Cizmecioglu O, Hoffmann I, Rhee K. 2010. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J 29:142395–406 [Google Scholar]
  20. Chang P, Giddings THJr., Winey M, Stearns T. 2002. ɛ-Tubulin is required for centriole duplication and microtubule organization. Nat. Cell Biol. 5:171–76 [Google Scholar]
  21. Chang P, Stearns T. 2000. Delta-tubulin and epsilon-tubulin: Two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat. Cell Biol. 2:130–35 [Google Scholar]
  22. Chrétien D, Buendia B, Fuller SD, Karsenti E. 1997. Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120:2117–33 [Google Scholar]
  23. Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L. et al. 2010. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191:4731–39 [Google Scholar]
  24. Comartin D, Gupta GD, Fussner E, Coyaud É, Hasegan M. et al. 2013. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23:141360–66 [Google Scholar]
  25. Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W. et al. 2009. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19:143–49 [Google Scholar]
  26. Dahl KD, Sankaran DG, Bayless BA, Pinter ME, Galati DF. et al. 2015. A short CEP135 splice isoform controls centriole duplication. Curr. Biol. 25:192591–96 [Google Scholar]
  27. Dammermann A, Müller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K. 2004. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7:6815–29 [Google Scholar]
  28. David A, Amartely H, Rabinowicz N, Shamir M, Friedler A, Izraeli S. 2016. Molecular basis of the STIL coiled coil oligomerization explains its requirement for de-novo formation of centrosomes in mammalian cells. Sci. Rep. 6:April24296 [Google Scholar]
  29. Delattre M, Canard C, Gönczy P. 2006. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16:181844–49 [Google Scholar]
  30. Delattre M, Gönczy P. 2004. The arithmetic of centrosome biogenesis. J. Cell Sci. 117:Pt. 91619–30 [Google Scholar]
  31. Delattre M, Leidel S, Wani K, Baumer K, Bamat J. et al. 2004. Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat. Cell Biol. 6:7656–64 [Google Scholar]
  32. Dippell RV. 1968. The development of basal bodies in paramecium. PNAS 61:2461–68 [Google Scholar]
  33. Dirksen ER. 1971. Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J. Cell Biol. 51:1286–302 [Google Scholar]
  34. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG, Geoffroy H, Vayssié L. et al. 2002. Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J. Cell Biol. 158:71183–93 [Google Scholar]
  35. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J. 2002. Epsilon-tubulin is an essential component of the centriole. Mol. Biol. Cell 13:113859–69 [Google Scholar]
  36. Dutcher SK, Trabuco EC. 1998. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9:61293–308 [Google Scholar]
  37. Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I. et al. 2010. Asterless is a scaffold for the onset of centriole assembly. Nature 467:7316714–18 [Google Scholar]
  38. Fırat-Karalar EN, Stearns T. 2014. The centriole duplication cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:July1–10 [Google Scholar]
  39. Fong CS, Kim M, Yang TT, Liao J-C, Tsou M-FB. 2014. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. Dev. Cell 30:2238–45 [Google Scholar]
  40. Fu J, Lipinszki Z, Rangone H, Min M, Mykura C. et al. 2016. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18:Feb.87–99 [Google Scholar]
  41. Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS. et al. 2007. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17:221960–66 [Google Scholar]
  42. Gönczy P. 2012. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13:7425–35 [Google Scholar]
  43. Gönczy P. 2015. Centrosomes and cancer: revisiting a long-standing relationship. Nat. Rev. Cancer 15:11639–52 [Google Scholar]
  44. Guderian G, Westendorf J, Uldschmid A, Nigg EA. 2010. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J. Cell Sci. 123:Pt 132163–69 [Google Scholar]
  45. Gudi R, Haycraft CJ, Bell PD, Li Z, Vasu C. 2015. Centrobin-mediated regulation of the centrosomal protein 4.1–associated protein (CPAP) level limits centriole length during elongation stage. J. Biol. Chem. 290:116890–902 [Google Scholar]
  46. Gudi R, Zou C, Dhar J, Gao Q, Vasu C. 2014. Centrobin-centrosomal protein 4.1–associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication. J. Biol. Chem. 289:2215166–78 [Google Scholar]
  47. Guichard P, Chretien D, Marco S, Tassin AM. 2010. Procentriole assembly revealed by cryo-electron tomography. EMBO J 29:91565–72 [Google Scholar]
  48. Guichard P, Desfosses A, Maheshwari A, Hachet V, Dietrich C. et al. 2012. Cartwheel architecture of Trichonympha basal body. Science 337:6094553 [Google Scholar]
  49. Guichard P, Gönczy P. 2016. Basal body structure in Trichonympha. Cilia 5:19 [Google Scholar]
  50. Guichard P, Hachet V, Majubu N, Neves A, Demurtas D. et al. 2013. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr. Biol. 23:171620–28 [Google Scholar]
  51. Guichard P, Hamel V, Le Guennec M, Banterle N, Iacovache I. et al. 2017. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat. Commun. 8:14813 [Google Scholar]
  52. Gupta H, Badarudeen B, George A, Thomas GE, Gireesh KK, Manna TK. 2015. Human SAS-6 C-terminus nucleates and promotes microtubule assembly in vitro by binding to microtubules. Biochemistry 54:416413–22 [Google Scholar]
  53. Habedanck R, Stierhof Y-DD, Wilkinson CJ, Nigg EA. 2005. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7:111140–46 [Google Scholar]
  54. Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T. 2010. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191:4721–29 [Google Scholar]
  55. Hatzopoulos GNN, Erat MCC, Cutts E, Rogala KBB, Slater LMM. et al. 2013. Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21:112069–77 [Google Scholar]
  56. Hilbert M, Erat MC, Hachet V, Guichard P, Blank ID. et al. 2013. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. PNAS 110:2811373–78 [Google Scholar]
  57. Hilbert M, Noga A, Frey D, Hamel V, Guichard P. et al. 2016. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat. Cell Biol. 18:4393–403 [Google Scholar]
  58. Hilfinger A, Jülicher F. 2008. The chirality of ciliary beats. Phys. Biol. 5:116003 [Google Scholar]
  59. Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17:201778–83 [Google Scholar]
  60. Hirono M. 2014. Cartwheel assembly. Philos. Trans. R. Soc. B Biol. Sci. 369:165020130458 [Google Scholar]
  61. Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW. 2010. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188:2191–98 [Google Scholar]
  62. Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58 [Google Scholar]
  63. Inanc B, Putz M, Lalor P, Dockery P, Kuriyama R. et al. 2013. Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells. Mol. Biol. Cell 24:172645–54 [Google Scholar]
  64. Ishikawa H, Kubo A, Tsukita S, Tsukita S. 2005. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat. Cell Biol. 7:5517–24 [Google Scholar]
  65. Izraeli S, Colaizzo-Anas T, Bertness VL, Mani K, Aplan PD, Kirsch IR. 1997. Expression of the SIL gene is correlated with growth induction and cellular proliferation. Cell Growth Differ 8:111171–79 [Google Scholar]
  66. Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E. et al. 2011. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J 30:81520–35 [Google Scholar]
  67. Janke C, Chloë Bulinski J. 2011. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12:12773–86 [Google Scholar]
  68. Joukov V, De Nicolo A, Rodriguez A, Walter JC, Livingston DM. 2010. Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation. PNAS 107:4921022–27 [Google Scholar]
  69. Kalnins VI, Porter KR. 1969. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z. Zellforsch. Mikrosk. Anat. 100:11–30 [Google Scholar]
  70. Katsura I. 1987. Determination of bacteriophage λ tail length by a protein ruler. Nature 327:611773–75 [Google Scholar]
  71. Katsura I, Hendrix RW. 1984. Length determination in bacteriophage lambda tails. Cell 39:3 Pt. 2691–98 [Google Scholar]
  72. Keller D, Orpinell M, Olivier N, Wachsmuth M, Mahen R. et al. 2014. Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J. Cell Biol. 204:5697–712 [Google Scholar]
  73. Keller LC, Geimer S, Romijn E, Yates 3rd J, Zamora I, Marshall WF. 2009. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell 20:41150–66 [Google Scholar]
  74. Keller LC, Romijn EP, Zamora I, Yates JR, Marshall WF. 2005. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15:121090–98 [Google Scholar]
  75. Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O'Connell KF. 2004. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6:4511–23 [Google Scholar]
  76. Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang C-L. 2002. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158:71171–81 [Google Scholar]
  77. Kilburn CL, Pearson CG, Romijn EP, Meehl JB, Giddings THJr. et al. 2007. New Tetrahymena basal body protein components identify basal body domain structure. J. Cell Biol. 178:6905–12 [Google Scholar]
  78. Kim M, O'Rourke BP, Soni RK, Jallepalli PV, Hendrickson RC, Tsou M-FB. 2016. Promotion and suppression of centriole duplication are catalytically coupled through PLK4 to ensure centriole homeostasis. Cell Rep 16:51195–203 [Google Scholar]
  79. Kim MK, Dudognon C, Smith S. 2012. Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep 13:8724–32 [Google Scholar]
  80. Kim T-S, Park J-E, Shukla A, Choi S, Murugan RN. et al. 2013. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. PNAS 110:50E4849–57 [Google Scholar]
  81. Kirkham M, Müller-Reichert T, Oegema K, Grill S, Hyman AA. 2003. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:4575–87 [Google Scholar]
  82. Kitagawa D, Kohlmaier G, Keller D, Strnad P, Balestra FR. et al. 2011a. Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. J. Cell Sci. 124:223884–93 [Google Scholar]
  83. Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D. et al. 2011b. Structural basis of the 9-fold symmetry of centrioles. Cell 144:3364–75 [Google Scholar]
  84. Klebba JE, Buster DW, McLamarrah TA, Rusan NM, Rogers GC. 2015. Autoinhibition and relief mechanism for Polo-like kinase 4. PNAS 112:7E657–66 [Google Scholar]
  85. Klein HCR, Guichard P, Hamel V, Gönczy P, Schwarz US. 2016. Computational support for a scaffolding mechanism of centriole assembly. Sci. Rep. 6:27075 [Google Scholar]
  86. Kobayashi T, Dynlacht BD. 2011. Regulating the transition from centriole to basal body. J. Cell Biol. 193:3435–44 [Google Scholar]
  87. Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL. et al. 2015. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 4:Aug.e07519 [Google Scholar]
  88. Kohlmaier G, Lončarek J, Meng X, McEwen BF, Mogensen MM. et al. 2009. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19:121012–18 [Google Scholar]
  89. Kolch W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6:11827–37 [Google Scholar]
  90. Kraatz S, Guichard P, Obbineni JM, Olieric N, Hatzopoulos GN. et al. 2016. The human centriolar protein CEP135 contains a two-stranded coiled-coil domain critical for microtubule binding. Structure 24:81358–71 [Google Scholar]
  91. Kratz A-S, Bärenz F, Richter KT, Hoffmann I. 2015. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4:3370–77 [Google Scholar]
  92. Kuriyama R. 2009. Centriole assembly in CHO cells expressing Plk4/SAS6/SAS4 is similar to centriogenesis in ciliated epithelial cells. Cell Motil. Cytoskelet. 66:8588–96 [Google Scholar]
  93. La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A. 2005. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168:5713–22 [Google Scholar]
  94. Lawo S, Hasegan M, Gupta GD, Pelletier L. 2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14:111148–58 [Google Scholar]
  95. Leidel S, Delattre M, Cerutti L, Baumer K, Gönczy P. 2005. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7:2115–25 [Google Scholar]
  96. Leidel S, Gönczy P. 2003. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4:3431–39 [Google Scholar]
  97. Levy EM. 1974. Flagellar elongation as a moving boundary problem. Bull. Math. Biol. 36:3265–73 [Google Scholar]
  98. Li S, Fernandez J-J, Marshall WF, Agard DA. 2012. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31:3552–62 [Google Scholar]
  99. Lin Y-C, Chang C-W, Hsu W-B, Tang C-J, Lin Y-N. et al. 2013a. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J 32:81141–54 [Google Scholar]
  100. Lin YN, Wu CT, Lin YC, Hsu WB, Tang CJ. et al. 2013b. CEP120 interacts with CPAP and positively regulates centriole elongation. J. Cell Biol. 202:2211–19 [Google Scholar]
  101. Ludington WB, Wemmer KA, Lechtreck KF, Witman GB, Marshall WF. 2013. Avalanche-like behavior in ciliary import. PNAS 110:103925–30 [Google Scholar]
  102. Lukinavičius G, Lavogina D, Orpinell M, Umezawa K, Reymond L. et al. 2013. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr. Biol. 23:3265–70 [Google Scholar]
  103. Marshall WF. 2015. How cells measure length on subcellular scales. Trends Cell Biol 25:12760–68 [Google Scholar]
  104. Martin SG, Berthelot-Grosjean M. 2009. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459:7248852–56 [Google Scholar]
  105. Matsuura K, Lefebvre PA, Kamiya R, Hirono M. 2004. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165:5663–71 [Google Scholar]
  106. Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. 2016. Design principles of length control of cytoskeletal structures. Annu. Rev. Biophys. 45:85–116 [Google Scholar]
  107. Moseley JB, Mayeux A, Paoletti A, Nurse P. 2009. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459:7248857–60 [Google Scholar]
  108. Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. 2015. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209:6863–78 [Google Scholar]
  109. Müller H, Schmidt D, Steinbrink S, Mirgorodskaya E, Lehmann V. et al. 2010. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J 29:193344–57 [Google Scholar]
  110. Nigg EA, Cajanek L, Arquint C. 2014. The centrosome duplication cycle in health and disease. FEBS Lett 588:152366–72 [Google Scholar]
  111. Novak ZA, Conduit PT, Wainman A, Raff JW. 2014. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24:111276–82 [Google Scholar]
  112. O'Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ. et al. 2001. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105:4547–58 [Google Scholar]
  113. Oda T, Yanagisawa H, Kamiya R, Kikkawa M. 2014. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346:6211857–60 [Google Scholar]
  114. Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H. et al. 2014. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5:5267 [Google Scholar]
  115. Ohta T, Essner R, Ryu JH, Palazzo RE, Uetake Y, Kuriyama R. 2002. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156:187–99 [Google Scholar]
  116. Paintrand M, Moudjou M, Delacroix H, Bornens M. 1992. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108:2107–28 [Google Scholar]
  117. Park SY, Park JE, Kim TS, Kim JH, Kwak MJ. et al. 2014. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21:8696–703 [Google Scholar]
  118. Pelletier L, Özlü N, Hannak E, Cowan C, Habermann B. et al. 2004. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14:10863–73 [Google Scholar]
  119. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M. 2000. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149:2317–30 [Google Scholar]
  120. Prensier G, Vivier E, Goldstein S, Schrevel J. 1980. Motile flagellum with a “3 + 0” ultrastructure. Science 207:44381493–94 [Google Scholar]
  121. Puklowski A, Homsi Y, Keller D, May M, Chauhan S. et al. 2011. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 13:81004–9 [Google Scholar]
  122. Qiao R, Cabral G, Lettman MM, Dammermann A, Dong G. 2012. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 31:224334–47 [Google Scholar]
  123. Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL. 2009. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell Biol. 184:2225–39 [Google Scholar]
  124. Rogers KW, Schier AF. 2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:1377–407 [Google Scholar]
  125. Roque H, Wainman A, Richens J, Kozyrska K, Franz A, Raff JW. 2013. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J. Cell Sci. 125:235881–86 [Google Scholar]
  126. Ross I, Clarissa C, Giddings THJr., Winey M. 2013. ε-Tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. J. Cell Sci. 126:Pt. 153441–51 [Google Scholar]
  127. Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB. et al. 2009. Control of centriole length by CPAP and CP110. Curr. Biol. 19:121005–11 [Google Scholar]
  128. Schrevel J, Besse C. 1975. Un type flagellaire fonctionnel de Base 6 + 0 [A functional flagella with a 6 + 0 pattern]. J. Cell Biol. 66:3492–507 [Google Scholar]
  129. Sharma A, Aher A, Dynes NJ, Frey D, Katrukha EA. et al. 2016. Centriolar CPAP/SAS-4 imparts slow processive microtubule growth. Dev. Cell 37:4362–76 [Google Scholar]
  130. Sillibourne JE, Tack F, Vloemans N, Boeckx A, Thambirajah S. et al. 2010. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol. Biol. Cell 21:4547–61 [Google Scholar]
  131. Sir J-H, Barr AR, Nicholas AK, Carvalho OP, Khurshid M. et al. 2011. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 43:111147–53 [Google Scholar]
  132. Sluder G. 2005. Two-way traffic: centrosomes and the cell cycle. Nat. Rev. Mol. Cell Biol. 6:9743–48 [Google Scholar]
  133. Song MH, Liu Y, Anderson DE, Jahng WJ, O'Connell KF. 2011. Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C.elegans by controlling the levels of centriole assembly factors. Dev. Cell 20:4563–71 [Google Scholar]
  134. Sonnen KF, Gabryjonczyk A-M, Anselm E, Stierhof Y-D, Nigg EA. 2013. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126:143223–33 [Google Scholar]
  135. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA. 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1:10965–76 [Google Scholar]
  136. Sorokin SP. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3:2207–30 [Google Scholar]
  137. Spektor A, Tsang WY, Khoo D, Dynlacht BD. 2007. Cep97 and CP110 suppress a cilia assembly program. Cell 130:4678–90 [Google Scholar]
  138. Steinman RM. 1968. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am. J. Anat. 122:119–55 [Google Scholar]
  139. Strnad P, Gönczy P. 2008. Mechanisms of procentriole formation. Trends Cell Biol 18:8389–96 [Google Scholar]
  140. Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gönczy P. 2007. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13:2203–13 [Google Scholar]
  141. Strzyz P. 2015. Cytoskeleton: centriole maturation to motherhood. Nat. Rev. Mol. Cell Biol. 17:14 [Google Scholar]
  142. Sugioka K, Hamill DR, Lowry JB, McNeely ME, Enrick M. et al. 2017. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation. eLife 6:e20353 [Google Scholar]
  143. Szollosi D, Calarco P, Donahue RP. 1972. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11:2521–41 [Google Scholar]
  144. Szöllosi D, Ozil JP. 1991. De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72:1–261–66 [Google Scholar]
  145. Tang C-J, Fu R-H, Wu K-S, Hsu W-B, Tang TK. 2009. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11:7825–31 [Google Scholar]
  146. Tang C-J, Lin S-Y, Hsu W-B, Lin Y-N, Wu C-T. et al. 2011. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J 30:234790–804 [Google Scholar]
  147. Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S. et al. 2007. Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176:2173–82 [Google Scholar]
  148. Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY. 2012. Microscopy microanalysis centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc. Microanal. 18:61430–41 [Google Scholar]
  149. van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S. et al. 2011. Structures of SAS-6 suggest its organization in centrioles. Science 331:60211196–99 [Google Scholar]
  150. van Breugel M, Wilcken R, McLaughlin SH, Rutherford TJ, Johnson CM. 2014. Structure of the SAS-6 cartwheel hub from Leishmania major. eLife 2014:3e01812 [Google Scholar]
  151. Vulprecht J, David A, Tibelius A, Castiel A, Konotop G. et al. 2012. STIL is required for centriole duplication in human cells. J. Cell Sci. 125:51353–62 [Google Scholar]
  152. Wang WJ, Acehan D, Kao CH, Jane WN, Uryu K, Tsou MFB. 2015. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. eLife 4:Nov.1054–61 [Google Scholar]
  153. Wolf N, Hirsh D, McIntosh JR. 1978. Spermatogenesis in males of the free-living nematode. Caenorhabditis elegans. J. Ultrastruct. Res. 63:2155–69 [Google Scholar]
  154. Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A. et al. 2015. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:62391155–60 [Google Scholar]
  155. Woodruff JB, Wueseke O, Hyman AA. 2014. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 369:165020130459 [Google Scholar]
  156. Zhao H, Zhu L, Zhu Y, Cao J, Li S. et al. 2013. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15:121434–44 [Google Scholar]
  157. Zhao L, Jin C, Chu Y, Varghese C, Hua S. et al. 2010. Dimerization of CPAP orchestrates centrosome cohesion plasticity. J. Biol. Chem. 285:42488–97 [Google Scholar]
  158. Zheng X, Ramani A, Soni K, Gottardo M, Zheng S. et al. 2016. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nat. Commun. 7:May11874 [Google Scholar]
  159. Zhu F, Lawo S, Bird A, Pinchev D, Ralph A. et al. 2008. The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18:2136–41 [Google Scholar]
  160. Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C. et al. 2016. CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis. Curr. Biol. 26:91127–37 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060454
Loading
/content/journals/10.1146/annurev-cellbio-100616-060454
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error