1932

Abstract

Cells and organisms have evolved numerous mechanisms to cope with and to adapt to unexpected challenges and harsh conditions. Proteins are essential to perform the vast majority of cellular and organismal functions. To maintain a healthy proteome, cells rely on a network of factors and pathways collectively known as protein quality control (PQC) systems, which not only ensure that newly synthesized proteins reach a functional conformation but also are essential for surveillance, prevention, and rescue of protein defects. The main players of PQC systems are chaperones and protein degradation systems: the ubiquitin-proteasome system and autophagy. Here we provide an integrated overview of the diverse PQC systems in eukaryotic cells in health and diseases, with an emphasis on the key regulatory aspects and their cross talks. We also highlight how PQC regulation may be exploited for potential therapeutic benefit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125334
2017-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-111315-125334.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125334&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L. et al. 2016. Targeting protein homeostasis in sporadic inclusion body myositis. Sci. Transl. Med. 8:331331ra41 [Google Scholar]
  2. Albert V, Hall MN. 2015. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 33:55–66 [Google Scholar]
  3. Åkerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11:8545–55 [Google Scholar]
  4. Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F. et al. 2015. A molecular census of 26S proteasomes in intact neurons. Science 347:6220439–42 [Google Scholar]
  5. Atkins C, Liu Q, Minthorn E, Zhang S-Y, Figueroa DJ. et al. 2013. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 73:61993–2002 [Google Scholar]
  6. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP. et al. 2012. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55:167193–207 [Google Scholar]
  7. Back S-H, Kaufman RJ. 2012. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81:767–93 [Google Scholar]
  8. Baker BM, Haynes CM. 2011. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 36:5254–61 [Google Scholar]
  9. Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. 2015. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Biol. 22:9712–19 [Google Scholar]
  10. Beckwith R, Estrin E, Worden EJ, Martin A. 2013. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20:101164–72 [Google Scholar]
  11. Ben Mosbah I, Alfany-Fernández I, Martel C, Zaouali MA, Bintanel-Morcillo M. et al. 2010. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 1:e52 [Google Scholar]
  12. Bertolotti A. 2008. Protein misfolding in neurodegenerative diseases. Dementia Forum 5:17–20 [Google Scholar]
  13. Bertolotti A. 2011. The Ubiquitin–Proteasome System in Neurodegenerative Diseases: More than the Usual Suspects Hoboken, NJ: John Wiley & Sons
  14. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2:326–32 [Google Scholar]
  15. Bollen M, Peti W, Ragusa MJ, Beullens M. 2010. The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35:8450–58 [Google Scholar]
  16. Bose S, Cho J. 2016. Targeting chaperones, heat shock factor-1, and unfolded protein response: promising therapeutic approaches for neurodegenerative disorders. Ageing Res. Rev. 35:155–75 [Google Scholar]
  17. Bota DA, Davies KJA. 2002. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4:9674–80 [Google Scholar]
  18. Boyce M, Bryant KF, Jousse C, Long K, Harding HP. et al. 2005. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:5711935–39 [Google Scholar]
  19. Buchberger A, Bukau B, Sommer T. 2010. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40:2238–52 [Google Scholar]
  20. Carrara M, Prischi F, Nowak PR, Kopp MC, Ali MM. 2015. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife 4:e03522 [Google Scholar]
  21. Carrara M, Sigurdardottir A, Bertolotti A. 2017. Decoding the selectivity of eIF2α holophosphatases and PPP1R15A inhibitors.. Nat. Struct. Mol. Biol. In press. http://doi.org/10.1038/nsmb.3443 [Crossref]
  22. Chai Y, Koppenhafer SL, Bonini NM, Paulson HL. 1999. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19:2310338–47 [Google Scholar]
  23. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K. et al. 2016. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:1153–64 [Google Scholar]
  24. Chen JJ, Genereux JC, Qu S, Hulleman JD, Shoulders MD, Wiseman RL. 2014. ATF6 activation reduces the secretion and extracellular aggregation of destabilized variants of an amyloidogenic protein. Chem. Biol. 21:111564–74 [Google Scholar]
  25. Chou T-F, Brown SJ, Minond D, Nordin BE, Li K. et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. PNAS 108:124834–39 [Google Scholar]
  26. Connor JH, Weiser DC, Li S, Hallenbeck JM, Shenolikar S. 2001. Growth arrest and DNA damage–inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21:206841–50 [Google Scholar]
  27. Cooley CB, Ryno LM, Plate L, Morgan GJ, Hulleman JD. et al. 2014. Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. PNAS 111:3613046–51 [Google Scholar]
  28. Cox JS, Shamu CE, Walter P. 1993. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:61197–206 [Google Scholar]
  29. Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y. et al. 2006. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127:1401–13 [Google Scholar]
  30. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M. et al. 2015. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:6231239–42 [Google Scholar]
  31. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. 1994. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269:107059–61 [Google Scholar]
  32. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T. et al. 2008. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:4325–32 [Google Scholar]
  33. Efeyan A, Comb WC, Sabatini DM. 2015. Nutrient-sensing mechanisms and pathways. Nature 517:7534302–10 [Google Scholar]
  34. Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL. et al. 2015. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14:11759–80 [Google Scholar]
  35. Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477–513 [Google Scholar]
  36. Förster F, Lasker K, Beck F, Nickell S, Sali A, Baumeister W. 2009. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 388:2228–33 [Google Scholar]
  37. Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel PM. 1994. 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J. Mol. Biol. 236:4975–81 [Google Scholar]
  38. Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T. 2008. Heat shock transcription factor 1–activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J. Biol. Chem. 283:3826188–97 [Google Scholar]
  39. Gallagher CM, Garri C, Cain EL, Ang KK-H, Wilson CG. et al. 2016. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. eLife 5:e11878 [Google Scholar]
  40. Gallagher CM, Walter P. 2016. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. eLife 5:e11880 [Google Scholar]
  41. Gardner BM, Walter P. 2011. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:60511891–94 [Google Scholar]
  42. Gingras AC, Raught B, Sonenberg N. 2001. Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:7807–26 [Google Scholar]
  43. Glover JR, Lindquist S. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:173–82 [Google Scholar]
  44. Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR. 2006. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem. Biophys. Res. Commun. 342:1184–90 [Google Scholar]
  45. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C. et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446:7132153–58 [Google Scholar]
  46. Gupta S, McGrath B, Cavener DR. 2010. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway. Diabetes 59:81937–47 [Google Scholar]
  47. Haghighat A, Mader S, Pause A, Sonenberg N. 1995. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14:5701–9 [Google Scholar]
  48. Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A. 2014. An inducible chaperone adapts proteasome assembly to stress. Mol. Cell 55:4566–77 [Google Scholar]
  49. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T et al. 1997. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272:26457–63 [Google Scholar]
  50. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y. et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:7095885–89 [Google Scholar]
  51. Harding HP, Novoa I, Bertolotti A, Zeng H, Zhang Y. et al. 2001a. Translational regulation in the cellular response to biosynthetic load on the endoplasmic reticulum. Cold Spring Harb. Symp. Quant. Biol. 66:5521499–508 [Google Scholar]
  52. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R. et al. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6:51099–108 [Google Scholar]
  53. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P. et al. 2001b. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7:61153–63 [Google Scholar]
  54. Harding HP, Zhang Y, Scheuner D, Chen J-J, Kaufman RJ, Ron D. 2009. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. PNAS 106:61832–37 [Google Scholar]
  55. He J, Kulkarni K, da Fonseca PCA, Krutauz D, Glickman MH. et al. 2012. The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20:3513–21 [Google Scholar]
  56. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–79 [Google Scholar]
  57. Hetz C, Chevet E, Harding HP. 2013. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12:9703–19 [Google Scholar]
  58. Hirano Y, Hayashi H, Iemura S-I, Hendil KB, Niwa S-I. et al. 2006. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 24:6977–84 [Google Scholar]
  59. Hirano Y, Hendil KB, Yashiroda H, Iemura S-I, Nagane R. et al. 2005. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:70631381–85 [Google Scholar]
  60. Holz MK, Ballif BA, Gygi SP, Blenis J. 2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:4569–80 [Google Scholar]
  61. Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23:115–45 [Google Scholar]
  62. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A. et al. 2009a. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:71981–91 [Google Scholar]
  63. Hosokawa N, Sasaki T, Iemura S-I, Natsume T, Hara T, Mizushima N. 2009b. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:7973–79 [Google Scholar]
  64. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L. et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:7194481–88 [Google Scholar]
  65. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y. et al. 2000. Transcription factor Nrf2 coordinately regulates a group of oxidative stress–inducible genes in macrophages. J. Biol. Chem. 275:2116023–29 [Google Scholar]
  66. Jones DT, Addison E, North JM, Lowdell MW, Hoffbrand AV. et al. 2004. Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs. Blood 103:51855–61 [Google Scholar]
  67. Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M. et al. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:4318–24 [Google Scholar]
  68. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. 2000. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150:61507–13 [Google Scholar]
  69. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA. et al. 2010. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59:81899–905 [Google Scholar]
  70. Kieran D, Kalmar B, Dick JRT, Riddoch-Contreras J, Burnstock G, Greensmith L. 2004. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 10:4402–5 [Google Scholar]
  71. Kimata Y. 2004. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J. Cell Biol. 167:3445–56 [Google Scholar]
  72. Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T. et al. 2007. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol. 179:175–86 [Google Scholar]
  73. King MA, Hands S, Hafiz F, Mizushima N, Tolkovsky AM, Wyttenbach A. 2008. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol. Pharmacol. 73:41052–63 [Google Scholar]
  74. Kobayashi Y, Kume A, Li M, Doyu M, Hata M. et al. 2000. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem. 275:128772–78 [Google Scholar]
  75. Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H. 2016. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 5:e18357 [Google Scholar]
  76. Korolchuk VI, Menzies FM, Rubinsztein DC. 2010. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584:71393–98 [Google Scholar]
  77. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H. et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:70201032–36 [Google Scholar]
  78. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M. 2011. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat. Struct. Mol. Biol. 18:5622–29 [Google Scholar]
  79. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. 2003. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 23:8786–94 [Google Scholar]
  80. Le Tallec B, Barrault M-B, Courbeyrette R, Guérois R, Marsolier-Kergoat M-C, Peyroche A. 2007. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 27:4660–74 [Google Scholar]
  81. Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S. et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:7312179–84 [Google Scholar]
  82. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM. et al. 2006. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:710750–55 [Google Scholar]
  83. Lehrbach NJ, Ruvkun G. 2016. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife 5:e17721 [Google Scholar]
  84. Li X, Kusmierczyk AR, Wong P, Emili A, Hochstrasser M. 2007. β-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J 26:92339–49 [Google Scholar]
  85. Liu CY, Schröder M, Kaufman RJ. 2000. Ligand-independent dimerization activates the stress-response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275:44881–85 [Google Scholar]
  86. Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:41177–201 [Google Scholar]
  87. Lupas A, Flanagan JM, Tamura T, Baumeister W. 1997. Self-compartmentalizing proteases. Trends Biochem. Sci. 22:10399–404 [Google Scholar]
  88. Ma XM, Yoon S-O, Richardson CJ, Jülich K, Blenis J. 2008. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133:2303–13 [Google Scholar]
  89. Maly DJ, Papa FR. 2014. Druggable sensors of the unfolded protein response. Nat. Chem. Biol. 10:11892–901 [Google Scholar]
  90. Marques AJ, Glanemann C, Ramos PC, Dohmen RJ. 2007. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 282:4834869–76 [Google Scholar]
  91. Martin S, Lamb HK, Brady C, Lefkove B, Bonner MY. et al. 2013. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br. J. Cancer 109:2433–43 [Google Scholar]
  92. Matsuura A, Tsukada M, Wada Y, Ohsumi Y. 1997. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:2245–50 [Google Scholar]
  93. Matyskiela ME, Lander GC, Martin A. 2013. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20:7781–88 [Google Scholar]
  94. Mercer CA, Kaliappan A, Dennis PB. 2009. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:5649–62 [Google Scholar]
  95. Metzger MB, Hristova VA, Weissman AM. 2012. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell. Sci. 125:Pt 3531–37 [Google Scholar]
  96. Mimura N, Fulciniti M, Gorgun G, Tai Y-T, Cirstea D. et al. 2012. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119:245772–81 [Google Scholar]
  97. Mizukami T, Orihashi K, Herlambang B, Takahashi S, Hamaishi M. et al. 2010. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J. Vasc. Surg. 52:61580–86 [Google Scholar]
  98. Mizushima N. 2010. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22:2132–39 [Google Scholar]
  99. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T. et al. 1998. A protein conjugation system essential for autophagy. Nature 395:6700395–98 [Google Scholar]
  100. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:31101–11 [Google Scholar]
  101. Moreno JA, Halliday M, Molloy C, Radford H, Verity N. et al. 2013. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5:206206ra138 [Google Scholar]
  102. Mori K. 2000. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:5451–54 [Google Scholar]
  103. Mori K, Ma W, Gething MJ, Sambrook J. 1993. A transmembrane protein with a cdc2+/CDC28− related kinase activity is required for signaling from the ER to the nucleus. Cell 74:4743–56 [Google Scholar]
  104. Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:243788–96 [Google Scholar]
  105. Morimoto RI, Cuervo AM. 2014. Proteostasis and the aging proteome in health and disease. J. Gerontol. A Biol. Sci. Med. Sci 69Suppl. 133–38 [Google Scholar]
  106. Münch C, Harper JW. 2016. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–13 [Google Scholar]
  107. Murata S, Yashiroda H, Tanaka K. 2009. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 10:2104–15 [Google Scholar]
  108. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH. et al. 2015. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22:46–53 [Google Scholar]
  109. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10:7458–67 [Google Scholar]
  110. Nandi D, Woodward E, Ginsburg DB, Monaco JJ. 1997. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J 16:175363–75 [Google Scholar]
  111. Nillegoda NB, Bukau B. 2015. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front. Mol. Biosci. 2:57 [Google Scholar]
  112. Novoa I, Zeng H, Harding HP, Ron D. 2001. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153:51011–22 [Google Scholar]
  113. Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D. 2003. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22:51180–87 [Google Scholar]
  114. Oikawa D, Kimata Y, Kohno K, Iwawaki T. 2009. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res. 315:152496–504 [Google Scholar]
  115. Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K. 2000. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun. 279:2445–50 [Google Scholar]
  116. Onodera J, Ohsumi Y. 2005. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280:3631582–86 [Google Scholar]
  117. Ortuno D, Carlisle HJ, Miller S. 2016. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases. F1000Res 5:137 [Google Scholar]
  118. Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:4381–89 [Google Scholar]
  119. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E. et al. 2006. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:57901137–40 [Google Scholar]
  120. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S. et al. 2011. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:41311–14 [Google Scholar]
  121. Parsell DA, Lindquist S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437–96 [Google Scholar]
  122. Parzych K, Chinn TM, Chen Z, Loaiza S, Porsch F. et al. 2015. Inadequate fine-tuning of protein synthesis and failure of amino acid homeostasis following inhibition of the ATPase VCP/p97. Cell Death Dis 6:12e2031 [Google Scholar]
  123. Pellegrino MW, Nargund AM, Haynes CM. 2013. Signaling the mitochondrial unfolded protein response. BBA Mol. Cell Res. 1833:2410–16 [Google Scholar]
  124. Pincus D, Chevalier MW, Aragón T, van Anken E, Vidal SE. et al. 2010. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLOS Biol 8:7e1000415 [Google Scholar]
  125. Plate L, Cooley CB, Chen JJ, Paxman RJ, Gallagher CM. et al. 2016. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5:e15550 [Google Scholar]
  126. Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11:9830–37 [Google Scholar]
  127. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. 2004. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol. 66:4899–908 [Google Scholar]
  128. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. 2010. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38:117–28 [Google Scholar]
  129. Ramos PC, Höckendorff J, Johnson ES, Varshavsky A, Dohmen RJ. 1998. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92:4489–99 [Google Scholar]
  130. Rojas-Rivera D, Delvaeye T, Roelandt R, Nerinckx W, Augustyns K. et al. 2017. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 24:61100–10 [Google Scholar]
  131. Ron D, Harding HP. 2007. eIF2α phosphorylation in cellular stress responses and disease. Transl. Control Biol. Med. 48:345–68 [Google Scholar]
  132. Rousseau A, Bertolotti A. 2016. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536:7615184–89 [Google Scholar]
  133. Rubinsztein DC, Codogno P, Levine B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:9709–30 [Google Scholar]
  134. Sawkar AR, Cheng W-C, Beutler E, Wong C-H, Balch WE, Kelly JW. 2002. Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. PNAS 99:2415428–33 [Google Scholar]
  135. Scheuner D, Song B, McEwen E, Liu C, Laybutt R. et al. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7:61165–76 [Google Scholar]
  136. Schmidt M, Finley D. 2014. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843:113–25 [Google Scholar]
  137. Schmidtke G, Schmidt M, Kloetzel PM. 1997. Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J. Mol. Biol. 268:195–106 [Google Scholar]
  138. Schreiner P, Chen X, Husnjak K, Randles L, Zhang N. et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:7194548–52 [Google Scholar]
  139. Schwartz AL, Ciechanover A. 2009. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49:73–96 [Google Scholar]
  140. Shen J, Chen X, Hendershot L, Prywes R. 2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3:99–111 [Google Scholar]
  141. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR. et al. 2013. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2:e00498 [Google Scholar]
  142. Sonenberg N, Hinnebusch AG. 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:4731–45 [Google Scholar]
  143. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. 2008. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Investig. 118:103378–89 [Google Scholar]
  144. Sontag EM, Vonk WIM, Frydman J. 2014. Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr. Opin. Cell Biol. 26:139–46 [Google Scholar]
  145. Soto C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4:149–60 [Google Scholar]
  146. Stock D, Nederlof PM, Seemüller E, Baumeister W, Huber R, Löwe J. 1996. Proteasome: from structure to function. Curr. Opin. Biotechnol. 7:4376–85 [Google Scholar]
  147. Suh DH, Kim M-K, Kim HS, Chung HH, Song YS. 2012. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann. N. Y. Acad. Sci. 1271:20–32 [Google Scholar]
  148. Suraweera A, Münch C, Hanssum A, Bertolotti A. 2012. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48:2242–53 [Google Scholar]
  149. Thoreen CC. 2013. Many roads from mTOR to eIF4F. Biochem. Soc. Trans. 41:913–16 [Google Scholar]
  150. Tomko RJ Jr., Hochstrasser M. 2013. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82:415–45 [Google Scholar]
  151. Tomko RJ Jr., Hochstrasser M. 2014. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol. Cell 53:3433–43 [Google Scholar]
  152. Tomko RJ, Funakoshi M, Schneider K, Wang J, Hochstrasser M. 2010. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38:3393–403 [Google Scholar]
  153. Tsaytler P, Bertolotti A. 2013. Exploiting the selectivity of protein phosphatase 1 for pharmacological intervention. FEBS J 280:2766–70 [Google Scholar]
  154. Tsaytler P, Harding HP, Ron D, Bertolotti A. 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:602591–94 [Google Scholar]
  155. Vabulas RM, Hartl FU. 2005. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310:57561960–63 [Google Scholar]
  156. Vembar SS, Brodsky JL. 2008. One step at a time: endoplasmic reticulum–associated degradation. Nat. Rev. Mol. Cell Biol. 9:12944–57 [Google Scholar]
  157. Verghese J, Abrams J, Wang Y, Morano KA. 2012. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 76:2115–58 [Google Scholar]
  158. Vihervaara A, Sistonen L. 2014. HSF1 at a glance. J. Cell. Sci. 127:Pt 2261–66 [Google Scholar]
  159. Vilchez D, Saez I, Dillin A. 2014. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5:5659 [Google Scholar]
  160. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. 2001. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J 20:164370–79 [Google Scholar]
  161. Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C. et al. 2005. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 11:101088–95 [Google Scholar]
  162. Wek SA, Zhu S, Wek RC. 1995. The histidyl-tRNA synthetase–related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:84497–506 [Google Scholar]
  163. Wilson KF, Wu WJ, Cerione RA. 2000. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J. Biol. Chem. 275:4837307–10 [Google Scholar]
  164. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM. et al. 2016. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:626843–48 [Google Scholar]
  165. Wyttenbach A, Hands S, King MA, Lipkow K, Tolkovsky AM. 2008. Amelioration of protein misfolding disease by rapamycin: translation or autophagy. Autophagy 4:4542–45 [Google Scholar]
  166. Xiao C, Giacca A, Lewis GF. 2011. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 60:3918–24 [Google Scholar]
  167. Xie Y, Varshavsky A. 2001. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. PNAS 98:63056–61 [Google Scholar]
  168. Yang Y, Früh K, Ahn K, Peterson PA. 1995. In vivo assembly of the proteasomal complexes, implications for antigen processing. J. Biol. Chem. 270:4627687–94 [Google Scholar]
  169. Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H. et al. 2008. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 15:3228–36 [Google Scholar]
  170. Ye J, Rawson RB, Komuro R, Chen X, Davé UP. et al. 2000. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6:61355–64 [Google Scholar]
  171. Zhang Y, Nicholatos J, Dreier JR, Ricoult SJH, Widenmaier SB. et al. 2014. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513:7518440–43 [Google Scholar]
  172. Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:121–35 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125334
Loading
/content/journals/10.1146/annurev-cellbio-111315-125334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error