1932

Abstract

This article reviews the application of enzymes in lipid modification. Lipases are the most established biocatalysts used for the synthesis of structured triacylglycerols, fats, and margarine and for the release of flavoring fatty acids for food applications. In addition, the various enzymes, such as P450 monooxygenases, hydratases, lipoxygenases, and certain lyases, used for oxyfunctionalization and the phospholipases used for degumming are covered. Basic aspects of enzyme catalysis and the modern tools used for their discovery and improvement by protein engineering provide insight into how suitable biocatalysts can be identified and optimized for an application. In addition to isolated enzymes, whole-cell engineered microorganisms are also used for lipid modification. Thus, the polyunsaturated fatty acid EPA (eicosapentaenoic acid) can be produced in a yeast using sugar as a renewable resource.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012336
2018-03-25
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012336.html?itemId=/content/journals/10.1146/annurev-food-030117-012336&mimeType=html&fmt=ahah

Literature Cited

  1. Adlercreutz P, Lyberg A-M, Adlercreutz D. 2003. Enzymatic fatty acid exchange in glycerophospholipids. Eur. J. Lipid Sci. Technol. 105:638–45 [Google Scholar]
  2. Amara S, Lafont D, Parsiegla G, Point V, Chabannes A. et al. 2013. The galactolipase activity of some microbial lipases and pancreatic enzymes. Eur. J. Lipid Sci. Technol. 115:442–51 [Google Scholar]
  3. An JU, Joo YC, Oh DK. 2013. New biotransformation process for production of the fragrant compound γ-dodecalactone from 10-hydroxystearate by permeabilized Waltomyces lipofer cells. Appl. Environ. Microbiol. 79:2636–41 [Google Scholar]
  4. Andreou A, Feussner I. 2009. Lipoxygenases: structure and reaction mechanism. Phytochemistry 70:1504–10 [Google Scholar]
  5. Bartsch S, Kourist R, Bornscheuer UT. 2008. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew. Chem. Int. Ed. 47:1508–11 [Google Scholar]
  6. Berger M, Laumen K, Schneider MP. 1992. Enzymatic esterification of glycerol. I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols. J. Am. Oil Chem. Soc. 69:955–60 [Google Scholar]
  7. Bernhardt R, Urlacher VB. 2014. Cytochrome P450s as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98:6185–203 [Google Scholar]
  8. Bertram M, Hildebrandt P, Weiner DW, Patel JS, Bartnek F. et al. 2008. Characterization of lipases and esterases from metagenomes for lipid modification. J. Am. Oil Chem. Soc. 85:47–53 [Google Scholar]
  9. Bertram M, Manschot-Lawrence C, Flöter E, Bornscheuer UT. 2007. A microtiter plate-based assay method to determine fat quality. Eur. J. Lipid Sci. Technol. 109:180–85 [Google Scholar]
  10. Bevers LE, Pinkse MW, Verhaert PD, Hagen WR. 2009. Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond. J. Bacteriol. 191:5010–12 [Google Scholar]
  11. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. 50:3854–71 [Google Scholar]
  12. Borgdorf R, Warwel S. 1999. Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid. Appl. Microbiol. Biotechnol. 51:480–85 [Google Scholar]
  13. Bornscheuer U, Kazlauskas RJ. 2011. Survey of protein engineering strategies. Curr. Protoc. Protein Sci. http://doi.org/10.1002/0471140864.ps2607s66 [Crossref] [Google Scholar]
  14. Bornscheuer UT. 2000. Enzymes in Lipid Modification Weinheim, Ger.: Wiley-VCH
  15. Bornscheuer UT. 2003. Special issue: enzymes in lipid modification. Eur. J. Lipid Sci. Technol 105:561–648 [Google Scholar]
  16. Bornscheuer UT. 2018. Lipid Modification by Enzymes and Engineered Microbes Champaign, IL: AOCS Press
  17. Bornscheuer UT, Adamczak M, Soumanou MM. 2002. Lipase-catalyzed synthesis of modified lipids. Lipids as Constituents of Functional Foods FD Gunstone 149–82 Bridgewater, UK: Barnes Assoc [Google Scholar]
  18. Bornscheuer UT, Hesseler M. 2010. Enzymatic removal of 3-monochloro-1,2-propanediol (3-MCPD) and its esters from oils. Eur. J. Lipid Sci. Technol. 112:552–56 [Google Scholar]
  19. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. 2012. Engineering the third wave of biocatalysis. Nature 485:185–94 [Google Scholar]
  20. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G. et al. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–70 [Google Scholar]
  21. Broadwater JA, Whittle E, Shanklin J. 2002. Desaturation and hydroxylation. J. Biol. Chem. 227:15613–20 [Google Scholar]
  22. Broun P, Shanklin J, Whittle E, Somerville C. 1998. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282:1315–17 [Google Scholar]
  23. Brühlmann F, Bosijokovic B. 2016. Efficient biochemical cascade for accessing green leaf alcohols. Org. Process Res. Dev. 20:1974–78 [Google Scholar]
  24. Brühlmann F, Bosijokovic B, Ullmann C, Auffray P, Fourage L, Wahler D. 2013. Directed evolution of a 13-hydroperoxide lyase (CYP74B) for improved process performance. J. Biotechnol. 163:339–45 [Google Scholar]
  25. Brühlmann F, Fourage L, Ullmann C, Haefliger OP, Jeckelmann N. et al. 2014. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid. J. Biotechnol. 184:17–26 [Google Scholar]
  26. Brundiek HB, Evitt AS, Kourist R, Bornscheuer UT. 2012.a Creation of a lipase highly selective for trans fatty acids by protein engineering. Angew. Chem. Int. Ed. 51:412–14 [Google Scholar]
  27. Brundiek H, Padhi SK, Kourist R, Evitt A, Bornscheuer UT. 2012.b Altering the scissile fatty acid binding site of Candida antarctica lipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. Eur. J. Lipid Sci. Technol. 112:1148–53 [Google Scholar]
  28. Brzozowski AM, Derewenda U, Derewenda GG, Dodson DM, Lawson J. et al. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–94 [Google Scholar]
  29. Buchholz K, Bornscheuer UT. 2017. History and current trends. Enzyme Technology T Yoshida 11–46 Weinheim, Ger: Wiley [Google Scholar]
  30. Budde M, Maurer SC, Schmid RD, Urlacher VB. 2004. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl. Microbiol. Biotechnol. 66:180–86 [Google Scholar]
  31. Casado V, Martín D, Torres C, Reglero G. 2012. Phospholipases in food industry: a review. Lipases and Phospholipases: Methods and Protocols G Sandoval 495–523 New York: Springer [Google Scholar]
  32. Chapus C, Semeriva M, Bovier-Lapierre C, Desnuelle P. 1976. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry 15:4980–87 [Google Scholar]
  33. Choi K-Y, Jung E, Jung D-H, Pandey BP, Yun H. et al. 2012. Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. FEBS J 279:1650–62 [Google Scholar]
  34. Chowdhary PK, Alemseghed M, Haines DC. 2007. Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch. Biochem. Biophys. 468:32–43 [Google Scholar]
  35. Coffa G, Brash AR. 2004. A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. PNAS 101:15579–84 [Google Scholar]
  36. Coffa G, Schneider C, Brash AR. 2005. A comprehensive model of positional and stereo control in lipoxygenases. Biochem. Biophys. Res. Commun. 338:87–92 [Google Scholar]
  37. De Maria L, Vind J, Oxenboll KM, Svendsen A, Patkar S. 2007. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 74:290–300 [Google Scholar]
  38. de Roos AL, van Dijk AA, Folkertsma B. 2006. Bleaching of dairy products. US Patent No. 20060127533 A1
  39. Destaillats F, Sebedio JL, Dionisi F, Chardigny J-M. 2009. Trans Fatty Acids in Human Nutrition. Bridgewater, UK: Oily Press
  40. Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D. et al. 2009.a A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chem. Biol. 4:261–67 [Google Scholar]
  41. Dietrich M, Do TA, Schmid RD, Pleiss J, Urlacher VB. 2009.b Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards γ- and δ-positions. J. Biotechnol. 139:115–17 [Google Scholar]
  42. Dietrich M, Eiben S, Asta C, Do T, Pleiss J, Urlacher V. 2008. Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl. Microbiol. Biotechnol. 79:931–40 [Google Scholar]
  43. DiLorenzo M, Hidalgo A, Haas M, Bornscheuer UT. 2005. Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli. Appl. Environ. Microbiol. 71:8974–77 [Google Scholar]
  44. DiLorenzo M, Hidalgo A, Molina R, Hermoso JA, Pirozzi D, Bornscheuer UT. 2007. Enhancement of the stability of a prolipase from Rhizopus oryzae toward aldehydes by saturation mutagenesis. Appl. Environ. Microbiol. 73:7291–99 [Google Scholar]
  45. Durairaj P, Malla S, Nadarajan SP, Lee P-G, Jung E. et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 14:45 [Google Scholar]
  46. Engleder M, Pavkov‐Keller T, Emmerstorfer A, Hromic A, Schrempf S. et al. 2015. Structure‐based mechanism of oleate hydratase from Elizabethkingia meningoseptica. ChemBioChem 16:1730–34 [Google Scholar]
  47. Ericsson DJ, Kasrayan A, Johansson P, Bergfors T, Sandstrom AG. et al. 2008. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. J. Mol. Biol. 376:109–19 [Google Scholar]
  48. France SP, Hepworth LJ, Turner NJ, Flitsch SL. 2017. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal 7:710–24 [Google Scholar]
  49. Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Müller R. 2014. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem. Sci. 5:1733–41 [Google Scholar]
  50. Gerits LR, Pareyt B, Decamps K, Delcour JA. 2014. Lipases and their functionality in the production of wheat-based food systems. Compr. Rev. Food Sci. Food Safety 13:978–89An excellent up-to-date review on the use of lipases in cereal-based applications. [Google Scholar]
  51. Guo F, Zhang C, Bie X, Zhao H, Diao H. et al. 2014. Improving the thermostability and activity of lipoxygenase from Anabaena sp. PCC 7120 by directed evolution and site-directed mutagenesis. J. Mol. Catal. B 107:23–30 [Google Scholar]
  52. Heinrichs V, Thum O. 2005. Biocatalysis for the production of care specialties. Lipid Technol 17:82–87 [Google Scholar]
  53. Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJD, Haarmann T. et al. 2015. Industrial potential of lipoxygenases. Crit. Rev. Biotechnol. 26:1–10 [Google Scholar]
  54. Hirata A, Kishino S, Park S-B, Takeuchi M, Kitamura N, Ogawa J. 2015. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. J. Lipid Res. 56:1340–50 [Google Scholar]
  55. Hitchman T. 2009. Purifine® PLC: industrial application in oil degumming and refining. Oil Mill Gazet 115:2–5 [Google Scholar]
  56. Jaeger K-E, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15:29–63 [Google Scholar]
  57. Jallouli R, Othman H, Amara S, Parsiegla G, Carriere F. et al. 2015. The galactolipase activity of Fusarium solani (phospho)lipase. Biochim. Biophys. Acta 1851:282–89 [Google Scholar]
  58. Jan AH, Dubreucq E, Subileau M. 2017. Revealing the roles of subdomains in the catalytic behavior of lipases/acyltransferases homologous to CpLIP2 through rational design of chimeric enzymes. ChemBioChem 18:10941–50 [Google Scholar]
  59. Jan AH, Subileau M, Deyrieux C, Perrier V, Dubreucq E. 2016. Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design. Biochim. Biophys. Acta 1864:187–94 [Google Scholar]
  60. Jeon E-Y, Lee J-H, Yang K-M, Joo Y-C, Oh D-K, Park J-B. 2012. Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. Proc. Biochem. 47:941–47 [Google Scholar]
  61. Jo YS, An JU, Oh DK. 2014. γ-Dodecelactone production from safflower oil via 10-hydroxy-12(Z)-octadecenoic acid intermediate by whole cells of Candida boidinii and Stenotrophomonas nitritireducens. J. Agric. Food Chem. 62:6736–45 [Google Scholar]
  62. Jochens H, Aerts D, Bornscheuer UT. 2010. Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Eng. Des. Sel. 23:903–9 [Google Scholar]
  63. Joerger RD, Haas MJ. 1994. Alteration of chain-length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis. Lipids 29:377–84 [Google Scholar]
  64. Joo Y-C, Seo E-S, Kim Y-S, Kim K-R, Park J-B, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol. 158:17–23 [Google Scholar]
  65. Kang WR, Seo MJ, Shin KC, Park JB, Oh DK. 2017. Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia. Appl. Environ. Microbiol http://doi.org/10.1128/AEM.03351-16 [Crossref]
  66. Kazlauskas RJ, Bornscheuer UT. 2009. Finding better protein engineering strategies. Nat. Chem. Biol. 5:526–29 [Google Scholar]
  67. Kennedy K, Fewtrell MS, Morley R, Abbott R, Quinlan PT. et al. 1999. Double-blind, randomized trial of a synthetic triacylglycerol in formula-fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. Am. J. Clin. Nutr. 70:920–27 [Google Scholar]
  68. Khatri Y, Hannemann F, Girhard M, Kappl R, Hutter M. et al. 2015. A natural heme-signature variant of CYP267A1 from Sorangium cellulosum So ce56 executes diverse ω-hydroxylation. FEBS J 282:74–88 [Google Scholar]
  69. Kim B-N, Joo Y-C, Kim Y-S, Kim K-R, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl. Microbiol. Biotechnol. 95:929–37 [Google Scholar]
  70. Kim KR, Oh DK. 2013. Production of hydroxy fatty acids by microbial fatty acid–hydroxylation enzymes. Biotechnol. Adv. 31:1473–85This review provides more examples for the oxyfunctionalization of lipids. [Google Scholar]
  71. Kim KR, Oh HJ, Park CS, Hong SH, Park JY, Oh DK. 2015. Unveiling of novel regio‐selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids. Biotechnol. Bioeng. 112:2206–13 [Google Scholar]
  72. Klein RR, King G, Moreau RA, Haas MJ. 1997. Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling. Lipids 32:123–30 [Google Scholar]
  73. Kleiner L, Akoh CC. 2018. Applications of structured lipids in selected food market segments and their evolving consumer demands. Lipid Modification by Enzymes and Engineered Microbes UT Bornscheuer Champaign, IL: AOCS Press. In press [Google Scholar]
  74. Kourist R, Brundiek H, Bornscheuer UT. 2010. Protein engineering and discovery of lipases. Eur. J. Lipid Sci. Technol. 112:64–74A review explaining protein engineering and the discovery of lipases in more detail. [Google Scholar]
  75. Liu H, Cheng T, Xian M, Cao Y, Fang F, Zou H. 2014. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Biotechnol. Adv. 32:382–89 [Google Scholar]
  76. Lutz S, Bornscheuer UT. 2009. Protein Engineering Handbook. 1 and 2 Weinheim, Ger: Wiley-VCH
  77. Lutz S, Bornscheuer UT. 2012. Protein Engineering Handbook. 3 Weinheim, Ger: Wiley-VCH
  78. Metzger JO, Bornscheuer U. 2006. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl. Microbiol. Biotechnol. 71:13–22 [Google Scholar]
  79. Müller J, Sowa MA, Dörr M, Bornscheuer UT. 2015.a The acyltransferase activity of lipase CAL-A allows efficient fatty acid esters formation from plant oil even in an aqueous environment. Eur. J. Lipid Sci. Technol. 117:1903–7 [Google Scholar]
  80. Müller J, Sowa MA, Fredrich B, Brundiek H, Bornscheuer UT. 2015.b Enhancing the acyltransferase activity of Candida antarctica lipase A by rational design. ChemBioChem 16:1791–96 [Google Scholar]
  81. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TWB. et al. 2002. P450 BM3: the very model of a modern flavocytochrome. Trends. Biochem. Sci. 27:250–57 [Google Scholar]
  82. Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F. 2015. Cascade catalysis: strategies and challenges en route to preparative synthetic biology. Chem. Commun. 51:5798–811 [Google Scholar]
  83. Neang PM, Subileau M, Perrier V, Dubreucq E. 2013. Peculiar features of four enzymes of the CALA superfamily in aqueous media: differences in substrate specificities and abilities to catalyze alcoholysis. J. Mol. Catal. B 94:36–46 [Google Scholar]
  84. Palmieri-Thiers C, Alberti J-C, Canaan S, Brunini V, Gambotti C. et al. 2011. Identification of putative residues involved in the accessibility of the substrate-binding site of lipoxygenase by site-directed mutagenesis studies. Arch. Biochem. Biophys. 509:82–89 [Google Scholar]
  85. Ratledge C, Cohen Z. 2008. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils. Lipid Technol 20:155–60 [Google Scholar]
  86. Ray L, Pramanik S, Bera D. 2016. Enzymes: an existing and promising tool of food processing industry. Recent Pat. Biotechnol. 10:58–71 [Google Scholar]
  87. Ricca E, Brucher B, Schrittwieser JH. 2011. Multi-enzymatic cascade reactions: overview and perspectives. Adv. Synth. Catal. 353:2239–62 [Google Scholar]
  88. Rosberg-Cody E, Liavonchanka A, Göbel C, Ross RP, O'Sullivan O. et al. 2011. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection. BMC Biochem 12:1–12 [Google Scholar]
  89. Schmid RD, Verger R. 1998. Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 37:1608–33 [Google Scholar]
  90. Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. 1998. Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. J. Am. Oil Chem. Soc. 75:1527–31 [Google Scholar]
  91. Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. 1999. Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis. Biotechnol. Bioeng. 64:678–84 [Google Scholar]
  92. Schmitt J, Brocca S, Schmid RD, Pleiss J. 2002. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity. Protein Eng 15:595–601 [Google Scholar]
  93. Schörken U, Kempers P. 2009. Lipid biotechnology: industrially relevant production processes. Eur. J. Lipid Sci. Technol. 111:627–45 [Google Scholar]
  94. Seifert A, Vomund S, Grohmann K, Kriening S, Urlacher VB. et al. 2009. Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo- and chemoselectivity. ChemBioChem 10:853–61 [Google Scholar]
  95. Song J-W, Jeon E-Y, Song D-H, Jang H-Y, Bornscheuer UT. et al. 2013. Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew. Chem. Int. Ed. 52:2534–37 [Google Scholar]
  96. Song J-W, Lee JH, Bornscheuer UT, Park JB. 2014. Microbial synthesis of medium chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long chain fatty acids. Adv. Synth. Catal. 356:1782–88 [Google Scholar]
  97. Sooman L, Wennman A, Hamberg M, Hoffmann I, Oliw EH. 2016. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide. Biochim. Biophys. Acta 1861:108–18 [Google Scholar]
  98. Soumanou MM, Bornscheuer UT, Menge U, Schmid RD. 1997. Synthesis of structured triglycerides from peanut oil with immobilized lipase. J. Am. Oil Chem. Soc. 74:427–33 [Google Scholar]
  99. Soumanou MM, Bornscheuer UT, Schmid RD. 1998. Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides. J. Am. Oil Chem. Soc. 75:703–10 [Google Scholar]
  100. Subileau M, Jan AH, Nozac'h H, Perez-Gordo M, Perrier V, Dubreucq E. 2015. The 3D model of the lipase/acyltransferase from Candida parapsilosis, a tool for the elucidation of structural determinants in CAL-A lipase superfamily. Biochim. Biophys. Acta 1854:1400–11 [Google Scholar]
  101. Takeuchi M, Kishino S, Park SB, Hirata A, Kitamura N. et al. 2016. Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a. J. Appl. Microbiol. 120:1282–88 [Google Scholar]
  102. Urlacher VB, Girhard M. 2012. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36 [Google Scholar]
  103. Van Bogaert IN, Groeneboer S, Saerens K, Soetaert W. 2011. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–21 [Google Scholar]
  104. Verger R. 1997. “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15:32–38 [Google Scholar]
  105. Villaverde JJ, Santos SAO, Haarmann T, Neto CP, Simões MMQ. et al. 2013.b Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chem. Eng. J. 231:519–25 [Google Scholar]
  106. Villaverde JJ, van der Vlist V, Santos SAO, Haarmann T, Langfelder K. et al. 2013.a Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: optimization and scale-up. Chem. Eng. J. 217:82–90 [Google Scholar]
  107. Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D. et al. 2013. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr. Sect. D 69:648–57 [Google Scholar]
  108. Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C. et al. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 285:10353–61 [Google Scholar]
  109. Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM. 2001. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 67:5700–4 [Google Scholar]
  110. Wallen L, Benedict R, Jackson R. 1962. The microbiological production of 10-hydroxystearic acid from oleic acid. Arch. Biochem. Biophys. 99:249–53 [Google Scholar]
  111. Watanabe T, Yamaguchi H, Yamada N, Lee I. 2004. Manufacturing process of diacylglycerol oil. Diacylglycerol Oil Y Katsuragi, T Yasukawa, N Matsuo, BD Flickinger, I Tokimitsu, MG Matlock 253–61 Champaign, IL: AOCS Press [Google Scholar]
  112. Weisshaar R. 2011. Fatty acid esters of 3-MCPD: overview of occurrence and exposure estimates. Eur. J. Lipid Sci. Technol. 113:304–8 [Google Scholar]
  113. Wennman A, Jernerén F, Hamberg M, Oliw EH. 2012. Catalytic convergence of manganese and iron lipoxygenases by replacement of a single amino acid. J. Biol. Chem. 287:31757–65 [Google Scholar]
  114. Whitehouse CJC, Bell SG, Wong L-L. 2012. P450BM3 (CYP102A1): connecting the dots. Chem. Soc. Rev. 41:1218–60 [Google Scholar]
  115. Whitehurst RJ, Van Oort M. 2009. Enzymes in Food Technology New York: Wiley-Blackwell
  116. Wikmark Y, Svedendahl-Humble M, Bäckvall JE. 2015. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent. Angew. Chem. Int. Ed. 54:4284–88 [Google Scholar]
  117. Wolf IV, Meinardi CA, Zalazar CA. 2009. Production of flavour compounds from fat during cheese ripening by action of lipases and esterases. Protein Pept. Lett. 16:1235–43 [Google Scholar]
  118. Wongsakul S, H-Kittikun A, Bornscheuer UT. 2004. Lipase-catalyzed synthesis of structured triacylglycerides from 1,3-diacylglycerides. J. Am. Oil Chem. Soc. 81:151–55 [Google Scholar]
  119. Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D. et al. 2013. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31:734–40 [Google Scholar]
  120. Yang B, Chen H, Song Y, Chen YQ, Zhang H, Chen W. 2013. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol. Lett. 35:75–81 [Google Scholar]
  121. Zorn K, Oroz-Guinea I, Brundiek B, Bornscheuer UT. 2016. Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res. 63:153–64 [Google Scholar]
  122. Zou L, Pande G, Akoh CC. 2016. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu. Rev. Food Sci. Technol. 7:139–65An excellent review on human milk-fat substitutes and their properties and lipase-catalyzed synthesis concepts. [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012336
Loading
/content/journals/10.1146/annurev-food-030117-012336
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error