1932

Abstract

Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012537
2018-03-25
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012537.html?itemId=/content/journals/10.1146/annurev-food-030117-012537&mimeType=html&fmt=ahah

Literature Cited

  1. Arendt EK, Ryan LA, Dal Bello F. 2007. Impact of sourdough on the texture of bread. Food Microbiol 24:165–74 [Google Scholar]
  2. Awad S, Hassan A, Muthukumarappan K. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: texture and melting properties. J. Dairy Sci. 88:4204–13 [Google Scholar]
  3. Badel S, Bernardi T, Michaud P. 2011. New perspectives for lactobacilli exopolysaccharides. Biotechnol. Adv. 29:54–66 [Google Scholar]
  4. Bai Y, Boger M, van der Kaaij RM, Woortman AJ, Pijning T. et al. 2016. Lactobacillus reuteri strains convert starch and maltodextrins into homoexopolysaccharides using an extracellular and cell-associated 4,6-α-glucanotransferase. J. Agric. Food Chem. 64:2941–52 [Google Scholar]
  5. Barghouthi S, Guerdoud LM, Speert DP. 1996. Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells. Am. J. Respir. Crit. Care Med. 154:1788–93 [Google Scholar]
  6. Baruah R, Deka B, Kashyap N, Goyal A. 2018. Dextran utilization during its synthesis by Weissella cibaria RBA12 can be overcome by fed-batch fermentation in a bioreactor. Appl. Biochem. Biotechnol. 184:1–11 [Google Scholar]
  7. Björkroth J, Dicks LMT, Endo A. 2014. The genus Weissella. Lactic Acid Bacteria: Biodiversity and Taxonomy, ed. WH Holzapfel 417–28 West Sussex, UK: Wiley
  8. Blatchford P, Ansell J, De Godoy M, Fahey G, Garcia-Mazcorro J. et al. 2013. Prebiotic mechanisms, functions and applications: a review. Int. J. Probiotics Prebiotics 8:109–32 [Google Scholar]
  9. Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M. et al. 2010. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J. Appl. Microbiol. 108:666–75 [Google Scholar]
  10. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P. et al. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agric. Food Chem. 57:10889–97 [Google Scholar]
  11. Broadbent JR, McMahon DJ, Oberg CJ, Welker DL. 2001. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int. Dairy J. 11:433–39 [Google Scholar]
  12. Cerning J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 7:113–30 [Google Scholar]
  13. Chen XY, Woodward A, Zijlstra RT, Gänzle MG. 2014. Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol. 80:5752–60 [Google Scholar]
  14. Cinquin C, Le Blay G, Fliss I, Lacroix C. 2006. Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiol. Ecol. 57:226–38 [Google Scholar]
  15. Costa NE, Hannon JA, Guinee TP, Auty MA, McSweeney PL, Beresford TP. 2010. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese. J. Dairy Sci. 93:3469–86 [Google Scholar]
  16. Costa NE, Wang L, Auty ME, Hannon JA, McSweeney PLH, Beresford TP. 2012. Rheological, microscopic and primary chemical characterisation of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris DPC6532 Dairy Sci. Technol. 92:219–35 [Google Scholar]
  17. Dabour N, Kheadr E, Benhamou N, Fliss I, LaPointe G. 2006. Improvement of texture and structure of reduced-fat Cheddar cheese by exopolysaccharide-producing lactococci. J. Dairy Sci. 89:95–110 [Google Scholar]
  18. Dal Bello F, Walter J, Hertel C, Hammes WP. 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 24:232–37 [Google Scholar]
  19. Delzenne NM, Neyrinck AM, Cani PD. 2011. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb. Cell Fact. 10:Suppl. 1S10 [Google Scholar]
  20. De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23:153–77 [Google Scholar]
  21. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P. et al. 2006. Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J. Agric. Food Chem. 54:9873–81 [Google Scholar]
  22. Dimopoulou M, Bardeau T, Ramonet PY, Miot-Certier C, Claisse O. et al. 2016. Exopolysaccharides produced by Oenococcus oeni: from genomic and phenotypic analysis to technological valorization. Food Microbiol 53:10–17 [Google Scholar]
  23. Enikeev R. 2012. Development of a new method for determination of exopolysaccharide quantity in fermented milk products and its application in technology of kefir production. Food Chem 134:2437–41 [Google Scholar]
  24. Eur. Comm. 2000. Opinion of the scientific committee on food on a dextran preparation, produced using Leuconostoc mesenteroides, Saccharomyces cerevisiae and Lactobacillus spp., as a novel food ingredient in bakery products. Sci. Comm. Food Rep. CS/NF/DOS/7/ADD 3 FINAL, Eur Comm Brussels, Belg: [Google Scholar]
  25. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J. et al. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. PNAS 109:2108–13 [Google Scholar]
  26. Fontana C, Li S, Yang Z, Widmalm G. 2015. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr. Res. 402:87–94 [Google Scholar]
  27. Freitas F, Alves VD, Reis MA. 2011. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–98 [Google Scholar]
  28. Galle S, Schwab C, Arendt E, Gänzle M. 2010. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J. Agric. Food Chem. 58:5834–41 [Google Scholar]
  29. Galle S, Schwab C, Arendt EK, Gänzle MG. 2011. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28:547–53 [Google Scholar]
  30. Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle M, Arendt E. 2012. Comparison of the impact of dextran and reuteran on the quality of wheat sourdough bread. J. Cereal Sci. 56:531–37 [Google Scholar]
  31. Gänzle M, Schwab C. 2009. Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilisation, stress tolerance, and biofilm formation. See Ullrich 2009 263–78
  32. Gänzle MG, Follador R. 2012. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front. Microbiol. 3:340 [Google Scholar]
  33. Garai-Ibabe G, Areizaga J, Aznar R, Elizaquivel P, Prieto A. et al. 2010. Screening and selection of 2-branched (1,3)-β-d-glucan producing lactic acid bacteria and exopolysaccharide characterization. J. Agric. Food Chem. 58:6149–56 [Google Scholar]
  34. Gentès M-C, St-Gelais D, Turgeon SL. 2011. Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci. Technol. 91:645–61 [Google Scholar]
  35. Gibson GR. 2004. Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. Suppl. 1:25–31 [Google Scholar]
  36. Grosu-Tudor S-S, Zamfir M. 2014. Exopolysaccharide production by selected lactic acid bacteria isolated from fermented vegetables. Sci. Bull. Ser. F Biotechnol. 18:107–14 [Google Scholar]
  37. Hassan AN. 2008. ADSA Foundation Scholar Award: possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J. Dairy Sci. 91:1282–98 [Google Scholar]
  38. Hassan AN, Awad S. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: cryo-scanning electron microscopy observations. J. Dairy Sci. 88:4214–20 [Google Scholar]
  39. Holzapfel WH, Wood BJ. 2014. Introduction to the LAB. Lactic Acid Bacteria: Biodiversity and Taxonomy WH Holzapfel 1–12 West Sussex, UK: Wiley [Google Scholar]
  40. Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA. 2012. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym. 87:846–52 [Google Scholar]
  41. Hu Y, Ketabi A, Buchko A, Gänzle MG. 2013. Metabolism of isomalto-oligosaccharides by Lactobacillus reuteri and bifidobacteria. Lett. Appl. Microbiol. 57:108–14 [Google Scholar]
  42. Ismail B, Nampoothiri KM. 2010. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch. Microbiol. 192:1049–57 [Google Scholar]
  43. Juvonen R, Honkapaa K, Maina NH, Shi Q, Viljanen K. et al. 2015. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int. J. Food Microbiol. 207:109–18 [Google Scholar]
  44. Kang HK, Oh JS, Kim D. 2009. Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a α(1→6) glucan. FEMS Microbiol. Lett. 292:33–41 [Google Scholar]
  45. Kang HK, Seo MY, Seo ES, Kim D, Chung SY. et al. 2005. Cloning and expression of levansucrase from Leuconostoc mesenteroides B-512 FMC in Escherichia coli. Biochem. Biophys. Acta 1727:5–15 [Google Scholar]
  46. Katina K, Maina NH, Juvonen R, Flander L, Johansson L. et al. 2009. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–43 [Google Scholar]
  47. Kim Y, Oh S, Kim SH. 2009. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem. Biophys. Res. Commun. 379:324–29 [Google Scholar]
  48. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40:169–75 [Google Scholar]
  49. Kitazawa H, Ishii Y, Uemura J, Kawai Y, Saito T. et al. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiol. 17:109–18 [Google Scholar]
  50. Kitazawa H, Itoh T, Tomioka Y, Mizugaki M, Yamaguchi T. 1996. Induction of IFN-γ and IL-1α production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. J. Food Microbiol. 31:99–106 [Google Scholar]
  51. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M. et al. 2010. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34:199–230 [Google Scholar]
  52. Korakli M, Gänzle M, Vogel R. 2002. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 92:958–65 [Google Scholar]
  53. Korakli M, Vogel RF. 2006. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl. Microbiol. Biotechnol. 71:790–803 [Google Scholar]
  54. Kranenburg RV, Marugg JD, Van Swam II, Willem NJ, De Vos WM. 1997. Molecular characterization of the plasmid‐encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24:387–97 [Google Scholar]
  55. Lacaze G, Wick M, Cappelle S. 2007. Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–60 [Google Scholar]
  56. Laiño J, Villena J, Kanmani P, Kitazawa H. 2016. Immunoregulatory effects triggered by lactic acid bacteria exopolysaccharides: new insights into molecular interactions with host cells. Microorganisms 4:3pii:E27 [Google Scholar]
  57. Laws A, Gu Y, Marshall V. 2001. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 19:597–625 [Google Scholar]
  58. Leemhuis H, Dijkman WP, Dobruchowska JM, Pijning T, Grijpstra P. et al. 2013.a 4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Appl. Microbiol. Biotechnol. 97:181–93 [Google Scholar]
  59. Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S. et al. 2013.b Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J. Biotechnol. 163:250–72 [Google Scholar]
  60. Leroy F, De Vuyst L. 2016. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J. Dairy Sci. 99:322938 [Google Scholar]
  61. Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. 2014.a Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 102:351–59 [Google Scholar]
  62. Li W, Ji J, Tang W, Rui X, Chen X. et al. 2014.b Characterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB21. Carbohydr. Polym. 105:334–40 [Google Scholar]
  63. Lindstrom C, Holst O, Nilsson L, Oste R, Andersson KE. 2012. Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express 2:66 [Google Scholar]
  64. Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. 2011. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91:2284–91 [Google Scholar]
  65. London LEE, Chaurin V, Auty MAE, Fenelon MA, Fitzgerald GF. et al. 2015. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int. Dairy J. 40:33–38 [Google Scholar]
  66. London LEE, Price NP, Ryan P, Wang L, Auty MA. et al. 2014. Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J. Appl. Microbiol. 117:509–17 [Google Scholar]
  67. Lynch KM, McSweeney PL, Arendt EK, Uniacke-Lowe T, Galle S, Coffey A. 2014. Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int. Dairy J. 34:125–34 [Google Scholar]
  68. Maina NH. 2012. Structure and macromolecular properties of Weissella confusa and Leuconostoc citreum dextrans with a potential application in sourdough PhD Thesis. Univ. Helsinki Helsinki: [Google Scholar]
  69. Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. 2008. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr. Res. 343:1446–55 [Google Scholar]
  70. Makino S, Ikegami S, Kano H, Sashihara T, Sugano H. et al. 2006. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy Sci. 89:2873–81 [Google Scholar]
  71. Malang SK, Maina NH, Schwab C, Tenkanen M, Lacroix C. 2015. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol 46:418–27 [Google Scholar]
  72. Mårtensson O, Biörklund M, Lambo AM, Dueñas-Chasco M, Irastorza A. et al. 2005. Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans. Nutr. Res. 25:429–42 [Google Scholar]
  73. Mates J. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104 [Google Scholar]
  74. Medrano M, Hamet MF, Abraham AG, Perez PF. 2009. Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie Van Leeuwenhoek 96:505–13 [Google Scholar]
  75. Medrano M, Perez PF, Abraham AG. 2008. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int. J. Food Microbiol. 122:1–7 [Google Scholar]
  76. Mende S, Krzyzanowski L, Weber J, Jaros D, Rohm H. 2012.a Growth and exopolysaccharide yield of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081 in batch and continuous bioreactor experiments at constant pH J. Biosci. Bioeng. 113:185–91 [Google Scholar]
  77. Mende S, Mentner C, Thomas S, Rohm H, Jaros D. 2012.b Exopolysaccharide production by three different strains of Streptococcus thermophilus and its effect on physical properties of acidified milk. Eng. Life Sci. 12:466–74 [Google Scholar]
  78. Mende S, Rohm H, Jaros D. 2016. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int. Dairy J. 52:57–71 [Google Scholar]
  79. Miao M, Jia X, Hamaker BR, Cui SW, Jiang B, Huang C. 2016. Structure–prebiotic properties relationship for α-d-glucan from Leuconostoc citreum SK24.002. Food Hydrocoll 57:246–52 [Google Scholar]
  80. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot R-M, Remaud-Siméon M. 2001. Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11:675–85 [Google Scholar]
  81. Moroni AV, Dal Bello F, Arendt EK. 2009. Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue. Food Microbiol 26:676–84 [Google Scholar]
  82. Mozzi F, Torino MI, de Valdez GF. 2001. Identification of exopolysaccharide-producing lactic acid bacteria. Food Microbiology Protocols JFT Spencer, AL Ragout de Spencer 183–90 Totowa, NJ: Humana Press Inc. [Google Scholar]
  83. Mozzi F, Vaningelgem F, Hebert EM, Van der Meulen R, Foulquie Moreno MR. et al. 2006. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72:4431–35 [Google Scholar]
  84. Nacher-Vazquez M, Iturria I, Zarour K, Mohedano ML, Aznar R. et al. 2017. Dextran production by Lactobacillus sakei MN1 coincides with reduced autoagglutination, biofilm formation and epithelial cell adhesion. Carbohydr. Polym. 168:22–31 [Google Scholar]
  85. Nishimura-Uemura J, Kitazawa H, Kawai Y, Itoh T, Oda M, Saito T. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol 20:267–73 [Google Scholar]
  86. Notararigo S, Nacher-Vazquez M, Ibarburu I, Werning ML, de Palencia PF. et al. 2013. Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr. Polym. 93:57–64 [Google Scholar]
  87. Olano-Martin E, Mountzouris KC, Gibson GR, Rastall RA. 2000. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br. J. Nutr. 83:247–55 [Google Scholar]
  88. Pan D, Mei X. 2010. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr. Polym. 80:908–14 [Google Scholar]
  89. Polak-Berecka M, Choma A, Wasko A, Gorska S, Gamian A, Cybulska J. 2015. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydr. Polym. 117:501–9 [Google Scholar]
  90. Ruas-Madiedo P, de los Reyes-Gavilán C. 2005. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88:843–56 [Google Scholar]
  91. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S. 2006. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J. Food Prot. 69:2011–15 [Google Scholar]
  92. Ruas‐Madiedo P, Medrano M, Salazar N, Los Reyes‐Gavilán D, Perez P, Abraham A. 2010. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. J. Appl. Microbiol. 109:2079–86 [Google Scholar]
  93. Ruas-Madiedo P, Salazar N, Clara G. 2009. Biosynthesis and chemical composition of exopolysaccharides. See Ullrich 2009 279
  94. Rühmkorf C, Rübsam H, Becker T, Bork C, Voiges K. et al. 2012. Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. Eur. Food Res. Technol. 235:139–46 [Google Scholar]
  95. Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. 2015. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 6:679–93 [Google Scholar]
  96. Salazar N, Gueimonde M, de los Reyes-Gavilán CG, Ruas-Madiedo P. 2016. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit. Rev. Food Sci. Nutr. 56:1440–53 [Google Scholar]
  97. Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilán CG. 2008. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl. Environ. Microbiol. 74:4737–45 [Google Scholar]
  98. Salazar N, Prieto A, Leal JA, Mayo B, Bada-Gancedo JC. et al. 2009. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J. Dairy Sci. 92:4158–68 [Google Scholar]
  99. Sanz ML, Gibson GR, Rastall RA. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53:5192–99 [Google Scholar]
  100. Sarbini SR, Kolida S, Naeye T, Einerhand A, Brison Y. et al. 2011. In vitro fermentation of linear and α-1,2-branched dextrans by the human fecal microbiota. Appl. Environ. Microbiol. 77:5307–15 [Google Scholar]
  101. Sato T, Nishimura-Uemura J, Shimosato T, Kawai Y, Kitazawa H, Saito T. 2004. Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. J. Food Prot. 67:1719–24 [Google Scholar]
  102. Schwab C, Mastrangelo M, Corsetti A, Gänzle M. 2008. Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem. J. 85:679–84 [Google Scholar]
  103. Schwab C, Walter J, Tannock GW, Vogel RF, Gänzle MG. 2007. Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst. Appl. Microbiol. 30:433–43 [Google Scholar]
  104. Shao L, Wu Z, Tian F, Zhang H, Liu Z. et al. 2015. Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution. Int. J. Biol. Macromol. 72:1429–34 [Google Scholar]
  105. Shao L, Wu Z, Zhang H, Chen W, Ai L, Guo B. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym. 107:51–56 [Google Scholar]
  106. Shukla S, Goyal A. 2011. 16S rRNA-based identification of a glucan-hyperproducing Weissella confusa. Enzyme Res 2011:250842 [Google Scholar]
  107. Shukla S, Shi Q, Maina NH, Juvonen M, Maijatenkanen, Goyal A. 2014. Weissella confusa Cab3 dextransucrase: properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohydr. Polym. 101:554–64 [Google Scholar]
  108. Stingele F, Neeser J-R, Mollet B. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:1680–90 [Google Scholar]
  109. Suzuki C, Kobayashi M, Kimoto-Nira H. 2013. Novel exopolysaccharides produced by Lactococcus lactis subsp. lactis, and the diversity of epsE genes in the exopolysaccharide biosynthesis gene clusters. Biosci. Biotechnol. Biochem 77:2013–18 [Google Scholar]
  110. Tamani R, Goh K, Brennan C. 2013. Physico‐chemical properties of sourdough bread production using selected lactobacilli starter cultures. J. Food Qual. 36:245–52 [Google Scholar]
  111. Tieking M, Gänzle MG. 2005. Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol. 16:79–84 [Google Scholar]
  112. Tok E, Aslim B. 2010. Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol. Immunol. 54:257–64 [Google Scholar]
  113. Ullrich M. 2009. Bacterial Polysaccharides: Current Innovations and Future Trends. Norfolk, UK: Caister Acad
  114. van den Broek LA, Hinz SW, Beldman G, Vincken JP, Voragen AG. 2008. Bifidobacterium carbohydrases: their role in breakdown and synthesis of (potential) prebiotics. Mol. Nutr. Food Res. 52:146–63 [Google Scholar]
  115. Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M. et al. 2007. Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int. J. Food Microbiol. 118:250–58 [Google Scholar]
  116. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70:157–76 [Google Scholar]
  117. Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–60 [Google Scholar]
  118. Wachi S, Kanmani P, Tomosada Y, Kobayashi H, Yuri T. et al. 2014. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli‐-induced inflammatory response in porcine intestinal epitheliocytes via Toll‐like receptor‐2 and 4. Mol. Nutr. Food Res. 58:2080–93 [Google Scholar]
  119. Waldherr FW, Vogel RF. 2009. Commercial exploitation of homo-exopolysaccharides in non-dairy food. See Ullrich 2009 313–29
  120. Walter J. 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74:4985–96 [Google Scholar]
  121. Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 63:133–39 [Google Scholar]
  122. Wang Y, Gänzle MG, Schwab C. 2010. Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl. Environ. Microbiol. 76:4863–66 [Google Scholar]
  123. Welman AD. 2009. Exploitation of exopolysaccharides from lactic acid bacteria: nutritional and functional benefits. See Ullrich 2009 331–43
  124. Welman AD, Maddox IS. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–74 [Google Scholar]
  125. Werning ML, Nácher M, López P, de Palencia PF, Aznar R, Notararigo S. 2012. Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria. London: INTECH.
  126. Wolever TM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V. et al. 2011. Bioactive oat β-glucan reduces LDL cholesterol in Caucasians and non-Caucasians. Nutr. J. 10:130 [Google Scholar]
  127. Wolter A, Hager AS, Zannini E, Galle S, Gänzle MG. et al. 2014. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol 37:44–50 [Google Scholar]
  128. Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ. 2006. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40:235–43 [Google Scholar]
  129. Wu MH, Pan TM, Wu YJ, Chang SJ, Chang MS, Hu CY. 2010. Exopolysaccharide activities from probiotic bifidobacterium: immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int. J. Food Microbiol. 144:104–10 [Google Scholar]
  130. Zannini E, Mauch A, Galle S, Gänzle M, Coffey A. et al. 2013. Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. J. Appl. Microbiol. 115:1379–87 [Google Scholar]
  131. Zannini E, Waters DM, Arendt EK. 2014. The application of dextran compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Eur. Food Res. Technol. 238:763–71 [Google Scholar]
  132. Zannini E, Waters DM, Coffey A, Arendt EK. 2016. Production, properties, and industrial food application of lactic acid bacteria–derived exopolysaccharides. Appl. Microbiol. Biotechnol. 100:1121–35 [Google Scholar]
  133. Zhang L, Folkenberg DM, Qvist KB, Ipsen R. 2015. Further development of a method for visualisation of exopolysaccharides in yoghurt using fluorescent conjugates. Int. Dairy J. 46:88–95 [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012537
Loading
/content/journals/10.1146/annurev-food-030117-012537
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error