1932

Abstract

is a small free-living nematode that lives in temperate soil environments. It has been widely employed as an animal model in research involving obesity, aging, and neurodegenerative diseases, including Alzheimer's disease, because of its various advantages, such as small size, large number of progeny, completely sequenced genome, and short life span, over traditional animal models of vertebrates. These benefits contribute to an ideal research model organism. In this review, we provide an introduction to and its applications in obesity, aging, and Alzheimer's disease studies, with the aim of stimulating scientists to use as an experimental model in various fields of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012709
2018-03-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012709.html?itemId=/content/journals/10.1146/annurev-food-030117-012709&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander AG, Marfil V, Li C. 2014. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front. Genet. 5:279 [Google Scholar]
  2. Alonso AC, Grundke-Iqbal I, Iqbal K. 1996. Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2:783–87 [Google Scholar]
  3. Altintas O, Park S, Lee S-JV. 2016. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster.. BMB Rep 49:81–92 [Google Scholar]
  4. Altun ZF, Hall DH. 2009. Introduction to C. elegans anatomy. WormAtlas http://doi.org/10.3908/wormatlas.1.1 [Crossref]
  5. Alzheimer's Dis. Int. 2016. World Alzheimer Report 2016. Improving Healthcare for People Living With Dementia: Coverage, Quality and Costs Now and in the Future London: ADI https://www.alz.co.uk/research/world-report-2016 [Google Scholar]
  6. An JH, Blackwell TK. 2003. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–93 [Google Scholar]
  7. An JH, Vranas K, Lucke M, Inoue H, Hisamoto N. et al. 2005. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. PNAS 102:16275–80 [Google Scholar]
  8. Anson RM, Hansford RG. 2004. Mitochondrial influence on aging rate in Caenorhabditis elegans. Aging Cell 3:29–34 [Google Scholar]
  9. Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. 2004. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18:3004–9 [Google Scholar]
  10. Ashrafi K. 2006. Mapping out starvation responses. Cell Metab 3:235–36 [Google Scholar]
  11. Ashrafi K. 2007. Obesity and the regulation of fat metabolism. WormBook http://doi.org/10.1895/wormbook.1.130.1 [Crossref]
  12. Avery L, You YJ. 2012. C. elegans feeding. WormBook http://doi.org/10.1895/wormbook.1.150.1 [Crossref]
  13. Bengoechea-Alonso MT, Ericsson J. 2007. SREBP in signal transduction: cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 19:215–22 [Google Scholar]
  14. Billingsley ML, Kincaid RL. 1997. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 323:577–91 [Google Scholar]
  15. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 88:290–301 [Google Scholar]
  16. Bloom GS. 2014. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–8 [Google Scholar]
  17. Bolanowski MA, Russell RL, Jacobson LA. 1981. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech. Ageing Dev. 15:279–95 [Google Scholar]
  18. Boyer HW, Roulland-Dussoix D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 14:459–72 [Google Scholar]
  19. Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR. 2002. Assaying metabolic activity in ageing Caenorhabditis elegans. Mech. Ageing Dev. 123:105–19 [Google Scholar]
  20. Brandt R, Gergou A, Wacker I, Fath T, Hutter H. 2009. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer's disease-like modified tau. Neurobiol. Aging 30:22–33 [Google Scholar]
  21. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94 [Google Scholar]
  22. Brock TJ, Browse J, Watts JL. 2006. Genetic regulation of unsaturated fatty acid composition in C. elegans. PLOS ONE 2:e108 [Google Scholar]
  23. Brooks KK, Liang B, Watts JL. 2009. The influence of bacterial diet on fat storage in C. elegans. PLOS ONE 4:e7545 [Google Scholar]
  24. Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD. 2016. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genom 17:559 [Google Scholar]
  25. Carroll K, Gomez C, Shapiro L. 2004. Tubby proteins: the plot thickens. Nat. Rev. Mol. Cell Biol. 5:55–63 [Google Scholar]
  26. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–70 [Google Scholar]
  27. Chew YL, Fan X, Götz J, Nicholas HR. 2013. PTL-1 regulates neuronal integrity and lifespan in C. elegans. J. Cell Sci. 126:2079–91 [Google Scholar]
  28. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. 2006. Opposing activities protect against age-onset proteotoxicity. Science 313:1604–10 [Google Scholar]
  29. Collins JJ, Huang C, Hughes S, Kornfeld K. 2008. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook. http://doi.org/10.1895/wormbook.1.137.1 [Crossref] [Google Scholar]
  30. Colmenares D, Sun Q, Shen P, Yue Y, McClements DJ, Park Y. 2016. Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: nanoemulsion-based delivery systems. Food Chem 202:451–57 [Google Scholar]
  31. Daigle I, Li C. 1993. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. PNAS 90:12045–49 [Google Scholar]
  32. Ding Y, Zou X, Jiang X, Wu J, Zhang Y. et al. 2015. Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans. PLOS ONE 10:e0113815 [Google Scholar]
  33. Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y. 2010. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-β. J. Alzheimer's Dis. 19:681–90 [Google Scholar]
  34. Dostal V, Roberts CM, Link CD. 2010. Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186:857–66 [Google Scholar]
  35. Epsteina J, Himmelhoch S, Gershona D. 1972. Studies on ageing in nematodes III. Electronmicroscopical studies on age-associated cellular damage. Mech. Ageing Dev. 1:245–55 [Google Scholar]
  36. Ewald CY, Cheng R, Tolen L, Shah V, Gillani A. et al. 2012. Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory, gustatory, and touch plasticity in Caenorhabditis elegans. J. Neurosci. 32:10156–69 [Google Scholar]
  37. Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E. et al. 2012. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21:3587–603 [Google Scholar]
  38. Feng J, Bussière F, Hekimi S. 2001. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans.. Dev. Cell 1:633–44 [Google Scholar]
  39. Fitzenberger E, Boll M, Wenzel U. 2013. Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans. Biochim. Biophys. Acta 1832:565–73 [Google Scholar]
  40. Fonte V, Kipp DR, Yerg J, Merin D, Forrestal M. et al. 2008. Suppression of in vivo β-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J. Biol. Chem. 283:784–91 [Google Scholar]
  41. Gill MS, Olsen A, Sampayo JN, Lithgow GJ. 2003. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35:558–65 [Google Scholar]
  42. Glenn CF, Chow DK, David L, Cooke CA, Gami MS. et al. 2004. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J. Gerontol. A Biol. Sci. Med. Sci. 59:1251–60 [Google Scholar]
  43. Goedert M, Baur C, Ahringer J, Jakes R, Hasegawa M. et al. 1996. PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J. Cell Sci. 109:2661–72 [Google Scholar]
  44. Gomez-Amaro RL, Valentine ER, Carretero M, LeBoeuf SE, Rangaraju S. et al. 2015. Measuring food intake and nutrient absorption in Caenorhabditis elegans. Genetics 200:443–54 [Google Scholar]
  45. Gordon P, Hingula L, Krasny ML, Swienckowski JL, Pokrywka NJ, Raley-Susman KM. 2008. The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev. Genes Evol. 218:541–51 [Google Scholar]
  46. Greer EL, Brunet A. 2009. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8:113–27 [Google Scholar]
  47. Gumienny TL, Savage-Dunn C. 2013. TGF-β signaling in C. elegans. WormBook. http://doi.org/10.1895/wormbook.1.22.2 [Crossref] [Google Scholar]
  48. Guthrie CR, Greenup L, Leverenz JB, Kraemer BC. 2011. MSUT2 is a determinant of susceptibility to tau neurotoxicity. Hum. Mol. Genet. 20:1989–99 [Google Scholar]
  49. Guthrie CR, Schellenberg GD, Kraemer BC. 2009. SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum. Mol. Genet. 18:1825–38 [Google Scholar]
  50. Haass C, Hung AY, Selkoe DJ, Teplow DB. 1994. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J. Biol. Chem. 269:17741–48 [Google Scholar]
  51. Haass C, Koo EH, Mellon A, Hung A, Selkoe D. 1992. Targeting of cell-surface b-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–2 [Google Scholar]
  52. Hahm JH, Kim S, DiLoreto R, Shi C, Lee SJ. et al. 2015. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 6:8919 [Google Scholar]
  53. Hall DH, Altun ZF. 2008. C. elegans Atlas. New York: Cold Spring Harb. Lab. Press
  54. Haque R, Nazir A. 2016. SMAD transcription factor, Sma-9, attunes TGF-β signaling cascade towards modulating amyloid beta aggregation and associated outcome in transgenic C. elegans. Mol. Neurobiol. 53:109–19 [Google Scholar]
  55. Hassan WM, Merin DA, Fonte V, Link CD. 2009. AIP-1 ameliorates β-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model. Hum. Mol. Genet. 18:2739–47 [Google Scholar]
  56. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM. et al. 2002. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–14 [Google Scholar]
  57. Hipp MS, Park S-H, Hartl FU. 2014. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24:506–14 [Google Scholar]
  58. Hong L, Huang H-C, Jiang Z-F. 2014. Relationship Between Amyloid-Beta and the Ubiquitin-Proteasome System in Alzheimer's Disease New York: Taylor & Francis
  59. Hosono R, Nishimoto S, Kuno S. 1989. Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp. Gerontol. 24:251–64 [Google Scholar]
  60. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. 2003. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp. Gerontol. 38:947–54 [Google Scholar]
  61. Huang C, Xiong C, Kornfeld K. 2004. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. PNAS 101:8084–89 [Google Scholar]
  62. Hubbard EJ. 2007. Caenorhabditis elegans germ line: a model for stem cell biology. Dev. Dyn. 236:3343–57 [Google Scholar]
  63. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–80 [Google Scholar]
  64. Kaletta T, Hengartner MO. 2006. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5:387–98 [Google Scholar]
  65. Keller JN, Hanni KB, Markesbery WR. 2000. Impaired proteasome function in Alzheimer's disease. J. Neurochem. 75:436–39 [Google Scholar]
  66. Kidd M. 1964. Alzheimer's disease: an electron microscopical study. Brain 87:307–20 [Google Scholar]
  67. Klass MR, Hirsh DI. 1976. Nonaging developmental variant of C. elegans. Nature 260:523–25 [Google Scholar]
  68. Kraemer BC, Schellenberg GD. 2007. SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum. Mol. Genet. 16:1959–71 [Google Scholar]
  69. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. 2003. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. PNAS 100:9980–85 [Google Scholar]
  70. Krigman M, Feldman R, Bensch K. 1965. Alzheimer's presenile dementia. A histochemical and electron microscopic study. Lab. Investig. 14:381–96 [Google Scholar]
  71. Lakowski B, Hekimi S. 1998. The genetics of caloric restriction in Caenorhabditis elegans. PNAS 95:13091–96 [Google Scholar]
  72. Lee JH, Kong J, Jang JY, Han JS, Ji Y. et al. 2014. Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol. Cell. Biol. 34:4165–76 [Google Scholar]
  73. Lemieux GA, Liu J, Mayer N, Bainton RJ, Ashrafi K, Werb Z. 2011. A whole-organism screen identifies new regulators of fat storage. Nat. Chem. Biol. 7:206–13 [Google Scholar]
  74. Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. 2011. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech. Ageing Dev. 132:480–87 [Google Scholar]
  75. Lin S-J, Guarente L. 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol. 15:241–46 [Google Scholar]
  76. Link CD. 1995. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. PNAS 92:9368–72 [Google Scholar]
  77. Link CD. 2006. C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer's disease. Exp. Gerontol. 41:1007–13 [Google Scholar]
  78. Link CD, Taft A, Kapulkin V, Duke K, Kim S. et al. 2003. Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiol. Aging 24:397–413 [Google Scholar]
  79. Liu Z, Li X, Ge Q, Ding M, Huang X. 2014. A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J. Genet. Genom. 41:305–13 [Google Scholar]
  80. Luse SA, Smith KR Jr. 1964. The ultrastructure of senile plaques. Am. J. Pathol. 44:553–63 [Google Scholar]
  81. Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M. et al. 2011. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:404–8 [Google Scholar]
  82. Mak HY. 2012. Lipid droplets as fat storage organelles in Caenorhabditis elegans: thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J. Lipid Res. 53:28–33 [Google Scholar]
  83. Mak HY, Nelson LS, Basson M, Johnson CD, Ruvkun G. 2006. Polygenic control of Caenorhabditis elegans fat storage. Nat. Genet. 38:363–88 [Google Scholar]
  84. Massagué J, Gomis RR. 2006. The logic of TGFβ signaling. FEBS Lett 580:2811–20 [Google Scholar]
  85. Matilainen O, Arpalahti L, Rantanen V, Hautaniemi S, Holmberg CI. 2013. Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 3:1980–95 [Google Scholar]
  86. McGhee JD. 2007. The C. elegans intestine. WormBook http://doi.org/10.1895/wormbook.1.133.1 [Crossref]
  87. McKay RM, McKay JP, Avery L, Graff JM. 2003. C. elegans a model for exploring the genetics of fat storage. Dev. Cell 4:131–42 [Google Scholar]
  88. Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K. et al. 2001. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J. Biol. Chem. 276:7713–16 [Google Scholar]
  89. Miyasaka T, Ding Z, Gengyo-Ando K, Oue M, Yamaguchi H. et al. 2005. Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol. Dis. 20:372–83 [Google Scholar]
  90. Morawe T, Hiebel C, Kern A, Behl C. 2012. Protein homeostasis, aging and Alzheimer's disease. Mol. Neurobiol. 46:41–54 [Google Scholar]
  91. Moreno-Arriola E, El Hafidi M, Ortega-Cuellar D, Carvajal K. 2016. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators. PLOS ONE 11:e0148089 [Google Scholar]
  92. Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA. 2005. C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab 2:35–42 [Google Scholar]
  93. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. 2007. Trends in oxidative aging theories. Free Radic. Biol. Med. 43:477–503 [Google Scholar]
  94. Murphy CT, Hu PJ. 2013. Insulin/insulin-like growth factor signaling in C. elegans. WormBook. http://doi.org/10.1895/wormbook.1.164.1 [Crossref] [Google Scholar]
  95. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS. et al. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–83 [Google Scholar]
  96. Niccoli T, Partridge L. 2012. Ageing as a risk factor for disease. Curr. Biol. 22:R741–52 [Google Scholar]
  97. Ochiishi T, Doi M, Yamasaki K, Hirose K, Kitamura A. et al. 2016. Development of new fusion proteins for visualizing amyloid-β oligomers in vivo. Sci. Rep. 6:22712 [Google Scholar]
  98. Page AP, Johnstone IL. 2007. The cuticle. WormBook. http://doi/10.1895/wormbook.1.138.1 [Google Scholar]
  99. Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI. et al. 2016. 18α-Glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer's disease progression in Caenorhabditis elegans and neuronal cultures. Antioxid. Redox Signal. 25:855–69 [Google Scholar]
  100. Park SK, Tedesco PM, Johnson TE. 2009. Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 8:258–69 [Google Scholar]
  101. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG. 1986. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117:456–87 [Google Scholar]
  102. Pincus Z, Mazer TC, Slack FJ. 2016. Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging 8:889–98 [Google Scholar]
  103. Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. 2008. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol. Metab. 19:65–73 [Google Scholar]
  104. Regitz C, Dußling LM, Wenzel U. 2014. Amyloid‐beta (Aβ1–42)‐induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol. Nutr. Food Res. 58:1931–40 [Google Scholar]
  105. Regitz C, Fitzenberger E, Mahn FL, Dußling LM, Wenzel U. 2016. Resveratrol reduces amyloid-beta (Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur. J. Nutr. 55:741–47 [Google Scholar]
  106. Sack MN, Finkel T. 2012. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb. Perspect. Biol. 4:pii:a013102 [Google Scholar]
  107. Salin K, Auer SK, Rey B, Selman C, Metcalfe NB. 2015. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 282:20151028 [Google Scholar]
  108. Schleit J, Wall VZ, Simko M, Kaeberlein M. 2011. The MDT-15 subunit of mediator interacts with dietary restriction to modulate longevity and fluoranthene toxicity in Caenorhabditis elegans. PLOS ONE 6:e28036 [Google Scholar]
  109. Senoo-Matsuda N, Hartman PS, Akatsuka A, Yoshimura S, Ishii N. 2003. A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J. Biol. Chem. 278:22031–36 [Google Scholar]
  110. Shen P, Yue Y, Park Y. 2017.a A living model for obesity and aging research: Caenorhabditis elegans.. Crit. Rev. Food Sci. Nutr. In press. https://doi.org/10.1080/10408398.2016.1220914 [Google Scholar]
  111. Shen P, Yue Y, Sun Q, Kasireddy N, Kim KH, Park Y. 2017.b Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. Biofactors 43:379–87 [Google Scholar]
  112. Shtonda BB, Avery L. 2006. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209:89–102 [Google Scholar]
  113. Solis GM, Petrascheck M. 2011. Measuring Caenorhabditis elegans life span in 96 well microtiter plates. J. Vis. Exp. 49:2496 [Google Scholar]
  114. Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, Ashrafi K. 2008. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 7:533–44 [Google Scholar]
  115. Stawicki TM, Zhou K, Yochem J, Chen L, Jin Y. 2011. TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr. Biol. 21:883–88 [Google Scholar]
  116. Steinberg GR, Kemp BE. 2009. AMPK in health and disease. Physiol. Rev. 89:1025–78 [Google Scholar]
  117. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR. et al. 2008. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans.. Aging Cell 7:394–404 [Google Scholar]
  118. Stiernagle T. 2006. Maintenance of C. elegans. WormBook. http://doi.org/10.1895/wormbook.1.101.1 [Crossref] [Google Scholar]
  119. Stout GJ, Stigter EC, Essers PB, Mulder KW, Kolkman A. et al. 2013. Insulin/IGF‐1‐mediated longevity is marked by reduced protein metabolism. Mol. Syst. Biol. 9:679 [Google Scholar]
  120. Sun Q, Yue Y, Shen P, Yang JJ, Park Y. 2016. Cranberry product decreases fat accumulation in Caenorhabditis elegans. J. Med. Food 19:427–33 [Google Scholar]
  121. Taki FA, Pan X, Zhang B. 2013. Nicotine exposure caused significant transgenerational heritable behavioral changes in Caenorhabditis elegans. EXCLI J 12:793–806 [Google Scholar]
  122. Timmons L, Court DL, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–12 [Google Scholar]
  123. Tissenbaum HA, Guarente L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–30 [Google Scholar]
  124. Tsang WY, Lemire BD. 2003. The role of mitochondria in the life of the nematode. Caenorhabditis elegans. Biochim. Biophys. Acta 1638:91–105 [Google Scholar]
  125. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY. et al. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–38 [Google Scholar]
  126. Vanfleteren JR, De Vreese A. 1996. Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. J. Exp. Zool. 274:93–100 [Google Scholar]
  127. Van Gilst MR, Hadjivassiliou H, Yamamoto KR. 2005. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. PNAS 102:13496–501 [Google Scholar]
  128. Van Voorhies WA, Ward S. 1999. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. PNAS 96:11399–403 [Google Scholar]
  129. Von Bernhardi R, Cornejo F, Parada G, Eugenín J. 2015. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front. Cell. Neurosci. 9:426 [Google Scholar]
  130. Wang MC, Min W, Freudiger CW, Ruvkun G, Xie XS. 2011. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8:135–38 [Google Scholar]
  131. Watts JL. 2009. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 20:58–65 [Google Scholar]
  132. Watts JL, Browse J. 2000. A palmitoyl-CoA-specific Δ9 fatty acid desaturase from Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 272:263–69 [Google Scholar]
  133. Watts JL, Browse J. 2002. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. PNAS 99:5854–59 [Google Scholar]
  134. Wong A, Boutis P, Hekimi S. 1995. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139:1247–59 [Google Scholar]
  135. Wood WB. 1988. The Nematode Caenorhabditis elegans. New York: Cold Spring Harb. Lab. Press
  136. Xian B, Shen J, Chen W, Sun N, Qiao N. et al. 2013. WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12:398–409 [Google Scholar]
  137. Xu XY, Hu JP, Wu MM, Wang LS, Fang NY. 2015. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 468:312–18 [Google Scholar]
  138. Zhang B, Xiao R, Ronan EA, He Y, Hsu AL. et al. 2015. Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Rep 11:1414–24 [Google Scholar]
  139. Zheng J, Greenway FL. 2012. Caenorhabditis elegans as a model for obesity research. Int. J. Obes. 36:186–94 [Google Scholar]
  140. Zheng SQ, Ding AJ, Li GP, Wu GS, Luo HR. 2013. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods. PLOS ONE 8:e56877 [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012709
Loading
/content/journals/10.1146/annurev-food-030117-012709
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error