1932

Abstract

Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024554
2017-11-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120116-024554.html?itemId=/content/journals/10.1146/annurev-genet-120116-024554&mimeType=html&fmt=ahah

Literature Cited

  1. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. 1.  2015. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell 32:756–64 [Google Scholar]
  2. Abremski K, Hoess R. 2.  1984. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 259:1509–14 [Google Scholar]
  3. Adler PN, MacQueen M. 3.  1984. Cell proliferation and DNA replication in the imaginal wing disc of Drosophila melanogaster. Dev. Biol. 103:28–37 [Google Scholar]
  4. Alwes F, Enjolras C, Averof M. 4.  2016. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife 5:e19766 [Google Scholar]
  5. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M. 5.  et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7 [Google Scholar]
  6. Beane WS, Morokuma J, Lemire JM, Levin M. 6.  2013. Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140:313–22 [Google Scholar]
  7. Bergantiños C, Corominas M, Serras F. 7.  2010. Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–79 [Google Scholar]
  8. Brockes JP, Kumar A. 8.  2008. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24:525–49 [Google Scholar]
  9. Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D. 9.  2004. Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol. Cell. Biol. 24:7636–42 [Google Scholar]
  10. Broussonet PMA. 10.  1786. Observations sur la régénération de quelques parties du corps des poissons. Histoire de l'Académie Royale des Sciences J Boudot 684–88 Paris: Imprimerie Royale http://gallica.bnf.fr/ark:/12148/bpt6k3585j/f782.image [Google Scholar]
  11. Bryant PJ. 11.  1971. Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev. Biol. 26:637–51 [Google Scholar]
  12. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M. 12.  et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–95 [Google Scholar]
  13. Cao J, Navis A, Cox BD, Dickson AL, Gemberling M. 13.  et al. 2016. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143:232–43 [Google Scholar]
  14. Chen CH, Durand E, Wang J, Zon LI, Poss KD. 14.  2013. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development 140:4988–97 [Google Scholar]
  15. Chen CH, Merriman AF, Savage J, Willer J, Wahlig T. 15.  et al. 2015. Transient laminin beta 1a induction defines the wound epidermis during zebrafish fin regeneration. PLOS Genet 11:e1005437 [Google Scholar]
  16. Chen CH, Puliafito A, Cox BD, Primo L, Fang Y. 16.  et al. 2016. Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Dev. Cell 36:668–80 [Google Scholar]
  17. Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN. 17.  et al. 2014. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514:503–7 [Google Scholar]
  18. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C. 18.  et al. 2009. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive Hydra head regeneration. Dev. Cell 17:279–89 [Google Scholar]
  19. Chera S, Ghila L, Wenger Y, Galliot B. 19.  2011. Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Dev. Growth Differ. 53:186–201 [Google Scholar]
  20. Chi W, Wu E, Morgan BA. 20.  2013. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140:1676–83 [Google Scholar]
  21. Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC. 21.  et al. 2013. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140:660–66 [Google Scholar]
  22. Curado S, Stainier DY, Anderson RM. 22.  2008. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat. Protoc. 3:948–54 [Google Scholar]
  23. Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM. 23.  2016. Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse connective tissue progenitor pools. Dev. Cell 39:411–23 [Google Scholar]
  24. Di Talia S, Poss KD. 24.  2016. Monitoring tissue regeneration at single-cell resolution. Cell Stem Cell 19:428–31 [Google Scholar]
  25. Dinsmore CE. 25.  1991. A History of Regeneration Research: Milestones in the Evolution of a Science Cambridge, UK: Cambridge Univ. Press
  26. Dor Y, Brown J, Martinez OI, Melton DA. 26.  2004. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46 [Google Scholar]
  27. Echeverri K, Clarke JD, Tanaka EM. 27.  2001. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev. Biol. 236:151–64 [Google Scholar]
  28. Enyedi B, Kala S, Nikolich-Zugich T, Niethammer P. 28.  2013. Tissue damage detection by osmotic surveillance. Nat. Cell Biol. 15:1123–30 [Google Scholar]
  29. Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM. 29.  2014. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–59 [Google Scholar]
  30. Ferreira F, Luxardi G, Reid B, Zhao M. 30.  2016. Early bioelectric activities mediate redox-modulated regeneration. Development 143:4582–94 [Google Scholar]
  31. Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP. 31.  et al. 2012. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev. Cell 23:691–704 [Google Scholar]
  32. Fuchs Y, Steller H. 32.  2015. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16:329–44 [Google Scholar]
  33. Gault WJ, Enyedi B, Niethammer P. 33.  2014. Osmotic surveillance mediates rapid wound closure through nucleotide release. J. Cell Biol. 207:767–82 [Google Scholar]
  34. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J. 34.  et al. 2013. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci. Rep. 3:2084 [Google Scholar]
  35. Gemberling M, Karra R, Dickson AL, Poss KD. 35.  2015. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4:e05871 [Google Scholar]
  36. Goldman JA, Kuzu G, Lee N, Karasik J, Gemberling M. 36.  et al. 2017. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40:392–404 [Google Scholar]
  37. Grillo M, Konstantinides N, Averof M. 37.  2016. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr. Opin. Genet. Dev. 40:23–31 [Google Scholar]
  38. Guenther CA, Wang Z, Li E, Tran MC, Logan CY. 38.  et al. 2015. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury. Bone 77:31–41 [Google Scholar]
  39. Gupta V, Gemberling M, Karra R, Rosenfeld GE, Evans T, Poss KD. 39.  2013. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr. Biol. 23:1221–27 [Google Scholar]
  40. Hadorn E. 40.  1963. Differenzierungsleistungen wiederholt fragmentierter Teilstücke männlicher Genitalscheiben von Drosophila melanogaster nach Kultur in vivo. Dev. Biol. 7:617–29 [Google Scholar]
  41. Harris RE, Setiawan L, Saul J, Hariharan IK. 41.  2016. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 5:e11588 [Google Scholar]
  42. Hoshijima K, Jurynec MJ, Grunwald DJ. 42.  2016. Precise editing of the zebrafish genome made simple and efficient. Dev. Cell 36:654–67 [Google Scholar]
  43. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C. 43.  et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503 [Google Scholar]
  44. Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X. 44.  et al. 2012. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338:1599–603 [Google Scholar]
  45. Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T. 45.  2004. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 333:15–25 [Google Scholar]
  46. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ. 46.  et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31:227–29 [Google Scholar]
  47. Inaba M, Buszczak M, Yamashita YM. 47.  2015. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523:329–32 [Google Scholar]
  48. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA. 48.  2011. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95 [Google Scholar]
  49. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. 49.  2009. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–55 [Google Scholar]
  50. Jin Y, Ha N, Forés M, Xiang J, Gläßer C. 50.  et al. 2015. EGFR/Ras signaling controls Drosophila intestinal stem cell proliferation via Capicua-regulated genes. PLOS Genet 11:e1005634 [Google Scholar]
  51. Johnson SL, Weston JA. 51.  1995. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141:1583–95 [Google Scholar]
  52. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisúa Belmonte JC. 52.  2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–9 [Google Scholar]
  53. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. 53.  2005. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–61 [Google Scholar]
  54. Kaneko Y, Matsumoto G, Hanyu Y. 54.  1999. The occurrence of apoptosis during retinal regeneration in adult newts. Dev. Brain Res. 117:225–28 [Google Scholar]
  55. Kang J, Hu J, Karra R, Dickson AL, Tornini VA. 55.  et al. 2016. Modulation of tissue repair by regeneration enhancer elements. Nature 532:201–6 [Google Scholar]
  56. Kang J, Nachtrab G, Poss KD. 56.  2013. Local Dkk1 crosstalk from breeding ornaments impedes regeneration of injured male zebrafish fins. Dev. Cell 27:19–31 [Google Scholar]
  57. Kiehle CP, Schubiger G. 57.  1985. Cell proliferation changes during pattern regulation in imaginal leg discs of Drosophila melanogaster. Dev. Biol. 109:336–46 [Google Scholar]
  58. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y. 58.  et al. 2010. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464:601–5 [Google Scholar]
  59. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S. 59.  et al. 2011. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20:713–24 [Google Scholar]
  60. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS. 60.  et al. 2015. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell 32:97–108 [Google Scholar]
  61. Kragl M, Knapp D, Nacu E, Khattak S, Maden M. 61.  et al. 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65 [Google Scholar]
  62. Kujawski S, Lin W, Kitte F, Börmel M, Fuchs S. 62.  et al. 2014. Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev. Cell 28:573–87 [Google Scholar]
  63. Lagha M, Bothma JP, Levine M. 63.  2012. Mechanisms of transcriptional precision in animal development. Trends Genet 28:409–16 [Google Scholar]
  64. Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD. 64.  2005. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132:5173–83 [Google Scholar]
  65. Lehoczky JA, Robert B, Tabin CJ. 65.  2011. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. PNAS 108:20609–14 [Google Scholar]
  66. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW. 66.  et al. 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–19 [Google Scholar]
  67. Leshchiner I, Alexa K, Kelsey P, Adzhubei I, Austin-Tse CA. 67.  et al. 2012. Mutation mapping and identification by whole-genome sequencing. Genome Res 22:1541–48 [Google Scholar]
  68. Levin M. 68.  2009. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin. Cell Dev. Biol. 20:543–56 [Google Scholar]
  69. Li L, Yan B, Shi YQ, Zhang WQ, Wen ZL. 69.  2012. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J. Biol. Chem. 287:25353–60 [Google Scholar]
  70. Liu SY, Selck C, Friedrich B, Lutz R, Vila-Farré M. 70.  et al. 2013. Reactivating head regrowth in a regeneration-deficient planarian species. Nature 500:81–84 [Google Scholar]
  71. Livet J, Weissman TA, Kang H, Draft RW, Lu J. 71.  et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62 [Google Scholar]
  72. Lo DC, Allen F, Brockes JP. 72.  1993. Reversal of muscle differentiation during urodele limb regeneration. PNAS 90:7230–34 [Google Scholar]
  73. Lohmann JU, Endl I, Bosch TC. 73.  1999. Silencing of developmental genes in Hydra. Dev. Biol. 214:211–14 [Google Scholar]
  74. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R. 74.  et al. 2013. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 15:222–28 [Google Scholar]
  75. Makino S, Whitehead GG, Lien CL, Kim S, Jhawar P. 75.  et al. 2005. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. PNAS 102:14599–604 [Google Scholar]
  76. McClure KD, Sustar A, Schubiger G. 76.  2008. Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev. Biol. 319:68–77 [Google Scholar]
  77. Mesa KR, Rompolas P, Zito G, Myung P, Sun TY. 77.  et al. 2015. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522:94–97 [Google Scholar]
  78. Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD. 78.  2016. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354:630–34 [Google Scholar]
  79. Morgan TH. 79.  1901. Regeneration. London: Macmillan [Google Scholar]
  80. Mullins MC, Hammerschmidt M, Haffter P, Nüsslein-Volhard C. 80.  1994. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4:189–202 [Google Scholar]
  81. Nachtrab G, Kikuchi K, Tornini VA, Poss KD. 81.  2013. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 140:3754–64 [Google Scholar]
  82. Nagy A. 82.  2000. Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109 [Google Scholar]
  83. Nechiporuk A, Poss KD, Johnson SL, Keating MT. 83.  2003. Positional cloning of a temperature-sensitive mutant emmental reveals a role for Sly1 during cell proliferation in zebrafish fin regeneration. Dev. Biol. 258:291–306 [Google Scholar]
  84. Newmark PA, Reddien PW, Cebrià F, Sánchez Alvarado A. 84.  2003. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. PNAS 100:Suppl. 111861–65 [Google Scholar]
  85. Niethammer P. 85.  2016. The early wound signals. Curr. Opin. Genet. Dev. 40:17–22 [Google Scholar]
  86. Niethammer P, Grabher C, Look AT, Mitchison TJ. 86.  2009. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–99 [Google Scholar]
  87. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sánchez Alvarado A. 87.  2010. Cell death and tissue remodeling in planarian regeneration. Dev. Biol. 338:76–85 [Google Scholar]
  88. Pérez-Garijo A, Martín FA, Morata G. 88.  2004. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–98 [Google Scholar]
  89. Petrie TA, Strand NS, Tsung-Yang C, Rabinowitz JS, Moon RT. 89.  2014. Macrophages modulate adult zebrafish tail fin regeneration. Development 141:2581–91 [Google Scholar]
  90. Pfefferli C, Jaźwińska A. 90.  2015. The art of fin regeneration in zebrafish. Regeneration 2:72–83 [Google Scholar]
  91. Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. 91.  2007. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev. 124:218–29 [Google Scholar]
  92. Pomerantz JH, Blau HM. 92.  2013. Tumor suppressors: enhancers or suppressors of regeneration?. Development 140:2502–12 [Google Scholar]
  93. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA. 93.  et al. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331:1078–80 [Google Scholar]
  94. Poss KD. 94.  2010. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11:710–22 [Google Scholar]
  95. Poss KD, Nechiporuk A, Hillam AM, Johnson SL, Keating MT. 95.  2002. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129:5141–49 [Google Scholar]
  96. Rabinowitz JS, Robitaille AM, Wang Y, Ray CA, Thummel R. 96.  et al. 2017. Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. PNAS 114:E717–26 [Google Scholar]
  97. Razzell W, Evans IR, Martin P, Wood W. 97.  2013. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23:424–29 [Google Scholar]
  98. Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A. 98.  2005. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8:635–49 [Google Scholar]
  99. Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. 99.  2011. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:409–13 [Google Scholar]
  100. Roberts-Galbraith RH, Brubacher JL, Newmark PA. 100.  2016. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 5:e17002 [Google Scholar]
  101. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I. 101.  et al. 2012. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487:496–99 [Google Scholar]
  102. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S. 102.  et al. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–33 [Google Scholar]
  103. Rulands S, Simons BD. 103.  2016. Tracing cellular dynamics in tissue development, maintenance and disease. Curr. Opin. Cell Biol. 43:38–45 [Google Scholar]
  104. Ryoo HD, Gorenc T, Steller H. 104.  2004. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7:491–501 [Google Scholar]
  105. Sánchez Alvarado A, Newmark PA. 105.  1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. PNAS 96:5049–54 [Google Scholar]
  106. Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K. 106.  et al. 2014. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–87 [Google Scholar]
  107. Schubiger G. 107.  1971. Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev. Biol. 26:277–95 [Google Scholar]
  108. Schuster KJ, Smith-Bolton RK. 108.  2015. Taranis protects regenerating tissue from fate changes induced by the wound response in Drosophila. Dev. Cell 34:119–28 [Google Scholar]
  109. Scimone ML, Kravarik KM, Lapan SW, Reddien PW. 109.  2014. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep 3:339–52 [Google Scholar]
  110. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. 110.  2012. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–65 [Google Scholar]
  111. Sikes JM, Newmark PA. 111.  2013. Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 500:77–80 [Google Scholar]
  112. Singh SP, Holdway JE, Poss KD. 112.  2012. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev. Cell 22:879–86 [Google Scholar]
  113. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ. 113.  et al. 2007. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–82 [Google Scholar]
  114. Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK. 114.  2009. Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev. Cell 16:797–809 [Google Scholar]
  115. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M. 115.  et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–44 [Google Scholar]
  116. Solnica-Krezel L, Schier AF, Driever W. 116.  1994. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136:1401–20 [Google Scholar]
  117. Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M. 117.  et al. 2011. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138:3897–905 [Google Scholar]
  118. Spallanzani L. 118.  1769. An Essay on Animal Reproductions London: Printed for T. Becket and P.A. de Hondt
  119. Stainier DY, Kontarakis Z, Rossi A. 119.  2015. Making sense of anti-sense data. Dev. Cell 32:7–8 [Google Scholar]
  120. Stewart S, Stankunas K. 120.  2012. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev. Biol. 365:339–49 [Google Scholar]
  121. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB. 121.  et al. 2007. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134:479–89 [Google Scholar]
  122. Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM. 122.  2016. MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 531:237–40 [Google Scholar]
  123. Tanaka EM. 123.  2016. The molecular and cellular choreography of appendage regeneration. Cell 165:1598–608 [Google Scholar]
  124. Tanaka EM, Reddien PW. 124.  2011. The cellular basis for animal regeneration. Dev. Cell 21:172–85 [Google Scholar]
  125. Thorel F, Népote V, Avril I, Kohno K, Desgraz R. 125.  et al. 2010. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–54 [Google Scholar]
  126. Tornini VA, Poss KD. 126.  2014. Keeping at arm's length during regeneration. Dev. Cell 29:139–45 [Google Scholar]
  127. Tornini VA, Puliafito A, Slota LA, Thompson JD, Nachtrab G. 127.  et al. 2016. Live monitoring of blastemal cell contributions during appendage regeneration. Curr. Biol. 26:2981–91 [Google Scholar]
  128. Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M. 128.  2007. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev. Biol. 301:62–69 [Google Scholar]
  129. Tseng AS, Beane WS, Lemire JM, Masi A, Levin M. 129.  2010. Induction of vertebrate regeneration by a transient sodium current. J. Neurosci. 30:13192–200 [Google Scholar]
  130. Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E. 130.  et al. 2013. The molecular logic for planarian regeneration along the anterior-posterior axis. Nature 500:73–76 [Google Scholar]
  131. van Wolfswinkel JC, Wagner DE, Reddien PW. 131.  2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–39 [Google Scholar]
  132. Wagner DE, Wang IE, Reddien PW. 132.  2011. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–16 [Google Scholar]
  133. Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M. 133.  et al. 2011. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138:3421–30 [Google Scholar]
  134. Wang Y, Stary JM, Wilhelm JE, Newmark PA. 134.  2010. A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes Dev 24:2081–92 [Google Scholar]
  135. Whitehead GG, Makino S, Lien CL, Keating MT. 135.  2005. fgf20 is essential for initiating zebrafish fin regeneration. Science 310:1957–60 [Google Scholar]
  136. Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW. 136.  2013. Muscle cells provide instructions for planarian regeneration. Cell Rep 4:633–41 [Google Scholar]
  137. Wynn TA, Vannella KM. 137.  2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62 [Google Scholar]
  138. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A. 138.  2012. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J. Cell Biol. 199:225–34 [Google Scholar]
  139. Yoo SK, Starnes TW, Deng Q, Huttenlocher A. 139.  2011. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–12 [Google Scholar]
  140. Zhang Q, Wang Y, Man L, Zhu Z, Bai X. 140.  et al. 2016. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration. Sci. Rep. 6:20752 [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024554
Loading
/content/journals/10.1146/annurev-genet-120116-024554
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error