1932

Abstract

Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071816-064607
2017-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/37/1/annurev-nutr-071816-064607.html?itemId=/content/journals/10.1146/annurev-nutr-071816-064607&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JC, Keller RP, Archer P, Neville MC. 1.  1991. Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am. J. Clin. Nutr. 54:169–80 [Google Scholar]
  2. Ambrosini GL, Mackerras D, de Klerk NH, Musk AW. 2.  2003. Comparison of an Australian food-frequency questionnaire with diet records: implications for nutrition surveillance. Public Health Nutr 6:4415–22 [Google Scholar]
  3. Anderson JJ, Kruszka B, Delaney JA, He K, Burke GL. 3.  et al. 2016. Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-year follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Heart Assoc. 5:10e003815 [Google Scholar]
  4. Antoniucci DM, Yamashita T, Portale AA. 4.  2006. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91:83144–49 [Google Scholar]
  5. Azadbakht L, Esmaillzadeh A. 5.  2009. Soy-protein consumption and kidney-related biomarkers among type 2 diabetics: a crossover, randomized clinical trial. J. Ren. Nutr. 19:6479–86 [Google Scholar]
  6. Bai L, Collins JF, Ghishan FK. 6.  2000. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am. J. Physiol. Cell Physiol. 279:4C1135–43 [Google Scholar]
  7. Barker SL, Pastor J, Carranza D, Quinones H, Griffith C. 7.  et al. 2015. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial. Transplant. 30:2223–33 [Google Scholar]
  8. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. 8.  1998. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. PNAS 95:95372–77 [Google Scholar]
  9. Bellizzi V, Cupisti A, Locatelli F, Bolasco P, Brunori G. 9.  et al. 2016. Low-protein diets for chronic kidney disease patients: the Italian experience. BMC Nephrol 17:177 [Google Scholar]
  10. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M. 10.  et al. 2006. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78:2179–92 [Google Scholar]
  11. Berndt T, Kumar R. 11.  2007. Phosphatonins and the regulation of phosphate homeostasis. Annu. Rev. Physiol. 69:341–59 [Google Scholar]
  12. Biber J, Hernando N, Forster I, Murer H. 12.  2009. Regulation of phosphate transport in proximal tubules. Pflugers Arch 458:139–52 [Google Scholar]
  13. Bijvoet OL. 13.  1969. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin. Sci. 37:123–36 [Google Scholar]
  14. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M. 14.  et al. 2012. Effects of phosphate binders in moderate CKD. J. Am. Soc. Nephrol. 23:81407–15 [Google Scholar]
  15. Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A. 15.  et al. 2008. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336:7638262–66 [Google Scholar]
  16. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T. 16.  et al. 2009. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am. J. Physiol. Ren. Physiol. 297:2F350–61 [Google Scholar]
  17. Brown SA, Crowell WA, Barsanti JA, White JV, Finco DR. 17.  1991. Beneficial effects of dietary mineral restriction in dogs with marked reduction of functional renal mass. J. Am. Soc. Nephrol. 1:101169–79 [Google Scholar]
  18. Buczynski A, Freishtat H, Buzogany S. 18.  2015. Mapping Baltimore City's food environment: 2015 Report Johns Hopkins Univ., Baltimore, accessed on June 15, 2016. http://mdfoodsystemmap.org/wp-content/uploads/2015/06/Baltimore-Food-Environment-Report-2015-11.pdf
  19. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. 19.  2006. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21:81187–96 [Google Scholar]
  20. Butte NF, Garza C, Smith EO, Nichols BL. 20.  1984. Human milk intake and growth in exclusively breast-fed infants. J. Pediatr. 104:2187–95 [Google Scholar]
  21. Cai Q, Hodgson SF, Kao PC, Lennon VA, Klee GG. 21.  et al. 1994. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N. Engl. J. Med. 330:231645–49 [Google Scholar]
  22. Calvo MS, Moshfegh AJ, Tucker KL. 22.  2014. Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv. Nutr. 5:1104–13 [Google Scholar]
  23. Calvo MS, Park YK. 23.  1996. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J. Nutr. 126:4 Suppl.1168S–80S [Google Scholar]
  24. Calvo MS, Tucker KL. 24.  2013. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?. Ann. N. Y. Acad. Sci. 1301:29–35 [Google Scholar]
  25. Calvo MS, Uribarri J. 25.  2013. Contributions to total phosphorus intake: all sources considered. Semin. Dial. 26:154–61 [Google Scholar]
  26. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S. 26.  et al. 2005. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1αOHase-deficient mice. Am. J. Physiol. Cell Physiol. 288:2C429–34 [Google Scholar]
  27. Carrigan A, Klinger A, Choquette SS, Luzuriaga-McPherson A, Bell EK. 27.  et al. 2014. Contribution of food additives to sodium and phosphorus content of diets rich in processed foods. J. Ren. Nutr. 24:113–19, 19e1 [Google Scholar]
  28. Chang A, Batch BC, McGuire HL, Vollmer WM, Svetkey LP. 28.  et al. 2013. Association of a reduction in central obesity and phosphorus intake with changes in urinary albumin excretion: the PREMIER study. Am. J. Kidney Dis. 62:5900–7 [Google Scholar]
  29. Chang AR, Grams ME. 29.  2014. Serum phosphorus and mortality in the Third National Health and Nutrition Examination Survey (NHANES III): effect modification by fasting. Am. J. Kidney Dis. 64:4567–73 [Google Scholar]
  30. Chang AR, Kirchner HL, Young A, Grams ME. 30.  2015. Serum phosphorus is associated with increased risk of kidney failure. J. Am. Soc. Nephrol. 26:215 (Abstr.) [Google Scholar]
  31. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. 31.  2014. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am. J. Clin. Nutr. 99:2320–27 [Google Scholar]
  32. Chang AR, Miller ER, Anderson CA, Juraschek SP, Moser M. 32.  et al. 2017. Phosphorus additives and albuminuria in early stages of CKD: a randomized controlled trial. Am. J. Kidney Dis. 69:2200–9 [Google Scholar]
  33. Cianciaruso B, Pota A, Pisani A, Torraca S, Annecchini R. 33.  et al. 2008. Metabolic effects of two low protein diets in chronic kidney disease stage 4–5—a randomized controlled trial. Nephrol. Dial. Transplant. 23:2636–44 [Google Scholar]
  34. Crews DC, Charles RF, Evans MK, Zonderman AB, Powe NR. 34.  2010. Poverty, race, and CKD in a racially and socioeconomically diverse urban population. Am. J. Kidney Dis. 55:6992–1000 [Google Scholar]
  35. Custer M, Lotscher M, Biber J, Murer H, Kaissling B. 35.  1994. Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am. J. Physiol. 266:5 Pt. 2F767–74 [Google Scholar]
  36. Da J, Xie X, Wolf M, Disthabanchong S, Wang J. 36.  et al. 2015. Serum phosphorus and progression of CKD and mortality: a meta-analysis of cohort studies. Am. J. Kidney Dis. 66:2258–65 [Google Scholar]
  37. De Vizia B, Mansi A. 37.  1992. Calcium and phosphorus metabolism in full-term infants. Monatsschr. Kinderheilkd. 140:9 Suppl. 1S8–12 [Google Scholar]
  38. Dewey KG, Finley DA, Lonnerdal B. 38.  1984. Breast milk volume and composition during late lactation (7–20 months). J. Pediatr. Gastroenterol. Nutr. 3:5713–20 [Google Scholar]
  39. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D'Agostino RB S. 39.  et al. 2007. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med. 167:9879–85 [Google Scholar]
  40. Di Iorio BR, Bellizzi V, Bellasi A, Torraca S, D'Arrigo G. 40.  et al. 2013. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol. Dial. Transplant. 28:3632–40 [Google Scholar]
  41. Di Marco GS, Konig M, Stock C, Wiesinger A, Hillebrand U. 41.  et al. 2013. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int 83:2213–22 [Google Scholar]
  42. Dominguez JR, Kestenbaum B, Chonchol M, Block G, Laughlin GA. 42.  et al. 2013. Relationships between serum and urine phosphorus with all-cause and cardiovascular mortality: the Osteoporotic Fractures in Men (MrOS) study. Am. J. Kidney Dis. 61:4555–63 [Google Scholar]
  43. Dominguez JR, Shlipak MG, Whooley MA, Ix JH. 43.  2013. Fractional excretion of phosphorus modifies the association between fibroblast growth factor-23 and outcomes. J. Am. Soc. Nephrol. 24:4647–54 [Google Scholar]
  44. Evenepoel P, Daenen K, Bammens B, Claes K, Meijers B. 44.  et al. 2015. Microscopic nephrocalcinosis in chronic kidney disease patients. Nephrol. Dial. Transplant. 30:5843–48 [Google Scholar]
  45. Evenepoel P, Rodriguez M, Ketteler M. 45.  2014. Laboratory abnormalities in CKD-MBD: markers, predictors, or mediators of disease?. Semin. Nephrol. 34:2151–63 [Google Scholar]
  46. Farquharson RF, Salter WT, Aub JC. 46.  1931. Studies of calcium and phosphorus metabolism: XIII. The effect of ingestion of phosphates on the excretion of calcium. J. Clin. Investig. 10:2251–69 [Google Scholar]
  47. Farrington K, Mohammed MN, Newman SP, Varghese Z, Moorhead JF. 47.  1981. Comparison of radioisotope methods for the measurement of phosphate absorption in normal subjects and in patients with chronic renal failure. Clin. Sci. (Lond.) 60:155–63 [Google Scholar]
  48. Ferrari SL, Bonjour JP, Rizzoli R. 48.  2005. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90:31519–24 [Google Scholar]
  49. Finch JL, Lee DH, Liapis H, Ritter C, Zhang S. 49.  et al. 2013. Phosphate restriction significantly reduces mortality in uremic rats with established vascular calcification. Kidney Int 84:61145–53 [Google Scholar]
  50. Finco DR, Brown SA, Crowell WA, Groves CA, Duncan JR, Barsanti JA. 50.  1992. Effects of phosphorus/calcium-restricted and phosphorus/calcium-replete 32% protein diets in dogs with chronic renal failure. Am. J. Vet. Res. 53:1157–63 [Google Scholar]
  51. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K. 51.  et al. 2007. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) study. J. Am. Soc. Nephrol. 18:92600–8 [Google Scholar]
  52. Foment S, Nelson S. 52.  1993. Calcium, phosphorus, magnesium, and sulfur. Nutrition of Normal Infants S Foment 192–216 St. Louis, MO: Mosby-Year Book, Inc. [Google Scholar]
  53. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. 53.  1982. Body composition of reference children from birth to age 10 years. Am. J. Clin. Nutr. 35:5 Suppl.1169–75 [Google Scholar]
  54. Forster IC, Hernando N, Biber J, Murer H. 54.  2006. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:91548–59 [Google Scholar]
  55. Fouque D, Laville M. 55.  2009. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst. Rev.3CD001892 [Google Scholar]
  56. Garneata L, Stancu A, Dragomir D, Stefan G, Mircescu G. 56.  2016. Ketoanalogue-supplemented vegetarian very low-protein diet and CKD progression. J. Am. Soc. Nephrol. 27:72164–76 [Google Scholar]
  57. Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL. 57.  et al. 2006. The role of mutant UDP-N-acetyl-α-d-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J. Clin. Endocrinol. Metab. 91:104037–42 [Google Scholar]
  58. Gasser JA, Hulter HN, Imboden P, Krapf R. 58.  2014. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats. Am. J. Physiol. Ren. Physiol. 306:5F517–24 [Google Scholar]
  59. Gimenez L, Walker WG, Tew WP, Hermann JA. 59.  1982. Prevention of phosphate-induced progression of uremia in rats by 3-phosphocitric acid. Kidney Int 22:136–41 [Google Scholar]
  60. Gimenez LF, Solez K, Walker WG. 60.  1987. Relation between renal calcium content and renal impairment in 246 human renal biopsies. Kidney Int 31:193–99 [Google Scholar]
  61. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S. 61.  et al. 2009. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am. J. Physiol. Ren. Physiol. 297:5F1466–75 [Google Scholar]
  62. Goraya N, Wesson DE. 62.  2016. Dietary protein as kidney protection: quality or quantity?. J. Am. Soc. Nephrol. 27:71877–79 [Google Scholar]
  63. Gross JL, Zelmanovitz T, Moulin CC, De Mello V, Perassolo M. 63.  et al. 2002. Effect of a chicken-based diet on renal function and lipid profile in patients with type 2 diabetes: a randomized crossover trial. Diabetes Care 25:4645–51 [Google Scholar]
  64. Gutiérrez OM. 64.  2013. Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease. Adv. Chronic Kidney Dis. 20:2150–56 [Google Scholar]
  65. Gutiérrez OM, Luzuriaga-McPherson A, Lin Y, Gilbert LC, Ha SW, Beck GR Jr. 65.  2015. Impact of phosphorus-based food additives on bone and mineral metabolism. J. Clin. Endocrinol. Metab. 100:114264–71 [Google Scholar]
  66. Harrison HE, Harrison HC. 66.  1961. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am. J. Physiol. 201:1007–12 [Google Scholar]
  67. Haut LL, Alfrey AC, Guggenheim S, Buddington B, Schrier N. 67.  1980. Renal toxicity of phosphate in rats. Kidney Int 17:6722–31 [Google Scholar]
  68. Heaney RP, Kopecky S, Maki KC, Hathcock J, Mackay D, Wallace TC. 68.  2012. A review of calcium supplements and cardiovascular disease risk. Adv. Nutr. 3:6763–71 [Google Scholar]
  69. Heaney RP, Nordin BE. 69.  2002. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J. Am. Coll. Nutr. 21:3239–44 [Google Scholar]
  70. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. 70.  1998. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. PNAS 95:2414564–69 [Google Scholar]
  71. Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM. 71.  et al. 2013. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease. Kidney Int 83:5959–66 [Google Scholar]
  72. Houston J, Isakova T, Wolf M. 72.  2013. Disorders of phosphorus homeostasis: emerging targets for slowing progression of chronic kidney disease. Nutritional Management of Renal Disease JD Kopple, SG Massry, K Kalantar-Zadeh 249–55 New York: Elsevier, 3rd ed.. [Google Scholar]
  73. Hruska KA, Goligorsky M, Scoble J, Tsutsumi M, Westbrook S, Moskowitz D. 73.  1986. Effects of parathyroid hormone on cytosolic calcium in renal proximal tubular primary cultures. Am. J. Physiol. 251:2 Pt. 2F188–98 [Google Scholar]
  74. Hu MC, Shi M, Zhang J, Quinones H, Griffith C. 74.  et al. 2011. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22:1124–36 [Google Scholar]
  75. Ibels LS, Alfrey AC, Haut L, Huffer WE. 75.  1978. Preservation of function in experimental renal disease by dietary restriction of phosphate. N. Engl. J. Med. 298:3122–26 [Google Scholar]
  76. Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. 76.  1995. Spontaneous dietary protein intake during progression of chronic renal failure. J. Am. Soc. Nephrol. 6:51386–91 [Google Scholar]
  77. 77. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food, Nutrition Board IoM. 1997. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: The National Academies Press [Google Scholar]
  78. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G. 78.  et al. 2013. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin. J. Am. Soc. Nephrol. 8:61009–18 [Google Scholar]
  79. Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK. 79.  et al. 2011. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26:2584–91 [Google Scholar]
  80. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J. 80.  et al. 2011. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:121370–78 [Google Scholar]
  81. Ix JH, Anderson CA, Smits G, Persky MS, Block GA. 81.  2014. Effect of dietary phosphate intake on the circadian rhythm of serum phosphate concentrations in chronic kidney disease: a crossover study. Am. J. Clin. Nutr. 100:51392–97 [Google Scholar]
  82. Jacobs DR Jr., Gross MD, Steffen L, Steffes MW, Yu X. 82.  et al. 2009. The effects of dietary patterns on urinary albumin excretion: results of the Dietary Approaches to Stop Hypertension (DASH) trial. Am. J. Kidney Dis. 53:4638–46 [Google Scholar]
  83. Jibani MM, Bloodworth LL, Foden E, Griffiths KD, Galpin OP. 83.  1991. Predominantly vegetarian diet in patients with incipient and early clinical diabetic nephropathy: effects on albumin excretion rate and nutritional status. Diabet. Med. 8:10949–53 [Google Scholar]
  84. Karlinsky ML, Haut L, Buddington B, Schrier NA, Alfrey AC. 84.  1980. Preservation of renal function in experimental glomerulonephritis. Kidney Int 17:3293–302 [Google Scholar]
  85. Karp H, Ekholm P, Kemi V, Hirvonen T, Lamberg-Allardt C. 85.  2012. Differences among total and in vitro digestible phosphorus content of meat and milk products. J. Ren. Nutr. 22:3344–49 [Google Scholar]
  86. Karp H, Ekholm P, Kemi V, Itkonen S, Hirvonen T. 86.  et al. 2012. Differences among total and in vitro digestible phosphorus content of plant foods and beverages. J. Ren. Nutr. 22:4416–22 [Google Scholar]
  87. Karp HJ, Vaihia KP, Karkkainen MU, Niemisto MJ, Lamberg-Allardt CJ. 87.  2007. Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole-foods approach. Calcif. Tissue Int. 80:4251–58 [Google Scholar]
  88. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H. 88.  et al. 1999. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem. J. 343:Pt. 3705–12 [Google Scholar]
  89. Katsouyanni K, Rimm EB, Gnardellis C, Trichopoulos D, Polychronopoulos E, Trichopoulou A. 89.  1997. Reproducibility and relative validity of an extensive semi-quantitative food frequency questionnaire using dietary records and biochemical markers among Greek schoolteachers. Int. J. Epidemiol. 26:Suppl. 1S118–27 [Google Scholar]
  90. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L. 90.  et al. 1994. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330:13877–84 [Google Scholar]
  91. Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R. 91.  et al. 1990. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int 38:1136–44 [Google Scholar]
  92. Kraut JA, Mishler DR, Singer FR, Goodman WG. 92.  1986. The effects of metabolic acidosis on bone formation and bone resorption in the rat. Kidney Int 30:5694–700 [Google Scholar]
  93. Krekel C, McClure ST, Chang AR. 93.  2016. Improving estimates of phosphorus additive content: manufacturers needed. J. Ren. Nutr. 26:5e27–30 [Google Scholar]
  94. Kremsdorf RA, Hoofnagle AN, Kratz M, Weigle DS, Callahan HS. 94.  et al. 2013. Effects of a high-protein diet on regulation of phosphorus homeostasis. J. Clin. Endocrinol. Metab. 98:31207–13 [Google Scholar]
  95. Kuro-o M. 95.  2010. Overview of the FGF23-Klotho axis. Pediatr. Nephrol. 25:4583–90 [Google Scholar]
  96. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T. 96.  et al. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:665545–51 [Google Scholar]
  97. Kusek J. 97.  2014. The COMBINE study: the CKD Optimal Management with BInders and NicotinamidE. NCT02258074; accessed Nov. 2, 2016. https://clinicaltrials.gov/ct2/show/NCT02258074
  98. Laouari D, Kleinknecht C, Cournot-Witmer G, Habib R, Mounier F, Broyer M. 98.  1982. Beneficial effect of low phosphorus diet in uraemic rats: a reappraisal. Clin. Sci. (Lond.) 63:6539–48 [Google Scholar]
  99. Lau K. 99.  1989. Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int 36:5918–37 [Google Scholar]
  100. Lederer E, Miyamoto K. 100.  2012. Clinical consequences of mutations in sodium phosphate cotransporters. Clin. J. Am. Soc. Nephrol. 7:71179–87 [Google Scholar]
  101. Lee DB, Walling MW, Gafter U, Silis V, Coburn JW. 101.  1980. Calcium and inorganic phosphate transport in rat colon: dissociated response to 1,25-dihydroxyvitamin D3. J. Clin. Investig. 65:61326–31 [Google Scholar]
  102. Leon JB, Sullivan CM, Sehgal AR. 102.  2013. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores. J. Ren. Nutr. 23:4265–70.e2 [Google Scholar]
  103. Levey AS, Adler S, Caggiula AW, England BK, Greene T. 103.  et al. 1996. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease study. Am. J. Kidney Dis. 27:5652–63 [Google Scholar]
  104. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J. 104.  et al. 2006. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. . Am. J. Hum. Genet. 78:2193–201 [Google Scholar]
  105. Lumlertgul D, Burke TJ, Gillum DM, Alfrey AC, Harris DC. 105.  et al. 1986. Phosphate depletion arrests progression of chronic renal failure independent of protein intake. Kidney Int 29:3658–66 [Google Scholar]
  106. Lundberg S, Qureshi AR, Olivecrona S, Gunnarsson I, Jacobson SH, Larsson TE. 106.  2012. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin. J. Am. Soc. Nephrol. 7:5727–34 [Google Scholar]
  107. Mackay EM, Oliver J. 107.  1935. Renal damage following the ingestion of a diet containing an excess of inorganic phosphate. J. Exp. Med. 61:3319–34 [Google Scholar]
  108. 108. Mario Negri Institute for Pharmacological Research. 2015. Sevelamer in proteinuric CKD. NCT01968759; accessed Nov. 2, 2016. https://clinicaltrials.gov/ct2/show/NCT01968759
  109. Markowitz GS, Perazella MA. 109.  2009. Acute phosphate nephropathy. Kidney Int 76:101027–34 [Google Scholar]
  110. Marks J, Srai SK, Biber J, Murer H, Unwin RJ, Debnam ES. 110.  2006. Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice. Exp. Physiol. 91:3531–37 [Google Scholar]
  111. Martin A, David V, Quarles LD. 111.  2012. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol. Rev. 92:1131–55 [Google Scholar]
  112. Martin DR, Ritter CS, Slatopolsky E, Brown AJ. 112.  2005. Acute regulation of parathyroid hormone by dietary phosphate. Am. J. Physiol. Endocrinol. Metab. 289:4E729–34 [Google Scholar]
  113. Matsui I, Hamano T, Mikami S, Inoue K, Shimomura A. 113.  et al. 2013. Retention of fetuin-A in renal tubular lumen protects the kidney from nephrocalcinosis in rats. Am. J. Physiol. Ren. Physiol. 304:6F751–60 [Google Scholar]
  114. McHardy GJR, Parsons DS. 114.  1956. The absorption of inorganic phosphate from the small intestine of the rat. Q. J. Exp. Physiol. Cogn. Med. Sci 414398–409 [Google Scholar]
  115. Moe S, Drueke T, Cunningham J, Goodman W, Martin K. 115.  et al. 2006. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:111945–53 [Google Scholar]
  116. Moe SM, Chen NX. 116.  2008. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 19:2213–16 [Google Scholar]
  117. Moe SM, Reslerova M, Ketteler M, O'Neill K, Duan D. 117.  et al. 2005. Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:62295–304 [Google Scholar]
  118. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS. 118.  et al. 2011. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6:2257–64 [Google Scholar]
  119. Moser M, White K, Henry B, Oh S, Miller ER. 119.  et al. 2015. Phosphorus content of popular beverages. Am. J. Kidney Dis. 65:6969–71 [Google Scholar]
  120. Murtaugh MA, Filipowicz R, Baird BC, Wei G, Greene T, Beddhu S. 120.  2012. Dietary phosphorus intake and mortality in moderate chronic kidney disease: NHANES III. Nephrol. Dial. Transplant. 27:3990–96 [Google Scholar]
  121. Noori N, Kalantar-Zadeh K, Kovesdy CP, Bross R, Benner D, Kopple JD. 121.  2010. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5:4683–92 [Google Scholar]
  122. O'Seaghdha CM, Hwang SJ, Muntner P, Melamed ML, Fox CS. 122.  2011. Serum phosphorus predicts incident chronic kidney disease and end-stage renal disease. Nephrol. Dial. Transplant. 26:92885–90 [Google Scholar]
  123. Palmer SC, Hayen A, Macaskill P, Pellegrini F, Craig JC. 123.  et al. 2011. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 305:111119–27 [Google Scholar]
  124. Palomino HL, Rifkin DE, Anderson C, Criqui MH, Whooley MA, Ix JH. 124.  2013. 24-hour urine phosphorus excretion and mortality and cardiovascular events. Clin. J. Am. Soc. Nephrol. 8:1202–10 [Google Scholar]
  125. Piccoli GB, Capizzi I, Vigotti FN, Leone F, D'Alessandro C. 125.  et al. 2016. Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines?. BMC Nephrol 17:176 [Google Scholar]
  126. Porrini M, Gentile MG, Fidanza F. 126.  1995. Biochemical validation of a self-administered semi-quantitative food-frequency questionnaire. Br. J. Nutr. 74:3323–33 [Google Scholar]
  127. Portale AA, Halloran BP, Morris RC Jr. 127.  1987. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J. Clin. Investig. 80:41147–54 [Google Scholar]
  128. Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H. 128.  et al. 2016. Fibroblast growth factor 23 and risk of CKD progression in children. Clin. J. Am. Soc. Nephrol. 11:1989–98 [Google Scholar]
  129. Prie D, Huart V, Bakouh N, Planelles G, Dellis O. 129.  et al. 2002. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347:13983–91 [Google Scholar]
  130. Robinson-Cohen C, Ix JH, Smits G, Persky M, Chertow GM. 130.  et al. 2014. Estimation of 24-hour urine phosphate excretion from spot urine collection: development of a predictive equation. J. Ren. Nutr. 24:3194–99 [Google Scholar]
  131. Ross LA, Finco DR, Crowell WA. 131.  1982. Effect of dietary phosphorus restriction on the kidneys of cats with reduced renal mass. Am. J. Vet. Res. 43:61023–26 [Google Scholar]
  132. Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. 132.  2011. Intestinal phosphate transport. Adv. Chronic Kidney Dis. 18:285–90 [Google Scholar]
  133. Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A. 133.  et al. 2009. Intestinal Npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20:112348–58 [Google Scholar]
  134. Salusky I, Kleinknecht C, Broyer M, Gubler MC. 134.  1981. Prolonged renal survival and stunting, with protein-deficient diets in experimental uremia. Reversal of these effects by addition of essential amino acids. J. Lab. Clin. Med. 97:121–30 [Google Scholar]
  135. Sarathy S, Sullivan C, Leon JB, Sehgal AR. 135.  2008. Fast food, phosphorus-containing additives, and the renal diet. J. Ren. Nutr. 18:5466–70 [Google Scholar]
  136. Satchell S. 136.  2013. The role of the glomerular endothelium in albumin handling. Nat. Rev. Nephrol. 9:12717–25 [Google Scholar]
  137. Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R. 137.  2014. The human response to acute enteral and parenteral phosphate loads. J. Am. Soc. Nephrol. 25:122730–39 [Google Scholar]
  138. Schäfer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M. 138.  et al. 2003. The serum protein α2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Investig. 112:3357–66 [Google Scholar]
  139. Schlemmer U, Frolich W, Prieto RM, Grases F. 139.  2009. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 53:Suppl. 2S330–75 [Google Scholar]
  140. Schwarz S, Trivedi BK, Kalantar-Zadeh K, Kovesdy CP. 140.  2006. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1:4825–31 [Google Scholar]
  141. Scialla JJ, Astor BC, Isakova T, Xie H, Appel LJ, Wolf M. 141.  2013. Mineral metabolites and CKD progression in African Americans. J. Am. Soc. Nephrol. 24:1125–35 [Google Scholar]
  142. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M. 142.  et al. 2004. Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am. J. Physiol. Ren. Physiol. 287:1F39–47 [Google Scholar]
  143. Segovia-Siapco G, Singh P, Jaceldo-Siegl K, Sabate J. 143.  2007. Validation of a food-frequency questionnaire for measurement of nutrient intake in a dietary intervention study. Public Health Nutr 10:2177–84 [Google Scholar]
  144. Selamet U, Tighiouart H, Sarnak MJ, Beck G, Levey AS. 144.  et al. 2016. Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3–5: the Modification of Diet in Renal Disease study. Kidney Int 89:1176–84 [Google Scholar]
  145. Seliger SL, Salimi S, Pierre V, Giffuni J, Katzel L, Parsa A. 145.  2016. Microvascular endothelial dysfunction is associated with albuminuria and CKD in older adults. BMC Nephrol 17:182 [Google Scholar]
  146. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J. 146.  et al. 2012. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Investig. 122:72543–53 [Google Scholar]
  147. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y. 147.  et al. 2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Investig. 113:4561–68 [Google Scholar]
  148. Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M. 148.  et al. 2012. Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin. Exp. Nephrol. 16:5722–29 [Google Scholar]
  149. Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC. 149.  et al. 2008. The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol. Dial. Transplant. 23:103263–71 [Google Scholar]
  150. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M. 150.  et al. 2009. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol. 20:71504–12 [Google Scholar]
  151. Slatopolsky E, Robson AM, Elkan I, Bricker NS. 151.  1968. Control of phosphate excretion in uremic man. J. Clin. Investig. 47:81865–74 [Google Scholar]
  152. Specker BL, Tsang RC, Ho ML, Landi TM, Gratton TL. 152.  1991. Low serum calcium and high parathyroid hormone levels in neonates fed ‘humanized’ cow's milk-based formula. Am. J. Dis. Child. 145:8941–45 [Google Scholar]
  153. Spencer H, Menczel J, Lewin I, Samachson J. 153.  1965. Effect of high phosphorus intake on calcium and phosphorus metabolism in man. J. Nutr. 86:125–32 [Google Scholar]
  154. Stehouwer CD, Fischer HR, van Kuijk AW, Polak BC, Donker AJ. 154.  1995. Endothelial dysfunction precedes development of microalbuminuria in IDDM. Diabetes 44:5561–64 [Google Scholar]
  155. Stevens KK, Denby L, Patel RK, Mark PB, Kettlewell S. 155.  et al. 2016. Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfw252 [Crossref]
  156. Sullivan CM, Leon JB, Sehgal AR. 156.  2007. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J. Ren. Nutr. 17:5350–54 [Google Scholar]
  157. Tai V, Leung W, Grey A, Reid IR, Bolland MJ. 157.  2015. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ 351:h4183 [Google Scholar]
  158. Tokudome S, Imaeda N, Tokudome Y, Fujiwara N, Nagaya T. 158.  et al. 2001. Relative validity of a semi-quantitative food frequency questionnaire versus 28 day weighed diet records in Japanese female dietitians. Eur. J. Clin. Nutr. 55:9735–42 [Google Scholar]
  159. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. 159.  et al. 2005. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112:172627–33 [Google Scholar]
  160. Toussaint ND, Pedagogos E, Holt SG, Chadban SJ, Polkinghorne K. 160.  2013. Relationship between urinary phosphate with cardiovascular disease and mortality in the AUSDIAB Cohort. J. Am. Soc. Nephrol. 24:273 (Abstr.) [Google Scholar]
  161. Ureña-Torres P, Prié D, Keddad K, Preston P, Wilde P. 161.  et al. 2014. Changes in fibroblast growth factor 23 levels in normophosphatemic patients with chronic kidney disease stage 3 treated with lanthanum carbonate: results of the PREFECT study, a phase 2a, double blind, randomized, placebo-controlled trial. BMC Nephrol 15:71–2369–15–71 [Google Scholar]
  162. Uribarri J. 162.  2007. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin. Dial. 20:4295–301 [Google Scholar]
  163. Uribarri J, Calvo MS. 163.  2003. Hidden sources of phosphorus in the typical American diet: Does it matter in nephrology?. Semin. Dial. 16:3186–88 [Google Scholar]
  164. Venkataraman PS, Tsang RC, Greer FR, Noguchi A, Laskarzewski P, Steichen JJ. 164.  1985. Late infantile tetany and secondary hyperparathyroidism in infants fed humanized cow milk formula. Longitudinal follow-up. Am. J. Dis. Child 139:7664–68 [Google Scholar]
  165. Vervloet MG, van Ittersum FJ, Buttler RM, Heijboer AC, Blankenstein MA, ter Wee PM. 165.  2011. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin. J. Am. Soc. Nephrol. 6:2383–89 [Google Scholar]
  166. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M. 166.  et al. 2009. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Ren. Physiol. 296:4F691–99 [Google Scholar]
  167. Weinman EJ, Biswas R, Steplock D, Wang P, Lau YS. 167.  et al. 2011. Increased renal dopamine and acute renal adaptation to a high-phosphate diet. Am. J. Physiol. Ren. Physiol. 300:5F1123–29 [Google Scholar]
  168. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM. 168.  et al. 2012. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 126:242880–89 [Google Scholar]
  169. Yokota T, Ito T, Saigusa M. 169.  2003. Measurement of total phosphorus and organic phosphorus contents of animal manure composts by the dry combustion method. Soil Sci. Plant Nutr. 49:2267–72 [Google Scholar]
  170. Zoccali C, Ruggenenti P, Perna A, Leonardis D, Tripepi R. 170.  et al. 2011. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J. Am. Soc. Nephrol. 22:101923–30 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071816-064607
Loading
/content/journals/10.1146/annurev-nutr-071816-064607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error