1932

Abstract

Trimethylamine -oxide (TMAO) is a biologically active molecule and is a putative promoter of chronic diseases including atherosclerosis in humans. Host intestinal bacteria produce its precursor trimethylamine (TMA) from carnitine, choline, or choline-containing compounds. Most of the TMA produced is passively absorbed into portal circulation, and hepatic flavin-dependent monooxygenases (FMOs) efficiently oxidize TMA to TMAO. Both observational and experimental studies suggest a strong positive correlation between increased plasma TMAO concentrations and adverse cardiovascular events, such as myocardial infarction, stroke, and death. However, a clear mechanistic link between TMAO and such diseases is not yet validated. Therefore, it is debated whether increased TMAO concentrations are the cause or result of these diseases. Here, we have tried to review the current understanding of the properties and physiological functions of TMAO, its dietary sources, and its effects on human metabolism. Studies that describe the potential role of TMAO in the etiology of cardiovascular and other diseases are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071816-064732
2017-08-21
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/nutr/37/1/annurev-nutr-071816-064732.html?itemId=/content/journals/10.1146/annurev-nutr-071816-064732&mimeType=html&fmt=ahah

Literature Cited

  1. al-Waiz M, Mikov M, Mitchell SC, Smith RL. 1.  1992. The exogenous origin of trimethylamine in the mouse. Metabolism 41:135–36 [Google Scholar]
  2. Al-Waiz M, Mitchell SC, Idle JR, Smith RL. 2.  1987. The metabolism of 14C-labelled trimethylamine and its N-oxide in man. Xenobiotica 17:551–58 [Google Scholar]
  3. Albert CM, Hennekens CH, O'Donnell CJ, Ajani UA, Carey VJ. 3.  et al. 1998. Fish consumption and risk of sudden cardiac death. JAMA 279:23–28 [Google Scholar]
  4. Anderson CW. 4.  1993. DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18:433–37 [Google Scholar]
  5. Aron-Wisnewsky J, Clement K. 5.  2016. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 12:169–81 [Google Scholar]
  6. Athawale MV, Dordick JS, Garde S. 6.  2005. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys. J. 89:858–66 [Google Scholar]
  7. Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB. 7.  et al. 2014. Plasma choline metabolites and colorectal cancer risk in the Women's Health Initiative Observational Study. Cancer Res 74:7442–52 [Google Scholar]
  8. Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. 8.  2006. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 21:1300–4 [Google Scholar]
  9. Bain MA, Fornasini G, Evans AM. 9.  2005. Trimethylamine: metabolic, pharmacokinetic and safety aspects. Curr. Drug Metab. 6:227–40 [Google Scholar]
  10. Bang HO, Dyerberg J, Nielsen AB. 10.  1971. Plasma lipid and lipoprotein pattern in Greenlandic west-coast Eskimos. Lancet 297:1143–46 [Google Scholar]
  11. Barton S, Navarro SL, Buas MF, Schwarz Y, Gu H. 11.  et al. 2015. Targeted plasma metabolome response to variations in dietary glycemic load in a randomized, controlled, crossover feeding trial in healthy adults. Food Funct 6:2949–56 [Google Scholar]
  12. Bell JD, Lee JA, Lee HA, Sadler PJ, Wilkie DR, Woodham RH. 12.  1991. Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide. Biochim. Biophys. Acta 1096:101–7 [Google Scholar]
  13. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y. 13.  et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60 [Google Scholar]
  14. Bennion BJ, Daggett V. 14.  2004. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. PNAS 101:6433–38 [Google Scholar]
  15. Biddinger SB, Hernandez-Ono A, Rask-Madsen C, Haas JT, Aleman JO. 15.  et al. 2008. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab 7:125–34 [Google Scholar]
  16. Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. 16.  2007. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc. Disord. 7:20 [Google Scholar]
  17. Blesso CN. 17.  2015. Egg phospholipids and cardiovascular health. Nutrients 7:2731–47 [Google Scholar]
  18. Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N. 18.  et al. 2012. Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J. Bacteriol. 194:6944–45 [Google Scholar]
  19. Brown JM, Hazen SL. 19.  2014. Meta-organismal nutrient metabolism as a basis of cardiovascular disease. Curr. Opin. Lipidol. 25:48–53 [Google Scholar]
  20. Brown JM, Hazen SL. 20.  2015. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66:343–59 [Google Scholar]
  21. Brugère JF, Borrel G, Gaci N, Tottey W, O'Toole PW, Malpuech-Brugère C. 21.  2014. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5:5–10 [Google Scholar]
  22. Buzello M, Tornig J, Faulhaber J, Ehmke H, Ritz E, Amann K. 22.  2003. The apolipoprotein E knockout mouse: a model documenting accelerated atherogenesis in uremia. J. Am. Soc. Nephrol. 14:311–16 [Google Scholar]
  23. Cashman JR. 23.  2000. Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr. Drug Metab. 1:181–91 [Google Scholar]
  24. Cashman JR, Xiong Y, Lin J, Verhagen H, van Poppel G. 24.  et al. 1999. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem. Pharmacol. 58:1047–55 [Google Scholar]
  25. Chao CK, Zeisel SH. 25.  1990. Formation of trimethylamine from dietary choline by Streptococcus sanguis I, which colonizes the mouth. J. Nutr. Biochem. 1:89–97 [Google Scholar]
  26. Chebotareva NA. 26.  2007. Effect of molecular crowding on the enzymes of glycogenolysis. Biochemistry 72:1478–90 [Google Scholar]
  27. Chen ML, Yi L, Zhang Y, Zhou X, Ran L. 27.  et al. 2016. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7:e02210–15 [Google Scholar]
  28. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF. 28.  et al. 2016. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol. Nutr. Food Res. 61:11600324 [Google Scholar]
  29. Cho SS, Reddy G, Straub JE, Thirumalai D. 29.  2011. Entropic stabilization of proteins by TMAO. J. Phys. Chem. B 115:13401–7 [Google Scholar]
  30. Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S. 30.  et al. 2012. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 345:e6698 [Google Scholar]
  31. Collins HL, Drazul-Schrader D, Sulpizio AC, Koster PD, Williamson Y. 31.  et al. 2016. l-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE-/- transgenic mice expressing CETP. Atherosclerosis 244:29–37 [Google Scholar]
  32. Craciun S, Balskus EP. 32.  2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109:21307–12 [Google Scholar]
  33. Craig SA. 33.  2004. Betaine in human nutrition. Am. J. Clin. Nutr. 80:539–49 [Google Scholar]
  34. Dalmeijer GW, Olthof MR, Verhoef P, Bots ML, van der Schouw YT. 34.  2008. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur. J. Clin. Nutr. 62:386–94 [Google Scholar]
  35. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I. 35.  et al. 2016. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp. Clin. Endocrinol. Diabetes 124:251–56 [Google Scholar]
  36. Dambrova M, Skapare-Makarova E, Konrade I, Pugovics O, Grinberga S. 36.  et al. 2013. Meldonium decreases the diet-increased plasma levels of trimethylamine N-oxide, a metabolite associated with atherosclerosis. J. Clin. Pharmacol. 53:1095–98 [Google Scholar]
  37. DiNicolantonio JJ, Lavie CJ, Fares H, Menezes AR, O'Keefe JH. 37.  2013. l-Carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc. 88:544–51 [Google Scholar]
  38. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. 38.  2012. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Mic robiol. 62:1902–7 [Google Scholar]
  39. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C. 39.  et al. 2006. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. PNAS 103:12511–16 [Google Scholar]
  40. Dyerberg J, Bang HO, Hjorne N. 40.  1975. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 28:958–66 [Google Scholar]
  41. Falony G, Vieira-Silva S, Raes J. 41.  2015. Microbiology meets big data: the case of gut microbiota-derived trimethylamine. Annu. Rev. Microbiol. 69:305–21 [Google Scholar]
  42. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. 42.  2010. Role of carnitine in disease. Nutr. Metab. 7:30 [Google Scholar]
  43. Fukami K, Yamagishi S, Sakai K, Kaida Y, Yokoro M. 43.  et al. 2015. Oral l-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J. Cardiovasc. Pharmacol. 65:289–95 [Google Scholar]
  44. Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. 44.  2014. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 118:476–81 [Google Scholar]
  45. Hai X, Landeras V, Dobre MA, DeOreo P, Meyer TW, Hostetter TH. 45.  2015. Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLOS ONE 10:e0143731 [Google Scholar]
  46. Haissman JM, Knudsen A, Hoel H, Kjaer A, Kristoffersen US. 46.  et al. 2016. Microbiota-dependent marker TMAO is elevated in silent ischemia but is not associated with first-time myocardial infarction in HIV infection. J. Acquir. Immune Defic. Syndr. 1999 71:130–36 [Google Scholar]
  47. Hand SC, Carpenter JF. 47.  1986. pH-Induced hysteretic properties of phosphofructokinase purified from rat myocardium. Am. J. Physiol. 250:R505–11 [Google Scholar]
  48. Hand SC, Somero GN. 48.  1982. Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature. J. Biol. Chem. 257:734–41 [Google Scholar]
  49. Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF. 49.  et al. 2014. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and l-carnitine. Arterioscler. Thromb. Vasc. Biol. 34:1307–13 [Google Scholar]
  50. He K, Song Y, Daviglus ML, Liu K, Van Horn L. 50.  et al. 2004. Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke 35:1538–42 [Google Scholar]
  51. He K, Song Y, Daviglus ML, Liu K, Van Horn L. 51.  et al. 2004. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 109:2705–11 [Google Scholar]
  52. Herlaar E, Brown Z. 52.  1999. p38 MAPK signalling cascades in inflammatory disease. Trends Mol. Med. 5:439–47 [Google Scholar]
  53. Hsu WY, Lo WY, Lai CC, Tsai FJ, Tsai CH. 53.  et al. 2007. Rapid screening assay of trimethylaminuria in urine with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 21:1915–19 [Google Scholar]
  54. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM. 54.  et al. 2002. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 287:1815–21 [Google Scholar]
  55. Huo T, Cai S, Lu X, Sha Y, Yu M, Li F. 55.  2009. Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J. Pharm. Biomed. Anal 49976–82 [Google Scholar]
  56. 56. Inst. Med., Natl. Acad. 1998. Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline 1390–422 Washington, DC: Natl. Acad. [Google Scholar]
  57. Jawien J, Nastalek P, Korbut R. 57.  2004. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol. 55:503–17 [Google Scholar]
  58. Johnson DW. 58.  2008. A flow injection electrospray ionization tandem mass spectrometric method for the simultaneous measurement of trimethylamine and trimethylamine N-oxide in urine. J. Mass Spectrom. 43:495–99 [Google Scholar]
  59. Kaysen GA, Johansen KL, Chertow GM, Dalrymple LS, Kornak J. 59.  et al. 2015. Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J. Ren. Nutr. 25:351–56 [Google Scholar]
  60. Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS. 60.  et al. 2010. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J. Toxicol. Environ. Health Part A 73:1420–30 [Google Scholar]
  61. Kim RB, Morse BL, Djurdjev O, Tang M, Muirhead N. 61.  et al. 2016. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int 89:1144–52 [Google Scholar]
  62. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z. 62.  et al. 2014. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metab 20:799–812 [Google Scholar]
  63. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E. 63.  et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85 [Google Scholar]
  64. Koukouritaki SB, Simpson P, Yeung CK, Rettie AE, Hines RN. 64.  2002. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr. Res. 51:236–43 [Google Scholar]
  65. Kromhout D, Bosschieter EB, de Lezenne Coulander C. 65.  1985. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 312:1205–9 [Google Scholar]
  66. Kuhn T, Rohrmann S, Sookthai D, Johnson T, Katzke V. 66.  et al. 2017. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine, and choline over 1 year. Clin. Chem. Lab. Med. 55:261–68 [Google Scholar]
  67. Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H. 67.  et al. 2014. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting l-carnitine microbial degradation. Life Sci 117:84–92 [Google Scholar]
  68. Lee MB, Storer MK, Blunt JW, Lever M. 68.  2006. Validation of 1H NMR spectroscopy as an analytical tool for methylamine metabolites in urine. Clin. Chim. Acta 365:264–69 [Google Scholar]
  69. Lever M, George PM, Slow S, Bellamy D, Young JM. 69.  et al. 2014. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLOS ONE 9:e114969 [Google Scholar]
  70. Li X, Chen Y, Liu J, Yang G, Zhao J. 70.  et al. 2012. Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in Macaca mulatta. . Exp. Biol. Med. 237:1310–21 [Google Scholar]
  71. Mackay RJ, McEntyre CJ, Henderson C, Lever M, George PM. 71.  2011. Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin. Biochem. Rev. 32:33–43 [Google Scholar]
  72. Mafune A, Iwamoto T, Tsutsumi Y, Nakashima A, Yamamoto I. 72.  et al. 2016. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin. Exp. Nephrol. 20:731–39 [Google Scholar]
  73. Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T. 73.  et al. 2008. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4:157 [Google Scholar]
  74. Massy ZA, Ivanovski O, Nguyen-Khoa T, Angulo J, Szumilak D. 74.  et al. 2005. Uremia accelerates both atherosclerosis and arterial calcification in apolipoprotein E knockout mice. J. Am. Soc. Nephrol. 16:109–16 [Google Scholar]
  75. Mente A, Chalcraft K, Ak H, Davis AD, Lonn E. 75.  et al. 2015. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can. J. Cardiol. 31:1189–94 [Google Scholar]
  76. Meyer KA, Benton TZ, Bennett BJ, Jacobs DR, Lloyd-Jones DM. 76.  et al. 2016. The microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and coronary artery calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). J. Am. Heart Assoc. 5:e003970 [Google Scholar]
  77. Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ. 77.  et al. 2015. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 6:6498 [Google Scholar]
  78. Millard HR, Musani SK, Dibaba DT, Talegawkar SA, Taylor HA. 78.  et al. 2016. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur. J. Nutr. doi:10.1007/s00394-016-1296-8
  79. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X. 79.  et al. 2014. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am. J. Clin. Nutr. 100:778–86 [Google Scholar]
  80. Mills GA, Walker V, Mughal H. 80.  1999. Quantitative determination of trimethylamine in urine by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl 723281–85 [Google Scholar]
  81. Missailidis C, Hallqvist J, Qureshi AR, Barany P, Heimburger O. 81.  et al. 2016. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLOS ONE 11:e0141738 [Google Scholar]
  82. Mitchell SC, Smith RL. 82.  2001. Trimethylaminuria: the fish malodor syndrome. Drug Metab. Dispos. 29:517–21 [Google Scholar]
  83. Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. 83.  2015. Metabolomic analysis of prostate cancer risk in a prospective cohort: The Alpha-Tocolpherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int. J. Cancer 137:2124–32 [Google Scholar]
  84. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ. 84.  et al. 2016. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–360 [Google Scholar]
  85. Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A. 85.  et al. 2015. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243:638–44 [Google Scholar]
  86. Nagatomo Y, Tang WH. 86.  2015. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J. Card. Fail. 21:973–80 [Google Scholar]
  87. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. 87.  1994. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14:133–40 [Google Scholar]
  88. Nnane IP, Damani LA. 88.  2001. Pharmacokinetics of trimethylamine in rats, including the effects of a synthetic diet. Xenobiotica 31:749–55 [Google Scholar]
  89. Obeid R, Awwad HM, Rabagny Y, Graeber S, Herrmann W, Geisel J. 89.  2016. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am. J. Clin. Nutr. 103:703–11 [Google Scholar]
  90. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J. 90.  et al. 2016. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ. Heart Fail. 9:e002314 [Google Scholar]
  91. Paul S, Patey GN. 91.  2007. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions. J. Am. Chem. Soc. 129:4476–82 [Google Scholar]
  92. Posada-Ayala M, Zubiri I, Martin-Lorenzo M, Sanz-Maroto A, Molero D. 92.  et al. 2014. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 85:103–11 [Google Scholar]
  93. Rhee EP, Clish CB, Ghorbani A, Larson MG, Elmariah S. 93.  et al. 2013. A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 24:1330–38 [Google Scholar]
  94. Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Muller D. 94.  2016. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J. Nutr. 146:283–89 [Google Scholar]
  95. Rohrmann S, Overvad K, Bueno-de-Mesquita HB, Jakobsen MU, Egeberg R. 95.  et al. 2013. Meat consumption and mortality–results from the European Prospective Investigation into Cancer and Nutrition. BMC Med 11:63 [Google Scholar]
  96. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. 96.  2015. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6:e02481 [Google Scholar]
  97. Schugar RC, Brown JM. 97.  2015. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis. Curr. Opin. Lipidol. 26:426–31 [Google Scholar]
  98. Seibel BA, Walsh PJ. 98.  2002. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 205:297–306 [Google Scholar]
  99. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z. 99.  et al. 2016. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 5:e002767 [Google Scholar]
  100. Senthong V, Li XS, Hudec T, Coughlin J, Wu Y. 100.  et al. 2016. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J. Am. Coll. Cardiol. 67:2620–28 [Google Scholar]
  101. Senthong V, Wang Z, Li XS, Fan Y, Wu Y. 101.  et al. 2016. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J. Am. Heart Assoc. 5:e002816 [Google Scholar]
  102. Shih DM, Wang Z, Lee R, Meng Y, Che N. 102.  et al. 2015. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J. Lipid Res. 56:22–37 [Google Scholar]
  103. Shimizu M, Cashman JR, Yamazaki H. 103.  2007. Transient trimethylaminuria related to menstruation. BMC Med. Genet 82 [Google Scholar]
  104. Spence JD, Urquhart BL, Bang H. 104.  2016. Effect of renal impairment on atherosclerosis: only partially mediated by homocysteine. Nephrol. Dial. Transplant 31:937–44 [Google Scholar]
  105. Street TO, Bolen DW, Rose GD. 105.  2006. A molecular mechanism for osmolyte-induced protein stability. PNAS 103:13997–4002 [Google Scholar]
  106. Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C. 106.  et al. 2016. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. 27:305–13 [Google Scholar]
  107. Svensson BG, Akesson B, Nilsson A, Paulsson K. 107.  1994. Urinary excretion of methylamines in men with varying intake of fish from the Baltic Sea. J. Toxicol. Environ. Health 41:411–20 [Google Scholar]
  108. Tang WH. 108.  2016. Trimethylamine N-oxide as a novel therapeutic target in CKD. J. Am. Soc. Nephrol. 27:8–10 [Google Scholar]
  109. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA. 109.  et al. 2015. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116:448–55 [Google Scholar]
  110. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB. 110.  et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368:1575–84 [Google Scholar]
  111. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y. 111.  et al. 2015. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J. Card. Fail. 21:91–96 [Google Scholar]
  112. Thibodeaux CJ, van der Donk WA. 112.  2012. Converging on a mechanism for choline degradation. PNAS 109:21184–85 [Google Scholar]
  113. Treacy EP, Akerman BR, Chow LM, Youil R, Bibeau C. 113.  et al. 1998. Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Hum. Mol. Genet. 7:839–45 [Google Scholar]
  114. Troseid M, Hov JR, Nestvold TK, Thoresen H, Berge RK. 114.  et al. 2016. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab. Syndr. Relat. Disord. 14:197–201 [Google Scholar]
  115. Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I. 115.  et al. 2015. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277:717–26 [Google Scholar]
  116. 116. US Dep. Aric. 2008. USDA Database for the Choline Content of Common Foods, Release 2 Washington, DC: US Dep. Agric https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-database-for-the-choline-content-of-common-foods-release-2-2008/
  117. Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M. 117.  et al. 2013. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLOS ONE 8:e54950 [Google Scholar]
  118. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS. 118.  et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 [Google Scholar]
  119. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W. 119.  et al. 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–95 [Google Scholar]
  120. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB. 120.  et al. 2014. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35:904–10 [Google Scholar]
  121. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD. 121.  et al. 2015. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10:326–38 [Google Scholar]
  122. Wojciechowski P, Tangri N, Rigatto C, Komenda P. 122.  2016. Risk prediction in CKD: the rational alignment of health care resources in CKD 4/5 care. Adv. Chronic Kidney Dis. 23:227–30 [Google Scholar]
  123. Xu J, Zhang J, Cai S, Dong J, Yang JY, Chen Z. 123.  2009. Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy. Anal. Bioanal. Chem 393:1657–68 [Google Scholar]
  124. Xu R, Wang Q, Li L. 124.  2015. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genom 16:Suppl. 7S4 [Google Scholar]
  125. Zeisel SH. 125.  2006. Choline: critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 26:229–50 [Google Scholar]
  126. Zeisel SH, DaCosta KA. 126.  1986. Increase in human exposure to methylamine precursors of N-nitrosamines after eating fish. Cancer Res 46:6136–38 [Google Scholar]
  127. Zeisel SH, daCosta KA, LaMont JT. 127.  1988. Mono-, di- and trimethylamine in human gastric fluid: potential substrates for nitrosodimethylamine formation. Carcinogenesis 9:179–81 [Google Scholar]
  128. Zeisel SH, daCosta KA, Youssef M, Hensey S. 128.  1989. Conversion of dietary choline to trimethylamine and dimethylamine in rats: dose-response relationship. J. Nutr. 119:800–4 [Google Scholar]
  129. Zeisel SH, Mar M-H, Howe JC, Holden JM. 129.  2003. Erratum: Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133:1302–7 Erratum 2003. J. Nutr. 133:2918 [Google Scholar]
  130. Zeisel SH, Mar MH, Howe JC, Holden JM. 130.  2003. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133:1302–7 [Google Scholar]
  131. Zeisel SH, Wishnok JS, Blusztajn JK. 131.  1983. Formation of methylamines from ingested choline and lecithin. J. Pharmacol. Exp. Ther. 225:320–24 [Google Scholar]
  132. Zhang AQ, Mitchell S, Smith R. 132.  1995. Fish odour syndrome: verification of carrier detection test. J. Inherit. Metab. Dis. 18:669–74 [Google Scholar]
  133. Zhang J, Cashman JR. 133.  2006. Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab. Dispos. 34:19–26 [Google Scholar]
  134. Zhao X, Zeisel SH, Zhang S. 134.  2015. Rapid LC-MRM-MS assay for simultaneous quantification of choline, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in human plasma and urine. Electrophoresis 36:2207–14 [Google Scholar]
  135. Zheng Y, Li Y, Rimm EB, Hu FB, Albert CM. 135.  et al. 2016. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am. J. Clin. Nutr. 104:173–80 [Google Scholar]
  136. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N. 136.  et al. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–24 [Google Scholar]
  137. Zhu Y, Jameson E, Crosatti M, Schafer H, Rajakumar K. 137.  et al. 2014. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. PNAS 111:4268–73 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071816-064732
Loading
/content/journals/10.1146/annurev-nutr-071816-064732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error