1932

Abstract

It is increasingly recognized that tissue-specific nutrient deficiencies can exist in the absence of whole-body deficiency and that these deficiencies may result from disease or disease-related physiological processes. Brain and central nervous system tissues require adequate nutrient levels to function. Many nutrients are concentrated in the cerebrospinal fluid relative to the serum in healthy individuals, and other nutrients resist depletion in the presence of whole-body nutrient depletion. The endothelial, epithelial, and arachnoid brain barriers work in concert to selectively transport, concentrate, and maintain levels of the specific nutrients required by the brain while also blocking the passage of blood-borne toxins and pathogens to brain and central nervous system tissues. These barriers preserve nutrient levels within the brain and actively concentrate nutrients within the cerebrospinal fluid and brain. The roles of physical and energetic barriers, including the blood–brain and blood–nerve barriers, in maintaining brain nutrient levels in health and disease are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124235
2019-08-21
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124235.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124235&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ 2010. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37:113–25
    [Google Scholar]
  2. 2.
    Abdou E, Hazell AS. 2015. Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem. Res. 40:2353–61
    [Google Scholar]
  3. 3.
    Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J et al. 1997. Vitamin C crosses the blood–brain barrier in the oxidized form through the glucose transporters. J. Clin. Investig. 100:112842–48
    [Google Scholar]
  4. 4.
    Ahlgren E, Hagberg L, Fuchs D, Andersson L-M, Nilsson S et al. 2016. Association between plasma homocysteine levels and neuronal injury in HIV infection. PLOS ONE 11:7e0158973
    [Google Scholar]
  5. 5.
    Albersen M, Bosma M, Jans JJM, Hofstede FC, van Hasselt PM et al. 2015. Vitamin B6 in plasma and cerebrospinal fluid of children. PLOS ONE 10:3e0120972
    [Google Scholar]
  6. 6.
    Allen CL, Bayraktutan U. 2009. Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood–brain barrier hyperpermeability. Diabetes. Obes. Metab. 11:5480–90
    [Google Scholar]
  7. 7.
    Almeida OP, Ford AH, Flicker L 2015. Systematic review and meta-analysis of randomized placebo-controlled trials of folate and vitamin B12 for depression. Int. Psychogeriatr. 27:5727–37
    [Google Scholar]
  8. 8.
    Ames BN. 2001. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat. Res. 475:1–27–20
    [Google Scholar]
  9. 9.
    Arlt S, Müller-Thomsen T, Beisiegel U, Kontush A 2012. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease. Neurochem. Res. 37:122706–14
    [Google Scholar]
  10. 10.
    Bailey LB. 1995. Folate requirements and dietary recommendations. Folate in Health and Disease LB Bailey New York: Marcel Dekker
    [Google Scholar]
  11. 11.
    Baird TA, Parsons MW, Barber PA, Butcher KS, Desmond PM et al. 2002. The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J. Clin. Neurosci. 9:6618–26
    [Google Scholar]
  12. 12.
    Balashova OA, Visina O, Borodinsky LN 2018. Folate action in nervous system development and disease. Dev. Neurobiol. 78:4391–402
    [Google Scholar]
  13. 13.
    Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O et al. 2004. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated α-tocopherol by an in vitro blood–brain barrier model. J. Neurochem. 89:4939–50
    [Google Scholar]
  14. 14.
    Batllori M, Molero-Luis M, Casado M, Sierra C, Artuch R, Ormazabal A 2016. Biochemical analyses of cerebrospinal fluid for the diagnosis of neurometabolic conditions: What can we expect. Semin. Pediatr. Neurol. 23:4273–84
    [Google Scholar]
  15. 15.
    Bedson E, Bell D, Carr D, Carter B, Hughes D et al. 2014. Folate augmentation of treatment—evaluation for depression (FolATED): randomised trial and economic evaluation. Health Technol. Assess. 18:481–159
    [Google Scholar]
  16. 16.
    Belenky P, Bogan KL, Brenner C 2007. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32:112–19
    [Google Scholar]
  17. 17.
    Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA et al. 1997. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. PNAS 94:73290–95
    [Google Scholar]
  18. 18.
    Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H et al. 2009. Validation of serum markers for blood–brain barrier disruption in traumatic brain injury. J. Neurotrauma 26:91497–507
    [Google Scholar]
  19. 19.
    Brannon PM, Taylor CL, Coates PM 2014. Use and applications of systematic reviews in public health nutrition. Annu. Rev. Nutr. 34:401–19
    [Google Scholar]
  20. 20.
    Brightman MW, Reese TS. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:3648–77
    [Google Scholar]
  21. 21.
    Campos-Bedolla P, Walter FR, Veszelka S, Deli MA 2014. Role of the blood–brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 45:8610–38
    [Google Scholar]
  22. 22.
    Carmichael ST. 2005. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2:3396–409
    [Google Scholar]
  23. 23.
    Choi SW, Mason JB. 2000. Folate and carcinogenesis: an integrated scheme. J Nutr 130:2129–32
    [Google Scholar]
  24. 24.
    Christensen H, Aiken A, Batterham PJ, Walker J, MacKinnon AJ et al. 2011. No clear potentiation of antidepressant medication effects by folic acid + vitamin B12 in a large community sample. J. Affect. Disord. 130:1–237–45
    [Google Scholar]
  25. 25.
    Clarke L, van der Kooy D 2011. The adult mouse dentate gyrus contains populations of committed progenitor cells that are distinct from subependymal zone neural stem cells. Stem Cells 29:91448–58
    [Google Scholar]
  26. 26.
    Clarke R, Bennett D, Parish S, Lewington S, Skeaff M et al. 2014. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am. J. Clin. Nutr. 100:2657–66
    [Google Scholar]
  27. 27.
    Clarke R, Halsey J, Lewington S, Lonn E, Armitage J et al. 2010. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37 485 individuals. Arch. Intern. Med. 170:181622–31
    [Google Scholar]
  28. 28.
    Coppen A, Bailey J. 2000. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J. Affect. Disord. 60:2121–30
    [Google Scholar]
  29. 29.
    Cuddihy SL, Musiek ES, Morrow JD, Dugan LL 2004. Long-term vitamin E deficiency in mice decreases superoxide radical production in brain. Ann. N. Y. Acad. Sci. 1031:428–31
    [Google Scholar]
  30. 30.
    Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA et al. 2016. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am. J. Hum. Genet. 99:61325–37
    [Google Scholar]
  31. 31.
    de Benoist B 2008. Folate and vitamin B12 deficiencies: proceedings of a WHO technical consultation held 18–21 October, 2005, in Geneva, Switzerland. Food Nutr. Bull. 29:Suppl. 2S1–246
    [Google Scholar]
  32. 32.
    de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW 2017. Lower brain and blood nutrient status in Alzheimer's disease: results from meta-analyses. Alzheimer's Dement 3:3416–31
    [Google Scholar]
  33. 33.
    Desrumaux C, Risold P-Y, Schroeder H, Deckert V, Masson D et al. 2005. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J 19:2296–97
    [Google Scholar]
  34. 34.
    Dhillon NK, Peng F, Bokhari S, Callen S, Shin S-H et al. 2008. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J. Neuroimmune Pharmacol. 3:152–56
    [Google Scholar]
  35. 35.
    Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:6703–16
    [Google Scholar]
  36. 36.
    Field MS, Anderson DD, Stover PJ 2011. Mthfs is an essential gene in mice and a component of the purinosome. Front Genet 2:36
    [Google Scholar]
  37. 37.
    Field MS, Kamynina E, Chon J, Stover PJ 2018. Nuclear folate metabolism. Annu. Rev. Nutr. 38:1219–43
    [Google Scholar]
  38. 38.
    Fox JT, Stover PJ. 2008. Folate-mediated one-carbon metabolism. Vitam. Horm. 79:1–44
    [Google Scholar]
  39. 39.
    Gander R, Eller P, Kaser S, Theurl I, Walter D et al. 2002. Molecular characterization of rabbit phospholipid transfer protein: choroid plexus and ependyma synthesize high levels of phospholipid transfer protein. J. Lipid Res. 43:4636–45
    [Google Scholar]
  40. 40.
    de los Angeles García M, Salazar K, Millán C, Rodríguez F, Montecinos H et al. 2005. Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:132–47
    [Google Scholar]
  41. 41.
    Gilbody S, Lewis S, Lightfoot T 2007. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am. J. Epidemiol. 165:11–13
    [Google Scholar]
  42. 42.
    Gisslén M, Hagberg L, Brew BJ, Cinque P, Price RW, Rosengren L 2007. Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex. J. Infect. Dis. 195:121774–78
    [Google Scholar]
  43. 43.
    Goti D, Hrzenjak A, Levak-Frank S, Frank S, van der Westhuyzen DR et al. 2001. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem. 76:2498–508
    [Google Scholar]
  44. 44.
    Grapp M, Wrede A, Schweizer M, Hüwel S, Galla HJ et al. 2013. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123
    [Google Scholar]
  45. 45.
    Green R, Allen LH, Bjørke-Monsen A-L, Brito A, Guéant J-L et al. 2017. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 3:17040
    [Google Scholar]
  46. 46.
    Harrison FE, May JM. 2009. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 46:6719–30
    [Google Scholar]
  47. 47.
    Harrison FE, Meredith ME, Dawes SM, Saskowski JL, May JM 2010. Low ascorbic acid and increased oxidative stress in gulo/ mice during development. Brain Res 1349:143–52
    [Google Scholar]
  48. 48.
    Hasumi H, Kamiyama Y, Nakasora S, Yamamoto Y, Hara M, Fujita Y 2011. Cerebrospinal fluid and serum levels of vitamin B6 in status epilepticus children. Brain Dev 33:7580–88
    [Google Scholar]
  49. 49.
    Hoane MR, Kaplan SA, Ellis AL 2006. The effects of nicotinamide on apoptosis and blood–brain barrier breakdown following traumatic brain injury. Brain Res 1125:1185–93
    [Google Scholar]
  50. 50.
    Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL et al. 2011. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet 378:9791584–94
    [Google Scholar]
  51. 51.
    Huang JT-J, Leweke FM, Oxley D, Wang L, Harris N et al. 2006. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLOS Med 3:11e428
    [Google Scholar]
  52. 52.
    IOM (Inst. Med.) 1998. Dietary Reference Intake for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline Washington, DC: Natl. Acad. Press
    [Google Scholar]
  53. 53.
    Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G 2011. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol. Pathol. 39:186–212
    [Google Scholar]
  54. 54.
    Jones AR, Shusta EV 2007. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm. Res. 24:91759–71
    [Google Scholar]
  55. 55.
    Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T et al. 2002. Serum S-100β as a possible marker of blood–brain barrier disruption. Brain Res 940:102–4
    [Google Scholar]
  56. 56.
    Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G 2014. . Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18
    [Google Scholar]
  57. 57.
    Kelly CB, McDonnell AP, Johnston TG, Mulholland C, Cooper SJ et al. 2004. The MTHFR C677T polymorphism is associated with depressive episodes in patients from Northern Ireland. J. Psychopharmacol. 18:4567–71
    [Google Scholar]
  58. 58.
    Kennedy DO. 2016. B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients 8:268
    [Google Scholar]
  59. 59.
    Kim YI. 1999. Folate and cancer prevention: a new medical application of folate beyond hyperhomocysteinemia and neural tube defects. Nutr. Rev. 57:10314–21
    [Google Scholar]
  60. 60.
    Kirsch SH, Herrmann W, Obeid R 2013. Genetic defects in folate and cobalamin pathways affecting the brain. Clin. Chem. Lab. Med. 51:1139–55
    [Google Scholar]
  61. 61.
    Kratzer I, Bernhart E, Wintersperger A, Hammer A, Waltl S et al. 2009. Afamin is synthesized by cerebrovascular endothelial cells and mediates α-tocopherol transport across an in vitro model of the blood–brain barrier. J. Neurochem. 108:3707–18
    [Google Scholar]
  62. 62.
    Kronenberg G, Colla M, Endres M 2009. Folic acid, neurodegenerative and neuropsychiatric disease. Curr. Mol. Med. 9:3315–23
    [Google Scholar]
  63. 63.
    Kumar N. 2011. Acute and subacute encephalopathies: deficiency states (nutritional). Semin. Neurol. 31:2169–83
    [Google Scholar]
  64. 64.
    Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill A et al. 2011. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:5893–905
    [Google Scholar]
  65. 65.
    Lei Y, Han H, Yuan F, Javeed A, Zhao Y 2017. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog. Neurobiol. 157:230–46
    [Google Scholar]
  66. 66.
    Leloup C, Arluison M, Kassis N, Lepetit N, Cartier N et al. 1996. Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Mol. Brain Res. 38:145–53
    [Google Scholar]
  67. 67.
    Lin L, Yee SW, Kim RB, Giacomini KM 2015. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14:8543–60
    [Google Scholar]
  68. 68.
    Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F et al. 2006. Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. PNAS 103:4315927–32
    [Google Scholar]
  69. 69.
    Liu WY, Wang ZB, Wang Y, Tong LC, Li Y et al. 2015. Increasing the permeability of the blood–brain barrier in three different models in vivo. CNS Neurosci. Ther. 21:7568–74
    [Google Scholar]
  70. 70.
    Liu WY, Wang ZB, Zhang LC, Wei X, Li L 2012. Tight junction in blood–brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci. Ther. 18:8609–15
    [Google Scholar]
  71. 71.
    Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM et al. 2010. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia–reoxygenation. J. Cereb. Blood Flow Metab. 30:91625–36
    [Google Scholar]
  72. 72.
    Luder AS, Tanner SM, de la Chapelle A, Walter JH 2008. Amnionless (AMN) mutations in Imerslund–Gräsbeck syndrome may be associated with disturbed vitamin B12 transport into the CNS. J. Inherit. Metab. Dis. 31:Suppl. 3493–96
    [Google Scholar]
  73. 73.
    Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B et al. 2008. Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–48
    [Google Scholar]
  74. 74.
    Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS et al. 2012. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med 4:438
    [Google Scholar]
  75. 75.
    Marchi N, Rasmussen P, Kapural M, Fazio V, Kight K et al. 2003. Peripheral markers of brain damage and blood–brain barrier dysfunction. Restor. Neurol. Neurosci. 21:3–4109–21
    [Google Scholar]
  76. 76.
    Marques F, Sousa J, Sousa N, Palha J 2013. Blood–brain-barriers in aging and in Alzheimer's disease. Mol. Neurodegener. 8:138
    [Google Scholar]
  77. 77.
    Martinez DL, Tsuchiya Y, Gout I 2014. Coenzyme A biosynthetic machinery in mammalian cells. Biochem. Soc. Trans. 42:41112–17
    [Google Scholar]
  78. 78.
    Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N et al. 2011. Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 1411:28–40
    [Google Scholar]
  79. 79.
    Mason JB. 2011. Unraveling the complex relationship between folate and cancer risk. BioFactors 37:4253–60
    [Google Scholar]
  80. 80.
    Maubert ME, Wigdahl B, Nonnemacher MR 2017. Inhibition of blood–brain barrier repair as a mechanism in HIV-1 disease. Front. Neurosci. 11:228
    [Google Scholar]
  81. 81.
    McNulty H. 1995. Folate requirements for health in different population groups. Br. J. Biomed. Sci. 52:2110–19
    [Google Scholar]
  82. 82.
    Mesquita SD, Ferreira AC, Sousa JC, Santos NC, Correia-Neves M et al. 2012. Modulation of iron metabolism in aging and in Alzheimer's disease: relevance of the choroid plexus. Front. Cell Neurosci. 6:25
    [Google Scholar]
  83. 83.
    Mills PB, Camuzeaux SSM, Footitt EJ, Mills KA, Gissen P et al. 2014. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 137:1350–60
    [Google Scholar]
  84. 84.
    Mills PB, Surtees RAH, Champion MP, Beesley CE, Dalton N et al. 2005. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum. Mol. Genet. 14:81077–86
    [Google Scholar]
  85. 85.
    Molero-Luis M, Serrano M, O'Callaghan MM, Sierra C, Pérez-Dueñas B et al. 2015. Clinical, etiological and therapeutic aspects of cerebral folate deficiency. Expert Rev. Neurother. 15:7793–802
    [Google Scholar]
  86. 86.
    Mooradian AD. 1987. Effect of aging on the blood–brain barrier. Neurobiol. Aging 9:31–39
    [Google Scholar]
  87. 87.
    Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D 2013. Neurovascular unit dysfunction with blood–brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J. Neuroinflammation 10:142
    [Google Scholar]
  88. 88.
    Nijst TQ, Wevers RA, Schoonderwaldt HC, Hommes OR, de Haan AF 1990. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J. Neurol. Neurosurg. Psychiatry 53:11951–54
    [Google Scholar]
  89. 89.
    Niklasson F, Agren H. 1984. Brain energy metabolism and blood–brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol. Psychiatry 19:81183–206
    [Google Scholar]
  90. 90.
    Nualart F, Mack L, García A, Cisternas P, Bongarzone ER et al. 2014. Vitamin C transporters, recycling and the bystander effect in the nervous system: SVCT2 versus Gluts. J. Stem Cell Res. Ther. 4:5209
    [Google Scholar]
  91. 91.
    Oishi K, Hofmann S, Diaz GA, Brown T, Manwani D et al. 2002. Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum. Mol. Genet. 11:232951–60
    [Google Scholar]
  92. 92.
    Oldendorf WH, Cornford ME, Brown WJ 1977. The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1:5409–17
    [Google Scholar]
  93. 93.
    Oria M, Kumnayika S eds 2017. Guiding Principles for Developing Dietary Reference Intakes Based on Chronic Disease Washington, DC: Natl. Acad. Press
  94. 94.
    Pangilinan F, Mitchell A, VanderMeer J, Molloy AM, Troendle J et al. 2010. Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects. J. Med. Genet. 47:10677–85
    [Google Scholar]
  95. 95.
    Papakostas GI, Shelton RC, Zajecka JM, Bottiglieri T, Roffman J et al. 2014. Effect of adjunctive l-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial. J. Clin. Psychiatry 75:8855–63
    [Google Scholar]
  96. 96.
    Papakostas GI, Shelton RC, Zajecka JM, Etemad B, Rickels K et al. 2012. l-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry 169:121267–74
    [Google Scholar]
  97. 97.
    Park S, Sinko PJ. 2005. The blood–brain barrier sodium-dependent multivitamin transporter: a molecular functional in vitro–in situ correlation. Drug Metab. Dispos. 33:101547–54
    [Google Scholar]
  98. 98.
    Patanwala I, King MJ, Barrett DA, Rose J, Jackson R et al. 2014. Folic acid handling by the human gut: implications for food fortification. Am. J. Clin. Nutr. 100:593–99
    [Google Scholar]
  99. 99.
    Patrini C, Reggiani C, LaForenza U, Rindi G 1988. Blood–brain transport of thiamine monophosphate in the rat: a kinetic study in vivo. J. Neurochem. 50:190–93
    [Google Scholar]
  100. 100.
    Peerbooms OLJ, van Os J, Drukker M, Kenis G, Hoogveld L et al. 2011. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability?. Brain Behav. Immun. 25:81530–43
    [Google Scholar]
  101. 101.
    Pfeiffer F, Schäfer J, Lyck R, Makrides V, Brunner S et al. 2011. Claudin-1 induced sealing of blood–brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol 122:5601–14
    [Google Scholar]
  102. 102.
    Pineda M, Ormazabal A, López-Gallardo E, Nascimento A, Solano A et al. 2006. Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann. Neurol. 59:2394–98
    [Google Scholar]
  103. 103.
    Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ 1995. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:91894–901
    [Google Scholar]
  104. 104.
    Quinn J, Suh J, Moore MM, Kaye J, Frei B 2003. Antioxidants in Alzheimer's disease—vitamin C delivery to a demanding brain. J. Alzheimer's Dis. 5:4309–13
    [Google Scholar]
  105. 105.
    Rahman S. 2012. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 54:5397–406
    [Google Scholar]
  106. 106.
    Ramaekers VT, Rothenberg SP, Sequeira JM, Opladen T, Blau N et al. 2005. Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N. Engl. J. Med. 352:191985–91
    [Google Scholar]
  107. 107.
    Ramaekers VT, Thöny B, Sequeira JM, Ansseau M, Philippe P et al. 2014. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol. Genet. Metab. 113:4307–14
    [Google Scholar]
  108. 108.
    Redzic Z. 2011. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3
    [Google Scholar]
  109. 109.
    Resler G, Lavie R, Campos J, Mata S, Urbina M et al. 2008. Effect of folic acid combined with fluoxetine in patients with major depression on plasma homocysteine and vitamin B12, and serotonin levels in lymphocytes. Neuroimmunomodulation 15:145–52
    [Google Scholar]
  110. 110.
    Reyes AM, Bustamante F, Rivas CI, Ortega M, Donnet C et al. 2002. Nicotinamide is not a substrate of the facilitative hexose transporter GLUT1. Biochemistry 41:258075–81
    [Google Scholar]
  111. 111.
    Roffman JL, Nitenson AZ, Agam Y, Isom M, Friedman JS et al. 2011. A hypomethylating variant of MTHFR, 677C>T, blunts the neural response to errors in patients with schizophrenia and healthy individuals. PLOS ONE 6:9e25253
    [Google Scholar]
  112. 112.
    Saedi E, Gheini MR, Faiz F, Arami MA 2016. Diabetes mellitus and cognitive impairments. World J. Diabetes 7:17412–22
    [Google Scholar]
  113. 113.
    Scott JM. 1998. How does folic acid prevent neural tube defects. ? Nat. Med. 4:8895–96
    [Google Scholar]
  114. 114.
    Segal MB. 2000. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell. Mol. Neurobiol. 20:2183–96
    [Google Scholar]
  115. 115.
    Shimizu F, Sano Y, Abe M, Maeda T, Ohtsuki S et al. 2011. Peripheral nerve pericytes modify the blood–nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J. Cell. Physiol. 226:1255–66
    [Google Scholar]
  116. 116.
    Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P 2016. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19:5643–52
    [Google Scholar]
  117. 117.
    Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A et al. 2002. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat. Med. 8:5514–17
    [Google Scholar]
  118. 118.
    Spector R. 2009. Nutrient transport systems in brain: 40 years of progress. J. Neurochem. 111:2315–20
    [Google Scholar]
  119. 119.
    Spector R, Greenwald LL. 1978. Transport and metabolism of vitamin B6 in rabbit brain and choroid plexus. J. Biol. Chem. 253:72373–79
    [Google Scholar]
  120. 120.
    Spector R, Johanson C. 2006. Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm. Res. 23:112515–24
    [Google Scholar]
  121. 121.
    Spector R, Johanson CE. 2007. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J. Neurochem. 103:2425–38
    [Google Scholar]
  122. 122.
    Spector R, Keep RF, Snodgrass SR, Smith QR, Johanson CE 2015. A balanced view of choroid plexus structure and function: focus on adult humans. Exp. Neurol. 267:78–86
    [Google Scholar]
  123. 123.
    Stabler SP. 2013. Vitamin B12 deficiency. N. Engl. J. Med. 368:2149–60
    [Google Scholar]
  124. 124.
    Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G et al. 2009. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am. J. Hum. Genet. 85:3354–63
    [Google Scholar]
  125. 125.
    Stover PJ, Durga J, Field MS 2017. Folate nutrition and blood–brain barrier dysfunction. Curr. Opin. Biotechnol. 44:146–52
    [Google Scholar]
  126. 126.
    Stover PJ, Field MS. 2015. Vitamin B-6. Adv. Nutr. 6:132–33
    [Google Scholar]
  127. 127.
    Subramanian VS, Marchant JS, Said HM 2006. Targeting and trafficking of the human thiamine transporter-2 in epithelial cells. J. Biol. Chem. 281:85233–45
    [Google Scholar]
  128. 128.
    Suh JR, Herbig AK, Stover PJ 2001. New perspectives on folate catabolism. Annu. Rev. Nutr. 21:255–82
    [Google Scholar]
  129. 129.
    Suren P, Roth C, Bresnahan M, Haugen M, Hornig M et al. 2013. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309:6570–77
    [Google Scholar]
  130. 130.
    Swan AA, Chandrashekar R, Beare J, Hoane MR 2011. Preclinical efficacy testing in middle-aged rats: nicotinamide, a novel neuroprotectant, demonstrates diminished preclinical efficacy after controlled cortical impact. J. Neurotrauma 28:3431–40
    [Google Scholar]
  131. 131.
    Sweeney MD, Sagare AP, Zlokovic BV 2015. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J. Cereb. Blood Flow Metab. 35:71055–68
    [Google Scholar]
  132. 132.
    Temple S, Alvarez-Buylla A. 1999. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9:1135–41
    [Google Scholar]
  133. 133.
    Tenreiro MM, Ferreira R, Bernardino L, Brito MA 2016. Cellular response of the blood–brain barrier to injury: potential biomarkers and therapeutic targets for brain regeneration. Neurobiol. Dis. 91:262–73
    [Google Scholar]
  134. 134.
    Toda T, Parylak SL, Linker SB, Gage FH 2019. The role of adult hippocampal neurogenesis in brain health and disease. Mol. Psychiatry 24:67–87
    [Google Scholar]
  135. 135.
    Trumbo PR, Barr SI, Murphy SP, Yates AA 2013. Dietary reference intakes: cases of appropriate and inappropriate uses. Nutr. Rev. 71:10657–64
    [Google Scholar]
  136. 136.
    Tsang BK-T, Crump N, MacDonell RA 2012. Subacute combined degeneration of the spinal cord despite prophylactic vitamin B12 treatment. J. Clin. Neurosci. 19:6908–10
    [Google Scholar]
  137. 137.
    Tyynismaa H, Suomalainen A. 2009. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep 10:2137–43
    [Google Scholar]
  138. 138.
    Uchida Y, Ito K, Ohtsuki S, Kubo Y, Suzuki T, Terasaki T 2015. Major involvement of Na+-dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells. J. Neurochem. 134:197–112
    [Google Scholar]
  139. 139.
    Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T et al. 2011. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J. Neurochem. 117:2333–45
    [Google Scholar]
  140. 140.
    Ueland PM, Ulvik A, Rios-Avila L, Midttun Ø, Gregory JF III 2015. Direct and functional biomarkers of vitamin B6 status. Annu. Rev. Nutr. 35:33–70
    [Google Scholar]
  141. 141.
    Ulvik A, Midttun Ø, Pedersen ER, Eussen SJ, Nygård O, Ueland PM 2014. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 100:1250–55
    [Google Scholar]
  142. 142.
    van der Put NM, Blom HJ 2000. Neural tube defects and a disturbed folate dependent homocysteine metabolism. Eur. J. Obstet. Gynecol. Reprod. Biol. 92:157–61
    [Google Scholar]
  143. 143.
    Varatharaj A, Galea I. 2017. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60:1–12
    [Google Scholar]
  144. 144.
    Vatassery GT. 1992. Vitamin E: neurochemistry and implications for neurodegeneration in Parkinson's disease. Ann. N. Y. Acad. Sci. 669:197–109
    [Google Scholar]
  145. 145.
    Venkatasubramanian R, Kumar CN, Pandey RS 2013. A randomized double-blind comparison of fluoxetine augmentation by high and low dosage folic acid in patients with depressive episodes. J. Affect. Disord. 150:644–48
    [Google Scholar]
  146. 146.
    Vonder Haar C, Peterson TC, Martens KM, Hoane MR 2016. Vitamins and nutrients as primary treatments in experimental brain injury: clinical implications for nutraceutical therapies. Brain Res 1640:114–29
    [Google Scholar]
  147. 147.
    Wang X, Cabrera RM, Li Y, Miller DS, Finnell RH 2013. Functional regulation of P-glycoprotein at the blood–brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J 27:31167–75
    [Google Scholar]
  148. 148.
    Wang X, Michaelis EK. 2010. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2:12
    [Google Scholar]
  149. 149.
    Wang ZP, Shang XX, Zhao ZT 2011. Low maternal vitamin B12 is a risk factor for neural tube defects: a meta-analysis. J. Matern. Fetal Neonatal Med. 25:4389–94
    [Google Scholar]
  150. 150.
    Whish S, Dziegielewska KM, Møllgård K, Noor NM, Liddelow SA et al. 2015. The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions. Front. Neurosci. 9:16
    [Google Scholar]
  151. 151.
    Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K et al. 2008. The human cerebrospinal fluid metabolome. J. Chromatogr. B 871:2164–73
    [Google Scholar]
  152. 152.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P 2009. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96
    [Google Scholar]
  153. 153.
    Wollack JB, Makori B, Ahlawat S, Koneru R, Picinich SC et al. 2008. Characterization of folate uptake by choroid plexus epithelial cells in a rat primary culture model. J. Neurochem. 104:61494–503
    [Google Scholar]
  154. 154.
    Yang Y, Rosenberg GA. 2011. Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42:113323–28
    [Google Scholar]
  155. 155.
    Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K 2010. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 140:71220–26
    [Google Scholar]
  156. 156.
    Zhang D-M, Ye J-X, Mu J-S, Cui X-P 2017. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases: a systematic review and meta-analysis. J. Geriatr. Psychiatry Neurol. 30:150–59
    [Google Scholar]
  157. 157.
    Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM, Fournier M et al. 2016. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLOS ONE 11:11–19
    [Google Scholar]
  158. 158.
    Zhao M, Wang X, He M, Qin X, Tang G et al. 2017. Homocysteine and stroke risk. Stroke 48:51183–90
    [Google Scholar]
  159. 159.
    Zhao R, Gao F, Goldman ID 2002. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am. J. Physiol. Cell Physiol. 282:6C1512–17
    [Google Scholar]
  160. 160.
    Zlokovic BV 2008. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:2178–201
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124235
Loading
/content/journals/10.1146/annurev-nutr-082018-124235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error