1932

Abstract

This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124539
2020-08-21
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-082018-124539.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124539&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC et al. 2020. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 7:CD003177
    [Google Scholar]
  2. 2. 
    Alvarez Campano CG, Macleod MJ, Aucott L, Thies F 2019. Marine-derived n-3 fatty acids therapy for stroke. Cochrane Database Syst. Rev. 6:CD012815
    [Google Scholar]
  3. 3. 
    Arteaga O, Revuelta M, Urigüen L, Martínez-Millán L, Hilario E, Álvarez A 2017. Docosahexaenoic acid reduces cerebral damage and ameliorates long-term cognitive impairments caused by neonatal hypoxia-ischemia in rats. Mol. Neurobiol. 54:97137–55
    [Google Scholar]
  4. 4. 
    Asano M, Nakajima T, Hazama H, Iwasawa K, Tomaru T et al. 1998. Influence of cellular incorporation of n-3 eicosapentaenoic acid on intracellular Ca2+ concentration and membrane potential in vascular smooth muscle cells. Atherosclerosis 138:1117–27
    [Google Scholar]
  5. 5. 
    ASCEND Study Collaborative Group, Bowman L, Mafham M, Wallendszus K, Stevens W et al. 2018. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 379:161540–50
    [Google Scholar]
  6. 6. 
    Ayalew-Pervanchon A, Rousseau D, Moreau D, Assayag P, Weill P, Grynberg A 2007. Long-term effect of dietary α-linolenic acid or decosahexaenoic acid on incorporation of decosahexaenoic acid in membranes and its influence on rat heart in vivo. Am. J. Physiol. Heart Circ. Physiol. 293:4H2296–304
    [Google Scholar]
  7. 7. 
    Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST 2003. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. PNAS 100:41751–56
    [Google Scholar]
  8. 8. 
    Bailes JE, Mills JD. 2010. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J. Neurotrauma 27:91617–24
    [Google Scholar]
  9. 9. 
    Balakumar P, Taneja G. 2012. Fish oil and vascular endothelial protection: bench to bedside. Free Radic. Biol. Med. 53:2271–79
    [Google Scholar]
  10. 10. 
    Bazan NG. 2005. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:2159–66
    [Google Scholar]
  11. 11. 
    Bazan NG. 2018. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol. Aspects Med. 64:18–33
    [Google Scholar]
  12. 12. 
    Belayev L, Hong SH, Menghani H, Marcell SJ, Obenaus A et al. 2018. Docosanoids promote neurogenesis and angiogenesis, blood-brain barrier integrity, penumbra protection, and neurobehavioral recovery after experimental ischemic stroke. Mol. Neurobiol. 55:87090–106
    [Google Scholar]
  13. 13. 
    Belayev L, Marcheselli VL, Khoutorova L, Rodriguez de Turco EB, Busto R et al. 2005. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:1118–23
    [Google Scholar]
  14. 14. 
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR et al. 2018. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137:12e67–492
    [Google Scholar]
  15. 15. 
    Berg RWV, Davidsson J, Lidin E, Angéria M, Risling M, Günther M 2019. Brain tissue saving effects by single-dose intralesional administration of Neuroprotectin D1 on experimental focal penetrating brain injury in rats. J. Clin. Neurosci. 64:227–33
    [Google Scholar]
  16. 16. 
    Berger MM, Delodder F, Liaudet L, Tozzi P, Schlaepfer J et al. 2013. Three short perioperative infusions of n-3 PUFAs reduce systemic inflammation induced by cardiopulmonary bypass surgery: a randomized controlled trial. Am. J. Clin. Nutr. 97:2246–54
    [Google Scholar]
  17. 17. 
    Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA et al. 2019. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380:111–22
    [Google Scholar]
  18. 18. 
    Bianconi L, Calò L, Mennuni M, Santini L, Morosetti P et al. 2011. n-3 polyunsaturated fatty acids for the prevention of arrhythmia recurrence after electrical cardioversion of chronic persistent atrial fibrillation: a randomized, double-blind, multicentre study. Europace 13:2174–81
    [Google Scholar]
  19. 19. 
    Bouzan C, Cohen JT, Connor WE, Kris-Etherton PM, Gray GM et al. 2005. A quantitative analysis of fish consumption and stroke risk. Am. J. Prev. Med. 29:4347–52
    [Google Scholar]
  20. 20. 
    Cabo J, Alonso R, Mata P 2012. Omega-3 fatty acids and blood pressure. Br. J. Nutr. 107:Suppl. 2S195–200
    [Google Scholar]
  21. 21. 
    Calder PC, Deckelbaum RJ. 2013. Intravenous fish oil in hospitalized adult patients: reviewing the reviews. Curr. Opin. Clin. Nutr. Metab. Care 16:2119–23
    [Google Scholar]
  22. 22. 
    Calò L, Martino A, Tota C 2013. The anti-arrhythmic effects of n-3 PUFAs. Int. J. Cardiol. 170:2 Suppl. 1S21–27
    [Google Scholar]
  23. 23. 
    Campos-Staffico AM, Costa APR, Carvalho LSF, Moura FA, Santos SN et al. 2019. Omega-3 intake is associated with attenuated inflammatory response and cardiac remodeling after myocardial infarction. Nutr. J. 18:129
    [Google Scholar]
  24. 24. 
    Carpentier YA, Hacquebard M, Portois L, Dupont IE, Deckelbaum RJ, Malaisse WJ 2010. Rapid cellular enrichment of eicosapentaenoate after a single intravenous injection of a novel medium-chain triacylglycerol:fish-oil emulsion in humans. Am. J. Clin. Nutr. 91:4875–82
    [Google Scholar]
  25. 25. 
    Carpentier YA, Peltier S, Portois L, Sener A, Malaisse WJ 2008. Rapid lipid enrichment in ω3 fatty acids: liver data. Int. J. Mol. Med. 21:3367–73
    [Google Scholar]
  26. 26. 
    Carpentier YA, Peltier S, Portois L, Sener A, Malaisse WJ 2008. Rapid lipid enrichment in ω3 fatty acids: plasma data. Int. J. Mol. Med. 21:3355–65
    [Google Scholar]
  27. 27. 
    Carpentier YA, Simoens C, Siderova V, el Nakadi I, Vanweyenberg V et al. 1997. Recent developments in lipid emulsions: relevance to intensive care. Nutrition 13:9 Suppl.73S–78S
    [Google Scholar]
  28. 28. 
    Chang CL. 2019. Lipoprotein lipase: new roles for an “old” enzyme. Curr. Opin. Clin. Nutr. Metab. Care 22:2111–15
    [Google Scholar]
  29. 29. 
    Chang CL, Deckelbaum RJ. 2013. Omega-3 fatty acids: mechanisms underlying “protective effects” in atherosclerosis. Curr. Opin. Lipidol. 24:4345–50
    [Google Scholar]
  30. 30. 
    Chang CL, Torrejon C, Jung UJ, Graf K, Deckelbaum RJ 2014. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice. Atherosclerosis 234:2401–9
    [Google Scholar]
  31. 31. 
    Chen CT, Kitson AP, Hopperton KE, Domenichiello AF, Trépanier MO et al. 2015. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Sci. Rep. 5:15791
    [Google Scholar]
  32. 32. 
    Chen X, Pan Z, Fang Z, Lin W, Wu S et al. 2018. Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J. Neuroinflamm. 15:1310
    [Google Scholar]
  33. 33. 
    Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S et al. 2012. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 345:e6698
    [Google Scholar]
  34. 34. 
    Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. Cell 116:2205–19
    [Google Scholar]
  35. 35. 
    Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM 2019. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation. Can. J. Physiol. Pharmacol. 97:6544–56
    [Google Scholar]
  36. 36. 
    Das UN. 2008. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37
    [Google Scholar]
  37. 37. 
    De Caterina R, Liao JK, Libby P 2000. Fatty acid modulation of endothelial activation. Am. J. Clin. Nutr. 71:1 Suppl.213S–23S
    [Google Scholar]
  38. 38. 
    de Winther MPJ, Kanters E, Kraal G, Hofker MH 2005. Nuclear factor κB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 25:5904–14
    [Google Scholar]
  39. 39. 
    Deanfield JE, Halcox JP, Rabelink TJ 2007. Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:101285–95
    [Google Scholar]
  40. 40. 
    Deckelbaum RJ, Calder PC. 2012. Different outcomes for omega-3 heart trials: Why. Curr. Opin. Clin. Nutr. Metab. Care 15:297–98
    [Google Scholar]
  41. 41. 
    Delodder F, Tappy L, Liaudet L, Schneiter P, Perrudet C, Berger MM 2015. Incorporation and washout of n-3 PUFA after high dose intravenous and oral supplementation in healthy volunteers. Clin. Nutr. 34:3400–8
    [Google Scholar]
  42. 42. 
    Demaison L, Sergiel JP, Moreau D, Grynberg A 1994. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim. Biophys. Acta 1227:153–59
    [Google Scholar]
  43. 43. 
    Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM 2005. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator–activated receptor-γ both induce cardiac hypertrophy in mice. Circ. Res. 97:4372–79
    [Google Scholar]
  44. 44. 
    Duda MK, O'Shea KM, Lei B, Barrows BR, Azimzadeh AM et al. 2007. Dietary supplementation with ω-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload. Cardiovasc. Res. 76:2303–10
    [Google Scholar]
  45. 45. 
    Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L et al. 2008. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 12:3829–75
    [Google Scholar]
  46. 46. 
    Farías JG, Carrasco-Pozo C, Carrasco Loza R, Sepúlveda N, Álvarez P et al. 2017. Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2. Exp. Biol. Med. 242:101104–14
    [Google Scholar]
  47. 47. 
    Fell GL, Cho BS, Dao DT, Anez-Bustillos L, Baker MA et al. 2019. Fish oil protects the liver from parenteral nutrition-induced injury via GPR120-mediated PPARγ signaling. Prostaglandins Leukot. Essent. Fatty Acids 143:8–14
    [Google Scholar]
  48. 48. 
    Fialkow J. 2016. Omega-3 fatty acid formulations in cardiovascular disease: Dietary supplements are not substitutes for prescription products. Am. J. Cardiovasc. Drugs 16:4229–39
    [Google Scholar]
  49. 49. 
    Figueroa JD, Cordero K, Llán MS, De Leon M 2013. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J. Neurotrauma 30:10853–68
    [Google Scholar]
  50. 50. 
    Francos-Quijorna I, Santos-Nogueira E, Gronert K, Sullivan AB, Kopp MA et al. 2017. Maresin 1 promotes inflammatory resolution, neuroprotection, and functional neurological recovery after spinal cord injury. J. Neurosci. 37:4811731–43
    [Google Scholar]
  51. 51. 
    Frontera JE, Mollett P. 2017. Aging with spinal cord injury: an update. Phys. Med. Rehabil. Clin. N. Am. 28:4821–28
    [Google Scholar]
  52. 52. 
    Geleijnse JM, Giltay EJ, Grobbee DE, Donders ART, Kok FJ 2002. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J. Hypertens. 20:81493–99
    [Google Scholar]
  53. 53. 
    Ginsberg MD, Palesch YY, Martin RH, Hill MD, Moy CS et al. 2011. The albumin in acute stroke (ALIAS) multicenter clinical trial: safety analysis of part 1 and rationale and design of part 2. Stroke 42:1119–27
    [Google Scholar]
  54. 54. 
    Hall JCE, Priestley JV, Perry VH, Michael‐Titus AT 2012. Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J. Neurochem. 121:5738–50
    [Google Scholar]
  55. 55. 
    Hamblin M, Chang L, Fan Y, Zhang J, Chen YE 2009. PPARs and the cardiovascular system. Antioxid. Redox Signal. 11:61415–52
    [Google Scholar]
  56. 56. 
    Harrison JL, Rowe RK, Ellis TW, Yee NS, O'Hara BF et al. 2015. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav. Immun. 47:131–40
    [Google Scholar]
  57. 57. 
    Hashimoto M, Katakura M, Tanabe Y, Al Mamun A, Inoue T et al. 2015. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochim. Biophys. Acta 1851:2203–9
    [Google Scholar]
  58. 58. 
    Huang WL, King VR, Curran OE, Dyall SC, Ward RE et al. 2007. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:Part 113004–19
    [Google Scholar]
  59. 59. 
    Hulbert AJ, Turner N, Storlien LH, Else PL 2005. Dietary fats and membrane function: implications for metabolism and disease. Biol. Rev. Camb. Philos. Soc. 80:1155–69
    [Google Scholar]
  60. 60. 
    Ito MK. 2015. A comparative overview of prescription omega-3 fatty acid products. Pharm. Ther. 40:12826–57
    [Google Scholar]
  61. 61. 
    Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X et al. 2007. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler. Thromb. Vasc. Biol. 27:91918–25
    [Google Scholar]
  62. 62. 
    Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA et al. 2008. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. PNAS 105:186531–36
    [Google Scholar]
  63. 63. 
    Jiang X, Pu H, Hu X, Wei Z, Hong D et al. 2016. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res. 7:6548–61
    [Google Scholar]
  64. 64. 
    Jump DB. 2011. Fatty acid regulation of hepatic lipid metabolism. Curr. Opin. Clin. Nutr. Metab. Care 14:2115–20
    [Google Scholar]
  65. 65. 
    Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD et al. 2015. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell. Cardiol. 84:24–35
    [Google Scholar]
  66. 66. 
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ 2012. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298:229–317
    [Google Scholar]
  67. 67. 
    Kew S, Mesa MD, Tricon S, Buckley R, Minihane AM, Yaqoob P 2004. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans. Am. J. Clin. Nutr. 79:4674–81
    [Google Scholar]
  68. 68. 
    Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR et al. 2010. Resolvin E1 protects the rat heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 299:1H153–64
    [Google Scholar]
  69. 69. 
    Khairallah RJ, Sparagna GC, Khanna N, O'Shea KM, Hecker PA et al. 2010. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim. Biophys. Acta 1797:81555–62
    [Google Scholar]
  70. 70. 
    King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT 2006. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 26:174672–80
    [Google Scholar]
  71. 71. 
    Kowey PR, Reiffel JA, Ellenbogen KA, Naccarelli GV, Pratt CM 2010. Efficacy and safety of prescription omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: a randomized controlled trial. JAMA 304:212363–72
    [Google Scholar]
  72. 72. 
    Lagarde M, Calzada C, Guichardant M, Véricel E 2018. In vitro and in vivo bimodal effects of docosahexaenoic acid supplements on redox status and platelet function. Prostaglandins Leukot. Essent. Fatty Acids 138:60–63
    [Google Scholar]
  73. 73. 
    Lalancette-Hébert M, Julien C, Cordeau P, Bohacek I, Weng YC et al. 2011. Accumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage. Stroke 42:102903–9
    [Google Scholar]
  74. 74. 
    Leaf A, Xiao YF, Kang JX, Billman GE 2005. Membrane effects of the n-3 fish oil fatty acids, which prevent fatal ventricular arrhythmias. J. Membr. Biol. 206:2129–39
    [Google Scholar]
  75. 75. 
    Liu G, Liu Q, Shen Y, Kong D, Gong Y et al. 2018. Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. Br. J. Pharmacol. 175:81205–16
    [Google Scholar]
  76. 76. 
    Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA et al. 2014. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog. Neurobiol. 115:138–56
    [Google Scholar]
  77. 77. 
    London B, Albert C, Anderson ME, Giles WR, Van Wagoner DR et al. 2007. Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research: a report from the National Heart, Lung, and Blood Institute and Office of Dietary Supplements Omega-3 Fatty Acids and Their Role in Cardiac Arrhythmogenesis Workshop. Circulation 116:10e320–35
    [Google Scholar]
  78. 78. 
    Luo C, Ren H, Yao X, Shi Z, Liang F et al. 2018. Enriched brain omega-3 polyunsaturated fatty acids confer neuroprotection against microinfarction. EBioMedicine 32:50–61
    [Google Scholar]
  79. 79. 
    Maki KC, Dicklin MR. 2019. Strategies to improve bioavailability of omega-3 fatty acids from ethyl ester concentrates. Curr. Opin. Clin. Nutr. Metab. Care 22:2116–23
    [Google Scholar]
  80. 80. 
    Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS et al. 2019. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 380:123–32
    [Google Scholar]
  81. 81. 
    Mas E, Croft KD, Zahra P, Barden A, Mori TA 2012. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin. Chem. 58:101476–84
    [Google Scholar]
  82. 82. 
    Matsumoto M, Sata M, Fukuda D, Tanaka K, Soma M et al. 2008. Orally administered eicosapentaenoic acid reduces and stabilizes atherosclerotic lesions in ApoE-deficient mice. Atherosclerosis 197:2524–33
    [Google Scholar]
  83. 83. 
    Mayurasakorn K, Niatsetskaya ZV, Sosunov SA, Williams JJ, Zirpoli H et al. 2016. DHA but not EPA emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice. PLOS ONE 11:8e0160870
    [Google Scholar]
  84. 84. 
    McGuinness J, Neilan TG, Sharkasi A, Bouchier-Hayes D, Redmond JM 2006. Myocardial protection using an omega-3 fatty acid infusion: quantification and mechanism of action. J. Thorac. Cardiovasc. Surg. 132:172–79
    [Google Scholar]
  85. 85. 
    McLennan PL. 1993. Relative effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on cardiac arrhythmias in rats. Am. J. Clin. Nutr. 57:2207–12
    [Google Scholar]
  86. 86. 
    McLennan PL, Bridle TM, Abeywardena MY, Charnock JS 1993. Comparative efficacy of n-3 and n-6 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in marmoset monkeys. Am. J. Clin. Nutr. 58:5666–69
    [Google Scholar]
  87. 87. 
    Merino J, Sala-Vila A, Kones R, Ferre R, Plana N et al. 2014. Increasing long-chain n-3PUFA consumption improves small peripheral artery function in patients at intermediate-high cardiovascular risk. J. Nutr. Biochem. 25:6642–46
    [Google Scholar]
  88. 88. 
    Michael-Titus AT, Priestley JV. 2014. Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity. Trends Neurosci 37:130–38
    [Google Scholar]
  89. 89. 
    Minihane AM, Armah CK, Miles EA, Madden JM, Clark AB et al. 2016. Consumption of fish oil providing amounts of eicosapentaenoic acid and docosahexaenoic acid that can be obtained from the diet reduces blood pressure in adults with systolic hypertension: a retrospective analysis. J. Nutr. 146:3516–23
    [Google Scholar]
  90. 90. 
    Miyauchi S, Hirasawa A, Iga T, Liu N, Itsubo C et al. 2009. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn-Schmiedebergs Arch. Pharmacol. 379:4427–34
    [Google Scholar]
  91. 91. 
    Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ 1999. Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34:2253–60
    [Google Scholar]
  92. 92. 
    Morin C, Rousseau E, Blier PU, Fortin S 2015. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction. Am. J. Physiol. Heart Circ. Physiol. 309:1H93–102
    [Google Scholar]
  93. 93. 
    Mozaffarian D, Wu JHY. 2012. (n-3) fatty acids and cardiovascular health: Are effects of EPA and DHA shared or complementary. J. Nutr. 142:3614S–25S
    [Google Scholar]
  94. 94. 
    Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Siscovick DS 2003. Cardiac benefits of fish consumption may depend on the type of fish meal consumed. Circulation 107:101372–77
    [Google Scholar]
  95. 95. 
    Nakanishi A, Tsukamoto I. 2015. n-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARγ-mediated enhancement of c-Fos expression, and suppress osteoclastogenesis through PPARγ-dependent inhibition of NFkB activation. J. Nutr. Biochem. 26:111317–27
    [Google Scholar]
  96. 96. 
    Nicholls SJ, Lincoff AM, Bash D, Ballantyne CM, Barter PJ et al. 2018. Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: rationale and design of the STRENGTH trial. Clin. Cardiol. 41:101281–88
    [Google Scholar]
  97. 97. 
    Nodari S, Triggiani M, Campia U, Manerba A, Milesi G et al. 2011. n-3 polyunsaturated fatty acids in the prevention of atrial fibrillation recurrences after electrical cardioversion: a prospective, randomized study. Circulation 124:101100–6
    [Google Scholar]
  98. 98. 
    Norris PC, Skulas-Ray AC, Riley I, Richter CK, Kris-Etherton PM et al. 2018. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci. Rep. 8:118050
    [Google Scholar]
  99. 99. 
    Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ et al. 2009. Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J. Nutr. Biochem. 20:9715–25
    [Google Scholar]
  100. 100. 
    Paterniti I, Impellizzeri D, Di Paola R, Esposito E, Gladman S et al. 2014. Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies. J. Neuroinflamm. 11:16
    [Google Scholar]
  101. 101. 
    Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á et al. 2018. HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front. Neurosci. 12:628
    [Google Scholar]
  102. 102. 
    Pepe S, Tsuchiya N, Lakatta EG, Hansford RG 1999. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am. J. Physiol. 276:1H149–58
    [Google Scholar]
  103. 103. 
    Peltier S, Malaisse WJ, Portois L, Demaison L, Novel-Chate V et al. 2006. Acute in vivo administration of a fish oil-containing emulsion improves post-ischemic cardiac function in n-3-depleted rats. Int. J. Mol. Med. 18:4741–49
    [Google Scholar]
  104. 104. 
    Phang M, Lincz LF, Garg ML 2013. Eicosapentaenoic and docosahexaenoic acid supplementations reduce platelet aggregation and hemostatic markers differentially in men and women. J. Nutr. 143:4457–63
    [Google Scholar]
  105. 105. 
    Pittet YK, Berger MM, Pluess TT, Voirol P, Revelly JP et al. 2010. Blunting the response to endotoxin in healthy subjects: effects of various doses of intravenous fish oil. Intensive Care Med 36:2289–95
    [Google Scholar]
  106. 106. 
    Pu H, Guo Y, Zhang W, Huang L, Wang G et al. 2013. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 33:91474–84
    [Google Scholar]
  107. 107. 
    Qin Y, Nyheim H, Haram EM, Moritz JM, Hustvedt SO 2017. A novel self-micro-emulsifying delivery system (SMEDS) formulation significantly improves the fasting absorption of EPA and DHA from a single dose of an omega-3 ethyl ester concentrate. Lipids Health Dis 16:1204
    [Google Scholar]
  108. 108. 
    Raatz SK, Redmon JB, Wimmergren N, Donadio JV, Bibus DM 2009. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. J. Am. Diet. Assoc. 109:61076–81
    [Google Scholar]
  109. 109. 
    Racine RA, Deckelbaum RJ. 2007. Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Curr. Opin. Clin. Nutr. Metab. Care 10:2123–28
    [Google Scholar]
  110. 110. 
    Rauch B, Senges J. 2012. The effects of supplementation with omega-3 polyunsaturated fatty acids on cardiac rhythm: anti-arrhythmic, pro-arrhythmic, both or neither? It depends…. Front. Physiol. 3:57
    [Google Scholar]
  111. 111. 
    Ren Z, Chen L, Wang Y, Wei X, Zeng S et al. 2019. Activation of the omega-3 fatty acid receptor GPR120 protects against focal cerebral ischemic injury by preventing inflammation and apoptosis in mice. J. Immunol. 202:3747–59
    [Google Scholar]
  112. 112. 
    Saber H, Yakoob MY, Shi P, Longstreth WT, Lemaitre RN et al. 2017. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke 48:102678–85
    [Google Scholar]
  113. 113. 
    Saito G, Zapata R, Rivera R, Zambrano H, Rojas D et al. 2017. Long-chain omega-3 fatty acids in aneurysmal subarachnoid hemorrhage: a randomized pilot trial of pharmaconutrition. Surg. Neurol. Int. 8:1304
    [Google Scholar]
  114. 114. 
    Seo T, Qi K, Chang C, Liu Y, Worgall TS et al. 2005. Saturated fat-rich diet enhances selective uptake of LDL cholesteryl esters in the arterial wall. J. Clin. Investig. 115:82214–22
    [Google Scholar]
  115. 115. 
    Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:750392–101
    [Google Scholar]
  116. 116. 
    Serhan CN, Chiang N, Van Dyke TE 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:5349–61
    [Google Scholar]
  117. 117. 
    Simoens C, Deckelbaum RJ, Carpentier YA 2004. Metabolism of defined structured triglyceride particles compared to mixtures of medium and long chain triglycerides intravenously infused in dogs. Clin. Nutr. 23:4665–72
    [Google Scholar]
  118. 118. 
    Simoens CM, Deckelbaum RJ, Massaut JJ, Carpentier YA 2008. Inclusion of 10% fish oil in mixed medium-chain triacylglycerol–long-chain triacylglycerol emulsions increases plasma triacylglycerol clearance and induces rapid eicosapentaenoic acid (20:5n-3) incorporation into blood cell phospholipids. Am. J. Clin. Nutr. 88:2282–88
    [Google Scholar]
  119. 119. 
    Simopoulos AP. 2002. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21:6495–505
    [Google Scholar]
  120. 120. 
    Singh AK, Yoshida Y, Garvin AJ, Singh I 1989. Effect of fatty acids and their derivatives on mitochondrial structures. J. Exp. Pathol. 4:19–15
    [Google Scholar]
  121. 121. 
    Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM et al. 2019. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation 140:12e673–91
    [Google Scholar]
  122. 122. 
    Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA et al. 2007. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice. J. Clin. Investig. 117:102791–801
    [Google Scholar]
  123. 123. 
    Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M et al. 2018. Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fatty Acids 136:3–13
    [Google Scholar]
  124. 124. 
    Sun X, Jones ZB, Chen X, Zhou L, So KF, Ren Y 2016. Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J. Neuroinflamm. 13:1260
    [Google Scholar]
  125. 125. 
    Tabas I. 2010. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10:136–46
    [Google Scholar]
  126. 126. 
    Takamura M, Kurokawa K, Ootsuji H, Inoue O, Okada H et al. 2017. Long-term administration of eicosapentaenoic acid improves post-myocardial infarction cardiac remodeling in mice by regulating macrophage polarization. J. Am. Heart Assoc. 6:2e004560
    [Google Scholar]
  127. 127. 
    Tan A, Sullenbarger B, Prakash R, McDaniel JC 2018. Supplementation with eicosapentaenoic acid and docosahexaenoic acid reduces high levels of circulating proinflammatory cytokines in aging adults: a randomized, controlled study. Prostaglandins Leukot. Essent. Fatty Acids 132:23–29
    [Google Scholar]
  128. 128. 
    Tanaka K, Ishikawa Y, Yokoyama M, Origasa H, Matsuzaki M et al. 2008. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 39:72052–58
    [Google Scholar]
  129. 129. 
    Taylor CA, Bell JM, Breiding MJ, Xu L 2017. Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 66:91–16
    [Google Scholar]
  130. 130. 
    Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV et al. 2019. Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury. J. Neurotrauma 36:125–42
    [Google Scholar]
  131. 131. 
    Thau-Zuchman O, Ingram R, Harvey GG, Cooke T, Palmas F et al. 2020. A single injection of docosahexaenoic acid induces a pro-resolving lipid mediator profile in the injured tissue and a long-lasting reduction in neurological deficit after traumatic brain injury in mice. J. Neurotrauma 37:166–79
    [Google Scholar]
  132. 132. 
    Thies F, Garry JMC, Yaqoob P, Rerkasem K, Williams J et al. 2003. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:9356477–85
    [Google Scholar]
  133. 133. 
    Ton MN, Chang C, Carpentier YA, Deckelbaum RJ 2005. In vivo and in vitro properties of an intravenous lipid emulsion containing only medium chain and fish oil triglycerides. Clin. Nutr. 24:4492–501
    [Google Scholar]
  134. 134. 
    Van den Elsen LWJ, Spijkers LJA, Van den Akker RFP, Van Winssen AMH, Balvers M et al. 2014. Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. J. Hypertens. 32:51050–58
    [Google Scholar]
  135. 135. 
    Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA et al. 2016. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol. 594:3509–25
    [Google Scholar]
  136. 136. 
    Wang J, Shi Y, Zhang L, Zhang F, Hu X et al. 2014. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol. Dis. 68:91–103
    [Google Scholar]
  137. 137. 
    Wang Q, Liang X, Wang L, Lu X, Huang J et al. 2012. Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 221:2536–43
    [Google Scholar]
  138. 138. 
    Witte TR, Salazar AJ, Ballester OF, Hardman WE 2010. RBC and WBC fatty acid composition following consumption of an omega 3 supplement: lessons for future clinical trials. Lipids Health Dis 9:131
    [Google Scholar]
  139. 139. 
    Wu A, Ying Z, Gomez-Pinilla F 2011. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J. Neurotrauma 28:102113–22
    [Google Scholar]
  140. 140. 
    Xian W, Wu Y, Xiong W, Li L, Li T et al. 2016. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem. Biophys. Res. Commun. 472:1175–81
    [Google Scholar]
  141. 141. 
    Yin Y, Li E, Sun G, Yan HQ, Foley LM et al. 2018. Effects of DHA on hippocampal autophagy and lysosome function after traumatic brain injury. Mol. Neurobiol. 55:32454–70
    [Google Scholar]
  142. 142. 
    Zárate R, El Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C 2017. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 6:125
    [Google Scholar]
  143. 143. 
    Zhang T, Wu P, Zhang JH, Li Y, Xu S et al. 2018. Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid hemorrhage. Cell. Mol. Neurobiol. 38:71413–23
    [Google Scholar]
  144. 144. 
    Zhang W, Wang H, Zhang H, Leak RK, Shi Y et al. 2015. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp. Neurol. 272:170–80
    [Google Scholar]
  145. 145. 
    Zhang ZG, Chopp M. 2009. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:5491–500
    [Google Scholar]
  146. 146. 
    Zhao XY, Lu MH, Yuan DJ, Xu DE, Yao PP et al. 2019. Mitochondrial dysfunction in neural injury. Front. Neurosci. 13:30
    [Google Scholar]
  147. 147. 
    Zirpoli H, Abdillahi M, Quadri N, Ananthakrishnan R, Wang L et al. 2015. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion. PLOS ONE 10:1e0116274
    [Google Scholar]
  148. 148. 
    Zúñiga J, Cancino M, Medina F, Varela P, Vargas R et al. 2011. n-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLOS ONE 6:12e28502
    [Google Scholar]
  149. 149. 
    Zuo G, Zhang D, Mu R, Shen H, Li X et al. 2018. Resolvin D2 protects against cerebral ischemia/reperfusion injury in rats. Mol. Brain 11:19
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124539
Loading
/content/journals/10.1146/annurev-nutr-082018-124539
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error