1932

Abstract

Retinal carotenoids are dietary nutrients that uniquely protect the eye from light damage and various retinal pathologies. Their antioxidative properties protect the eye from many retinal diseases, such as age-related macular degeneration. As many retinal diseases are accompanied by low carotenoid levels, accurate noninvasive assessment of carotenoid status can help ophthalmologists identify the patients most likely to benefit from carotenoid supplementation. This review focuses on the different methods available to assess carotenoid status and highlights disease-related changes and potential nutritional interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124555
2019-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124555.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124555&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abadi RV, Cox MJ. 1992. The distribution of macular pigment in human albinos. Investig. Ophthalmol. Vis. Sci. 33:494–97
    [Google Scholar]
  2. 2.
    Age-Relat. Eye Dis. Study Res. Group 2001. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol 119:1417–36
    [Google Scholar]
  3. 3.
    Age-Relat. Eye Dis. Study 2 Res. Group 2013. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309:2005–15
    [Google Scholar]
  4. 4.
    Age-Relat. Eye Dis. Study 2 Res. Group Chew EY, Clemons TE, Sangiovanni JP, Danis RP et al. 2014. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report no. 3. JAMA Ophthalmol 132:142–49
    [Google Scholar]
  5. 5.
    Akuffo KO, Nolan JM, Peto T, Stack J, Leung I et al. 2016. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration. Br. J. Ophthalmol. 101:190–97
    [Google Scholar]
  6. 6.
    Andersen KM, Sauer L, Gensure RH, Hammer M, Bernstein PS 2018. Characterization of retinitis pigmentosa using fluorescence lifetime imaging ophthalmoscopy (FLIO). Transl. Vis. Sci. Technol. 7:20
    [Google Scholar]
  7. 7.
    Andreatta W, El-Sherbiny S. 2014. Evidence-based nutritional advice for patients affected by age-related macular degeneration. Ophthalmologica 231:185–90
    [Google Scholar]
  8. 8.
    Barber AJ, Gardner TW, Abcouwer SF 2011. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 52:1156–63
    [Google Scholar]
  9. 9.
    Beatty S, Koh HH, Carden D, Murray IJ 2000. Macular pigment optical density measurement: a novel compact instrument. Ophthalmic Physiol. Opt. 20:105–11
    [Google Scholar]
  10. 10.
    Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME 2001. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investig. Ophthalmol. Vis. Sci. 42:439–46
    [Google Scholar]
  11. 11.
    Beatty S, van Kuijk FJ, Chakravarthy U 2008. Macular pigment and age-related macular degeneration: longitudinal data and better techniques of measurement are needed. Investig. Ophthalmol. Vis. Sci. 49:843–45
    [Google Scholar]
  12. 12.
    Bernstein PS, Balashov NA, Tsong ED, Rando RR 1997. Retinal tubulin binds macular carotenoids. Investig. Ophthalmol. Vis. Sci. 38:167–75
    [Google Scholar]
  13. 13.
    Bernstein PS, Delori FC, Richer S, van Kuijk FJ, Wenzel AJ 2010. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vis. Res. 50:716–28
    [Google Scholar]
  14. 14.
    Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R et al. 2016. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retinal Eye Res. 50:34–66
    [Google Scholar]
  15. 15.
    Bernstein PS, Sharifzadeh M, Liu A, Ermakov I, Nelson K et al. 2013. Blue-light reflectance imaging of macular pigment in infants and children. Investig. Ophthalmol. Vis. Sci. 54:4034–40
    [Google Scholar]
  16. 16.
    Bernstein PS, Yoshida MD, Katz NB, McClane RW, Gellermann W 1998. Raman detection of macular carotenoid pigments in intact human retina. Investig. Ophthalmol. Vis. Sci. 39:2003–11
    [Google Scholar]
  17. 17.
    Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellermann W 2002. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109:1780–87
    [Google Scholar]
  18. 18.
    Bhosale P, Bernstein PS. 2005. Synergistic effects of zeaxanthin and its binding protein in the prevention of lipid membrane oxidation. Biochim. Biophys. Acta 1740:116–21
    [Google Scholar]
  19. 19.
    Bhosale P, Bernstein PS. 2007. Vertebrate and invertebrate carotenoid-binding proteins. Arch. Biochem. Biophys. 458:121–27
    [Google Scholar]
  20. 20.
    Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS 2004. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J. Biol. Chem. 279:49447–54
    [Google Scholar]
  21. 21.
    Bhosale P, Li B, Sharifzadeh M, Gellermann W, Frederick JM et al. 2009. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 48:4798–807
    [Google Scholar]
  22. 22.
    Bogden JD, Oleske JM, Lavenhar MA, Munves EM, Kemp FW et al. 1990. Effects of one year of supplementation with zinc and other micronutrients on cellular immunity in the elderly. J. Am. Coll. Nutr. 9:214–25
    [Google Scholar]
  23. 23.
    Bone RA, Landrum JT, Dixon Z, Chen Y, Llerena CM 2000. Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp. Eye Res. 71:239–45
    [Google Scholar]
  24. 24.
    Bone RA, Landrum JT, Fernandez L, Tarsis SL 1988. Analysis of the macular pigment by HPLC: retinal distribution and age study. Investig. Ophthalmol. Vis. Sci. 29:843–49
    [Google Scholar]
  25. 25.
    Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD et al. 1997. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 64:211–18
    [Google Scholar]
  26. 26.
    Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE 2001. Macular pigment in donor eyes with and without AMD: a case-control study. Investig. Ophthalmol. Vis. Sci. 42:235–40
    [Google Scholar]
  27. 27.
    Bone RA, Landrum JT, Tarsis SL 1985. Preliminary identification of the human macular pigment. Vis. Res. 25:1531–35
    [Google Scholar]
  28. 28.
    Brazionis L, Rowley K, Itsiopoulos C, O'Dea K 2009. Plasma carotenoids and diabetic retinopathy. Br. J. Nutr. 101:270–77
    [Google Scholar]
  29. 29.
    Brindley GS, Willmer EN. 1952. The reflexion of light from the macular and peripheral fundus oculi in man. J. Physiol. 116:350–56
    [Google Scholar]
  30. 30.
    Calvo MM. 2005. Lutein: a valuable ingredient of fruit and vegetables. Crit. Rev. Food Sci. Nutr. 45:671–96
    [Google Scholar]
  31. 31.
    Chaikitmongkol V, Tadarati M, Bressler NM 2016. Recent approaches to evaluating and monitoring geographic atrophy. Curr. Opin. Ophthalmol. 27:217–23
    [Google Scholar]
  32. 32.
    Charbel Issa P, Gillies MC, Chew EY, Bird AC, Heeren TF et al. 2013. Macular telangiectasia type 2. Prog. Retinal Eye Res. 34:49–77
    [Google Scholar]
  33. 33.
    Charbel Issa P, Holz FG, Scholl HP 2009. Metamorphopsia in patients with macular telangiectasia type 2. Doc. Ophthalmol. 119:133–40
    [Google Scholar]
  34. 34.
    Chew EY, Clemons TE, Peto T, Sallo FB, Ingerman A et al. 2015. Ciliary neurotrophic factor for macular telangiectasia type 2: results from a phase 1 safety trial. Am. J. Ophthalmol. 159:659–66.e1
    [Google Scholar]
  35. 35.
    Choi RY, Chortkoff SC, Gorusupudi A, Bernstein PS 2016. Crystalline maculopathy associated with high-dose lutein supplementation. JAMA Ophthalmol 134:1445–48
    [Google Scholar]
  36. 36.
    Choi RY, Gorusupudi A, Wegner K, Sharifzadeh M, Gellermann W, Bernstein PS 2017. Macular pigment distribution responses to high-dose zeaxanthin supplementation in patients with macular telangiectasia type 2. Retina 37:2238–47
    [Google Scholar]
  37. 37.
    Christen WG, Glynn RJ, Manson JE, MacFadyen J, Bubes V et al. 2014. Effects of multivitamin supplement on cataract and age-related macular degeneration in a randomized trial of male physicians. Ophthalmology 121:525–34
    [Google Scholar]
  38. 38.
    Cogan DG, Kuwabara T. 1963. Capillary shunts in the pathogenesis of diabetic retinopathy. Diabetes 12:293–300
    [Google Scholar]
  39. 39.
    Conrady CD, Bell JP, Besch BM, Gorusupudi A, Farnsworth K et al. 2017. Correlations between macular, skin, and serum carotenoids. Investig. Ophthalmol. Vis. Sci. 58:3616–27
    [Google Scholar]
  40. 40.
    Coyne T, Ibiebele TI, Baade PD, McClintock CS, Shaw JE 2009. Metabolic syndrome and serum carotenoids: findings of a cross-sectional study in Queensland, Australia. Br. J. Nutr. 102:1668–77
    [Google Scholar]
  41. 41.
    Curcio CA, Medeiros NE, Millican CL 1996. Photoreceptor loss in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 37:1236–49
    [Google Scholar]
  42. 42.
    Curcio CA, Millican CL. 1999. Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch. Ophthalmol. 117:329–39
    [Google Scholar]
  43. 43.
    Daga FB, Ogata NG, Medeiros FA, Moran R, Morris J et al. 2018. Macular pigment and visual function in patients with glaucoma: the San Diego Macular Pigment Study. Investig. Ophthalmol. Vis. Sci. 59:4471–76
    [Google Scholar]
  44. 44.
    Dawczynski J, Jentsch S, Schweitzer D, Hammer M, Lang GE, Strobel J 2013. Long term effects of lutein, zeaxanthin and omega-3-LCPUFAs supplementation on optical density of macular pigment in AMD patients: the LUTEGA study. Graefes Arch. Clin. Exp. Ophthalmol. 251:2711–23
    [Google Scholar]
  45. 45.
    Dawczynski J, Schweitzer D, Lang GE 2011. [Objective measurement of macular optical density]. Klin. Monatsblätter fur Augenheilkd. 228:57–61 In German )
    [Google Scholar]
  46. 46.
    de la Maza MP, Garrido F, Escalante N, Leiva L, Barrera G et al. 2012. Fluorescent advanced glycation end-products (AGEs) detected by spectro-photofluorimetry, as a screening tool to detect diabetic microvascular complications. J. Diabetes Mellitus 2:221–26
    [Google Scholar]
  47. 47.
    Delori FC. 1994. Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus. Appl. Opt. 33:7439–52
    [Google Scholar]
  48. 48.
    Delori FC. 2004. Autofluorescence method to measure macular pigment optical densities fluorometry and autofluorescence imaging. Arch. Biochem. Biophys. 430:156–62
    [Google Scholar]
  49. 49.
    Delori FC, Goger DG, Dorey CK 2001. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Investig. Ophthalmol. Vis. Sci. 42:1855–66
    [Google Scholar]
  50. 50.
    Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020:1–24
    [Google Scholar]
  51. 51.
    Dithmar S. 2005. [Macular hole: survey and relevant surgical concepts]. Ophthalmologe 102:191–206 In German )
    [Google Scholar]
  52. 52.
    Dysli C, Quellec G, Abegg M, Menke MN, Wolf-Schnurrbusch U et al. 2014. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. Investig. Ophthalmol. Vis. Sci. 55:2106–13
    [Google Scholar]
  53. 53.
    Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS 2017. Fluorescence lifetime imaging ophthalmoscopy. Prog. Retinal Eye Res. 60:120–43
    [Google Scholar]
  54. 54.
    Dysli C, Wolf S, Zinkernagel MS 2016. Autofluorescence lifetimes in geographic atrophy in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 57:2479–87
    [Google Scholar]
  55. 55.
    Ermakov IV, Ermakova MR, Gellermann W 2005. Simple Raman instrument for in vivo detection of macular pigments. Appl. Spectrosc. 59:861–67
    [Google Scholar]
  56. 56.
    Ermakov IV, Ermakova MR, Gellermann W, Bernstein PS 2004. Macular pigment Raman detector for clinical applications. J. Biomed. Opt. 9:139–48
    [Google Scholar]
  57. 57.
    Ermakov IV, Gellermann W. 2010. Validation model for Raman based skin carotenoid detection. Arch. Biochem. Biophys. 504:40–49
    [Google Scholar]
  58. 58.
    Ermakov IV, McClane RW, Gellermann W, Bernstein PS 2001. Resonant Raman detection of macular pigment levels in the living human retina. Opt. Lett. 26:202–4
    [Google Scholar]
  59. 59.
    Ezra E, Munro PM, Charteris DG, Aylward WG, Luthert PJ, Gregor ZJ 1997. Macular hole opercula: ultrastructural features and clinicopathological correlation. Arch. Ophthalmol. 115:1381–87
    [Google Scholar]
  60. 60.
    Gale CR, Hall NF, Phillips DI, Martyn CN 2003. Lutein and zeaxanthin status and risk of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 44:2461–65
    [Google Scholar]
  61. 61.
    Gass JDM. 1997. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment St. Louis, MO: Mosby
  62. 62.
    Gass JDM, Van Newkirk M 1992. Xanthic scotoma and yellow foveolar shadow caused by a pseudo-operculum after vitreofoveal separation. Retina 12:242–44
    [Google Scholar]
  63. 63.
    Gliem M, Muller PL, Finger RP, McGuinness MB, Holz FG, Charbel Issa P 2016. Quantitative fundus autofluorescence in early and intermediate age-related macular degeneration. JAMA Ophthalmol 134:817–24
    [Google Scholar]
  64. 64.
    Ham WT Jr, Ruffolo JJ Jr, Mueller HA, Clarke AM, Moon ME. 1978. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Investig. Ophthalmol. Vis. Sci. 17:1029–35
    [Google Scholar]
  65. 65.
    Hammond BR Jr 2015. Dietary carotenoids and the nervous system. Foods 4:698–701
    [Google Scholar]
  66. 66.
    Hammond BR Jr, Caruso-Avery M. 2000. Macular pigment optical density in a Southwestern sample. Investig. Ophthalmol. Vis. Sci. 41:1492–97
    [Google Scholar]
  67. 67.
    Harvey PS, King RA, Summers CG 2006. Spectrum of foveal development in albinism detected with optical coherence tomography. J. AAPOS 10:237–42
    [Google Scholar]
  68. 68.
    Heeren TF, Clemons T, Scholl HP, Bird AC, Holz FG, Charbel Issa P 2015. Progression of vision loss in macular telangiectasia type 2. Investig. Ophthalmol. Vis. Sci. 56:3905–12
    [Google Scholar]
  69. 69.
    Hercberg S, Preziosi P, Galan P, Devanlay M, Keller H et al. 1994. Vitamin status of a healthy French population: dietary intakes and biochemical markers. Int. J. Vitam. Nutr. Res. 64:220–32
    [Google Scholar]
  70. 70.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R 2007. How common are the “common” neurologic disorders?. Neurology 68:326–37
    [Google Scholar]
  71. 71.
    Holz FG, Spaide RF. 2010. Medical Retina: Focus on Retinal Imaging Berlin: Springer-Verlag
  72. 72.
    Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M 2014. Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121:1079–91
    [Google Scholar]
  73. 73.
    Howells O, Eperjesi F, Bartlett H 2011. Measuring macular pigment optical density in vivo: a review of techniques. Graefes Arch. Clin. Exp. Ophthalmol. 249:315–47
    [Google Scholar]
  74. 74.
    Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A et al. 2013. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J. Aging Res. 2013:951786
    [Google Scholar]
  75. 75.
    Jordan F, Jentsch S, Augsten R, Strobel J, Dawczynski J 2012. [Study on the time course of macular pigment density measurement in patients with a macular hole—clinical course and impact of surgery]. Klin. Monatsblätter fur Augenheilkd. 229:1124–29 In German )
    [Google Scholar]
  76. 76.
    Kanski JJ. 2008. Klinische Ophthalmologie: Lehrbuch und Atlas Munich: Elsevier
  77. 77.
    Karppi J, Nurmi T, Olmedilla-Alonso B, Granado-Lorencio F, Nyyssonen K 2008. Simultaneous measurement of retinol, α-tocopherol and six carotenoids in human plasma by using an isocratic reversed-phase HPLC method. J. Chromatogr. B 867:226–32
    [Google Scholar]
  78. 78.
    Kaya S, Weigert G, Pemp B, Sacu S, Werkmeister RM et al. 2012. Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects—a study using spectral fundus reflectance. Acta Ophthalmol 90:e399–403
    [Google Scholar]
  79. 79.
    Kelly NE, Wendel RT. 1991. Vitreous surgery for idiopathic macular holes: results of a pilot study. Arch. Ophthalmol. 109:654–59
    [Google Scholar]
  80. 80.
    Kijlstra A, Tian Y, Kelly ER, Berendschot TT 2012. Lutein: more than just a filter for blue light. Prog. Retinal Eye Res. 31:303–15
    [Google Scholar]
  81. 81.
    Kishi S, Kamei Y, Shimizu K 1995. Tractional elevation of Henle's fiber layer in idiopathic macular holes. Am. J. Ophthalmol. 120:486–96
    [Google Scholar]
  82. 82.
    Klein R, Blodi BA, Meuer SM, Myers CE, Chew EY, Klein BE 2010. The prevalence of macular telangiectasia type 2 in the Beaver Dam eye study. Am. J. Ophthalmol. 150:55–62.e2
    [Google Scholar]
  83. 83.
    Kovach JL, Rosenfeld PJ. 2009. Bevacizumab (avastin) therapy for idiopathic macular telangiectasia type II. Retina 29:27–32
    [Google Scholar]
  84. 84.
    Krinsky NI. 1989. Antioxidant functions of carotenoids. Free Radic. Biol. Med. 7:617–35
    [Google Scholar]
  85. 85.
    Krinsky NI, Taylor RF 2011. Carotenoids: Chemistry and Biology New York: Springer
  86. 86.
    Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer, 3rd ed..
  87. 87.
    Li B, Rognon GT, Mattinson T, Vachali PP, Gorusupudi A et al. 2018. Supplementation with macular carotenoids improves visual performance of transgenic mice. Arch. Biochem. Biophys. 649:22–28
    [Google Scholar]
  88. 88.
    Li B, Vachali PP, Bernstein PS 2010. Human ocular carotenoid-binding proteins. Photochem. Photobiol. Sci. 9:1418–25
    [Google Scholar]
  89. 89.
    Li B, Vachali PP, Frederick JM, Bernstein PS 2011. Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry 50:2541–49
    [Google Scholar]
  90. 90.
    Li B, Vachali PP, Gorusupudi A, Shen Z, Sharifzadeh H et al. 2014. Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. PNAS 111:10173–78
    [Google Scholar]
  91. 91.
    Li B, Vachali PP, Shen Z, Gorusupudi A, Nelson K et al. 2017. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes. Exp. Eye Res. 159:123–31
    [Google Scholar]
  92. 92.
    Lima VC, Rosen RB, Farah M 2016. Macular pigment in retinal health and disease. Int. J. Retina Vitreous 2:19
    [Google Scholar]
  93. 93.
    Loane E, Nolan JM, O'Donovan O, Bhosale P, Bernstein PS, Beatty S 2008. Transport and retinal capture of lutein and zeaxanthin with reference to age-related macular degeneration. Surv. Ophthalmol. 53:68–81
    [Google Scholar]
  94. 94.
    Loskutova E, Nolan J, Howard A, Beatty S 2013. Macular pigment and its contribution to vision. Nutrients 5:1962–69
    [Google Scholar]
  95. 95.
    Maguire P, Vine AK. 1986. Geographic atrophy of the retinal pigment epithelium. Am. J. Ophthalmol. 102:621–25
    [Google Scholar]
  96. 96.
    Mayne ST, Cartmel B, Scarmo S, Lin H, Leffell DJ et al. 2010. Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am. J. Clin. Nutr. 92:794–800
    [Google Scholar]
  97. 97.
    Moeller SM, Voland R, Tinker L, Blodi BA, Klein ML et al. 2008. Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the Carotenoids in the Age-Related Eye Disease Study, an ancillary study of the Women's Health Initiative. Arch. Ophthalmol. 126:354–64
    [Google Scholar]
  98. 98.
    Neelam K, O'Gorman N, Nolan J, O'Donovan O, Wong HB et al. 2005. Measurement of macular pigment: Raman spectroscopy versus heterochromatic flicker photometry. Investig. Ophthalmol. Vis. Sci. 46:1023–32
    [Google Scholar]
  99. 99.
    Nolan JM, Loskutova E, Howard A, Mulcahy R, Moran R et al. 2015. The impact of supplemental macular carotenoids in Alzheimer's disease: a randomized clinical trial. J. Alzheimer's Dis. 44:1157–69
    [Google Scholar]
  100. 100.
    Nolan JM, Stack J, O'Donovan O, Loane E, Beatty S 2007. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp. Eye Res. 84:61–74
    [Google Scholar]
  101. 101.
    Obana A, Gohto Y, Sasano H, Gellermann W, Sharifzadeh M et al. 2018. Grade of cataract and its influence on measurement of macular pigment optical density using autofluorescence imaging. Investig. Ophthalmol. Vis. Sci. 59:3011–19
    [Google Scholar]
  102. 102.
    Ohno-Matsui K. 2011. Parallel findings in age-related macular degeneration and Alzheimer's disease. Prog. Retinal Eye Res. 30:217–38
    [Google Scholar]
  103. 103.
    Paolisso G, Tagliamonte MR, Rizzo MR, Manzella D, Gambardella A, Varricchio M 1998. Oxidative stress and advancing age: results in healthy centenarians. J. Am. Geriatr. Soc. 46:833–8
    [Google Scholar]
  104. 104.
    Parker RS. 1993. Analysis of carotenoids in human plasma and tissues. Methods Enzymol 214:86–93
    [Google Scholar]
  105. 105.
    Parmalee NL, Schubert C, Figueroa M, Bird AC, Peto T et al. 2012. Identification of a potential susceptibility locus for macular telangiectasia type 2. PLOS ONE 7:e24268
    [Google Scholar]
  106. 106.
    Peto T, Heeren TFC, Clemons TE, Sallo FB, Leung I et al. 2018. Correlation of clinical and structural progression with visual acuity loss in macular telangiectasia type 2: MacTel Project Report No. 6—The MacTel Research Group. Retina 38:Suppl. 1S8–13
    [Google Scholar]
  107. 107.
    Pinazo-Duran MD, Gomez-Ulla F, Arias L, Araiz J, Casaroli-Marano R et al. 2014. Do nutritional supplements have a role in age macular degeneration prevention?. J. Ophthalmol. 2014:901686
    [Google Scholar]
  108. 108.
    Putnam CM, Bland PJ. 2014. Macular pigment optical density spatial distribution measured in a subject with oculocutaneous albinism. J. Optom. 7:241–5
    [Google Scholar]
  109. 109.
    Raman R, Biswas S, Vaitheeswaran K, Sharma T 2012. Macular pigment optical density in wet age-related macular degeneration among Indians. Eye 26:1052–57
    [Google Scholar]
  110. 110.
    Ronquillo CC, Wegner K, Calvo CM, Bernstein PS 2018. Genetic penetrance of macular telangiectasia type 2. JAMA Ophthalmol 136:1158–63
    [Google Scholar]
  111. 111.
    Roohbakhsh A, Karimi G, Iranshahi M 2017. Carotenoids in the treatment of diabetes mellitus and its complications: a mechanistic review. Biomed. Pharmacother. 91:31–42
    [Google Scholar]
  112. 112.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK et al. 2006. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–31
    [Google Scholar]
  113. 113.
    Sabour-Pickett S, Nolan JM, Loughman J, Beatty S 2012. A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration. Mol. Nutr. Food Res. 56:270–86
    [Google Scholar]
  114. 114.
    Sallo FB, Leung I, Clemons TE, Peto T, Bird AC, Pauleikhoff D 2015. Multimodal imaging in type 2 idiopathic macular telangiectasia. Retina 35:742–49
    [Google Scholar]
  115. 115.
    Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE et al. 2012. “En face” OCT imaging of the IS/OS junction line in type 2 idiopathic macular telangiectasia. Investig. Ophthalmol. Vis. Sci. 53:6145–52
    [Google Scholar]
  116. 116.
    Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE et al. 2012. The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. Investig. Ophthalmol. Vis. Sci. 53:7889–95
    [Google Scholar]
  117. 117.
    Sauer L, Andersen KM, Binxing L, Gensure RH, Hammer M, Bernstein PS 2018. Fluorescence lifetime imaging ophthalmoscopy (FLIO) of macular pigment. Investig. Ophthalmol. Vis. Sci. 59:3094–103
    [Google Scholar]
  118. 118.
    Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M 2018. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. J. Biomed. Opt. 23:1–20
    [Google Scholar]
  119. 119.
    Sauer L, Gensure RH, Hammer M, Bernstein PS 2018. Fluorescence lifetime imaging ophthalmoscopy (FLIO)—a novel way to assess macular telangiectasia type 2 (MacTel). Ophthalmol. Retina 2:587–98
    [Google Scholar]
  120. 120.
    Sauer L, Klemm M, Peters S, Schweitzer D, Schmidt J et al. 2018. Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging—a novel approach. Acta Ophthalmol 96:257–66
    [Google Scholar]
  121. 121.
    Sauer L, Peters S, Schmidt J, Schweitzer D, Klemm M et al. 2017. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy. Acta Ophthalmol 95:481–92
    [Google Scholar]
  122. 122.
    Sauer L, Schweitzer D, Ramm L, Augsten R, Hammer M, Peters S 2015. Impact of macular pigment on fundus autofluorescence lifetimes. Investig. Ophthalmol. Vis. Sci. 56:4668–79
    [Google Scholar]
  123. 123.
    Scarmo S, Henebery K, Peracchio H, Cartmel B, Lin H et al. 2012. Skin carotenoid status measured by resonance Raman spectroscopy as a biomarker of fruit and vegetable intake in preschool children. Eur. J. Clin. Nutr. 66:555–60
    [Google Scholar]
  124. 124.
    Scerri TS, Quaglieri A, Cai C, Zernant J, Matsunami N et al. 2017. Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nat. Genet. 49:559–67
    [Google Scholar]
  125. 125.
    Schmitz-Valckenberg S, Ong EE, Rubin GS, Peto T, Tufail A et al. 2009. Structural and functional changes over time in MacTel patients. Retina 29:1314–20
    [Google Scholar]
  126. 126.
    Schweitzer D, Jentsch S, Dawczynski J, Hammer M, Wolf-Schnurrbusch UE, Wolf S 2010. Simple and objective method for routine detection of the macular pigment xanthophyll. J. Biomed. Opt. 15:061714
    [Google Scholar]
  127. 127.
    Schweitzer D, Kolb A, Hammer M, Anders R 2002. [Time-correlated measurement of autofluorescence: a method to detect metabolic changes in the fundus]. Ophthalmologe 99:774–79 In German )
    [Google Scholar]
  128. 128.
    Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S et al. 2007. Towards metabolic mapping of the human retina. Microsc. Res. Tech. 70:410–19
    [Google Scholar]
  129. 129.
    Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N et al. 1994. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 272:1413–20
    [Google Scholar]
  130. 130.
    Sharifzadeh M, Bernstein PS, Gellermann W 2006. Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions. J. Opt. Soc. Am. A 23:2373–87
    [Google Scholar]
  131. 131.
    Shyam R, Gorusupudi A, Nelson K, Horvath MP, Bernstein PS 2017. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. PNAS 114:10882–87
    [Google Scholar]
  132. 132.
    Sluijs I, Cadier E, Beulens JW, van der A DL, Spijkerman AM, van der Schouw YT 2015. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis 25:376–81
    [Google Scholar]
  133. 133.
    Snodderly DM, Auran JD, Delori FC 1984. The macular pigment. II. Spatial distribution in primate retinas. Investig. Ophthalmol. Vis. Sci. 25:674–85
    [Google Scholar]
  134. 134.
    Snodderly DM, Mares JA, Wooten BR, Oxton L, Gruber M et al. 2004. Macular pigment measurement by heterochromatic flicker photometry in older subjects: the Carotenoids and Age-Related Eye Disease Study. Investig. Ophthalmol. Vis. Sci. 45:531–38
    [Google Scholar]
  135. 135.
    Sunness JS. 1999. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol. Vis. 5:25
    [Google Scholar]
  136. 136.
    Taskintuna I, Elsayed ME, Schatz P 2016. Update on clinical trials in dry age-related macular degeneration. Middle East Afr. J. Ophthalmol. 23:13–26
    [Google Scholar]
  137. 137.
    Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P et al. 2016. Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 57:268–76
    [Google Scholar]
  138. 138.
    Trieschmann M, Spital G, Lommatzsch A, van Kuijk E, Fitzke F et al. 2003. Macular pigment: quantitative analysis on autofluorescence images. Graefes Arch. Clin. Exp. Ophthalmol. 241:1006–12
    [Google Scholar]
  139. 139.
    Ward MS, Zhao DY, Bernstein PS 2008. Macular and serum carotenoid concentrations in patients with malabsorption syndromes. J. Ocul. Biol. Dis. Inform. 1:12–8
    [Google Scholar]
  140. 140.
    Wolfson Y, Fletcher E, Strauss RW, Scholl HPN 2016. Evidence of macular pigment in the central macula in albinism. Exp. Eye Res. 145:468–71
    [Google Scholar]
  141. 141.
    Wong WL, Su X, Li X, Cheung CM, Klein R et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2:e106–16
    [Google Scholar]
  142. 142.
    Woodall AA, Britton G, Jackson MJ 1997. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim. Biophys. Acta 1336:575–86
    [Google Scholar]
  143. 143.
    Ylonen K, Alfthan G, Groop L, Saloranta C, Aro A, Virtanen SM 2003. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study. Am. J. Clin. Nutr. 77:1434–41
    [Google Scholar]
  144. 144.
    Yu DY, Cringle SJ, Su EN, Yu PK, Jerums G, Cooper ME 2001. Pathogenesis and intervention strategies in diabetic retinopathy. Clin. Exp. Ophthalmol. 29:164–66
    [Google Scholar]
  145. 145.
    Zeimer MB, Padge B, Heimes B, Pauleikhoff D 2010. Idiopathic macular telangiectasia type 2: distribution of macular pigment and functional investigations. Retina 30:586–95
    [Google Scholar]
  146. 146.
    Zhang XY, Zeng H, Bao S, Wang NL, Gillies MC 2014. Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4:27
    [Google Scholar]
  147. 147.
    Zhao DY, Wintch SW, Ermakov IV, Gellermann W, Bernstein PS 2003. Resonance Raman measurement of macular carotenoids in retinal, choroidal, and macular dystrophies. Arch. Ophthalmol. 121:967–72
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124555
Loading
/content/journals/10.1146/annurev-nutr-082018-124555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error