1932

Abstract

A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124643
2019-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124643.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124643&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anding AL, Wang CX, Chang TK, Sliter DA, Powers CM et al. 2018. Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance. Curr. Biol. 28:287–95
    [Google Scholar]
  2. 2.
    Ashrafi G, Schwarz TL. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42
    [Google Scholar]
  3. 3.
    Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LGJ et al. 2002. A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci 11:2471–78
    [Google Scholar]
  4. 4.
    Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M et al. 2018. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24:1696–700
    [Google Scholar]
  5. 5.
    Baek SH, Park SJ, Jeong JI, Kim SH, Han J et al. 2017. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer's disease model. J. Neurosci. 37:5099–110
    [Google Scholar]
  6. 6.
    Ban T, Ishihara T, Kohno H, Saita S, Ichimura A et al. 2017. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19:856–63
    [Google Scholar]
  7. 7.
    Band M, Joel A, Hernandez A, Avivi A 2009. Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi. FASEB J. 23:2327–35
    [Google Scholar]
  8. 8.
    Bargiela D, Burr SP, Chinnery PF 2018. Mitochondria and hypoxia: metabolic crosstalk in cell-fate decisions. Trends Endocrinol. Metab. 29:249–59
    [Google Scholar]
  9. 9.
    Bargiela D, Chinnery PF. 2019. Mitochondria in neuroinflammation—multiple sclerosis (MS), Leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci. Lett. In press. https://doi.org/10.1016/j.neulet.2017.06.051
    [Crossref] [Google Scholar]
  10. 10.
    Bartolome F, Esteras N, Martin-Requero A, Boutoleau-Bretonniere C, Vercelletto M et al. 2017. Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci. Rep. 7:1666
    [Google Scholar]
  11. 11.
    Basit F, van Oppen LM, Schockel L, Bossenbroek HM, van Emst-de Vries SE et al. 2017. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8:e2716
    [Google Scholar]
  12. 12.
    Baur JA, Sinclair DA. 2006. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5:493–506
    [Google Scholar]
  13. 13.
    Berndsen CE, Wolberger C. 2014. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21:301–7
    [Google Scholar]
  14. 14.
    Berridge MJ. 2017. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J. Physiol. 595:6825–36
    [Google Scholar]
  15. 15.
    Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A et al. 2017. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep 18:947–61
    [Google Scholar]
  16. 16.
    Bian X, Teng T, Zhao H, Qin J, Qiao Z et al. 2018. Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radic. Res. 52:80–91
    [Google Scholar]
  17. 17.
    Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE 2014. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. PNAS 111:11798–803
    [Google Scholar]
  18. 18.
    Boilard E, Fortin PR. 2016. Connective tissue diseases: mitochondria drive NETosis and inflammation in SLE. Nat. Rev. Rheumatol. 12:195–96
    [Google Scholar]
  19. 19.
    Boulet L, Karpati G, Shoubridge E 1992. Distribution and threshold expression of the tRNALys mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51:1187–200
    [Google Scholar]
  20. 20.
    Boyle KA, Van Wickle J, Hill RB, Marchese A, Kalyanaraman B, Dwinell MB 2018. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J. Biol. Chem. 293:14891–904
    [Google Scholar]
  21. 21.
    Brenner SR. 2010. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 74:182–83
    [Google Scholar]
  22. 22.
    Bua E, Johnson J, Herbst A, Delong B, McKenzie D et al. 2006. Mitochondrial DNA–deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79:469–80
    [Google Scholar]
  23. 23.
    Carelli V, Ghelli A, Ratta M, Bacchilega E, Sangiorgi S et al. 1997. Leber's hereditary optic neuropathy: biochemical effect of 11778/ND4 and 3460/ND1 mutations and correlation with the mitochondrial genotype. Neurology 48:1623–32
    [Google Scholar]
  24. 24.
    Chen Q, Sun LJ, Chen ZJJ 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17:1142–49
    [Google Scholar]
  25. 25.
    Chen XC, Sebastian BM, Tang H, McMullen MM, Axhemi A et al. 2009. Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology 49:1554–62
    [Google Scholar]
  26. 26.
    Chen Y, Dorn GW. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–75
    [Google Scholar]
  27. 27.
    Colombo B, Saraceno L, Comi G 2014. Riboflavin and migraine: the bridge over troubled mitochondria. Neurol. Sci. 35:Suppl. 1S141–44
    [Google Scholar]
  28. 28.
    Cornelius N, Corydon TJ, Gregersen N, Olsen RKJ 2014. Cellular consequences of oxidative stress in riboflavin responsive multiple acyl-CoA dehydrogenation deficiency patient fibroblasts. Hum. Mol. Genet. 23:4285–301
    [Google Scholar]
  29. 29.
    Correia-Melo C, Ichim G, Tait SWG, Passos JF 2017. Depletion of mitochondria in mammalian cells through enforced mitophagy. Nat. Protoc. 12:183–94
    [Google Scholar]
  30. 30.
    Das DN, Naik PP, Mukhopadhyay S, Panda PK, Sinha N et al. 2017. Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radic. Biol. Med. 112:452–63
    [Google Scholar]
  31. 31.
    Dawson TM, Dawson VL. 2010. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 25:Suppl. 1S32–39
    [Google Scholar]
  32. 32.
    de Vries RLA, Gilkerson RW, Przedborski S, Schon EA 2012. Mitophagy in cells with mtDNA mutations: being sick is not enough. Autophagy 8:699–700
    [Google Scholar]
  33. 33.
    Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ 2006. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 163:94–112
    [Google Scholar]
  34. 34.
    Dietrich LE, Tice MM, Newman DK 2006. The co-evolution of life and Earth. Curr. Biol. 16:R395–400
    [Google Scholar]
  35. 35.
    Dudek J. 2017. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5:90
    [Google Scholar]
  36. 36.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–61
    [Google Scholar]
  37. 37.
    Elson JL, Samuels DC, Turnbull DM, Chinnery PF 2001. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68:802–6
    [Google Scholar]
  38. 38.
    Ezerina D, Takano Y, Hanaoka K, Urano Y, Dick TP 2018. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem. Biol. 25:447–59
    [Google Scholar]
  39. 39.
    Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T et al. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157:882–96
    [Google Scholar]
  40. 40.
    Fiesel FC, James ED, Hudec R, Springer W 2017. Mitochondrial targeted HSP90 inhibitor Gamitrinib-TPP (G-TPP) induces PINK1/Parkin-dependent mitophagy. Oncotarget 8:106233–48
    [Google Scholar]
  41. 41.
    Filadi R, Pendin D, Pizzo P 2018. Mitofusin 2: from functions to disease. Cell Death Dis 9:330
    [Google Scholar]
  42. 42.
    Filichia E, Hoffer B, Qi X, Luo Y 2016. Inhibition of Drp1 mitochondrial translocation provides neural protection in dopaminergic system in a Parkinson's disease model induced by MPTP. Sci. Rep. 6:32656
    [Google Scholar]
  43. 43.
    Fox JT, Stover PJ. 2008. Folate-mediated one-carbon metabolism. Vitam. Horm. 79:1–44
    [Google Scholar]
  44. 44.
    Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR 2013. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell 24:1153–62
    [Google Scholar]
  45. 45.
    Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E et al. 2018. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24:1691–95
    [Google Scholar]
  46. 46.
    Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E et al. 2009. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33:627–38
    [Google Scholar]
  47. 47.
    Gao X, Lee K, Reid MA, Sanderson SM, Qiu CP et al. 2018. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep 22:3507–20
    [Google Scholar]
  48. 48.
    Garcia-Munoz C, Vaillant F. 2014. Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods. Crit. Rev. Food Sci. Nutr. 54:1584–98
    [Google Scholar]
  49. 49.
    Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119–31
    [Google Scholar]
  50. 50.
    Ghosh SS, Fahy E, Bodis-Wollner I, Sherman J, Howell N 1996. Longitudinal study of a heteroplasmic 3460 Leber hereditary optic neuropathy family by multiplexed primer-extension analysis and nucleotide sequencing. Am. J. Hum. Genet. 58:325–34
    [Google Scholar]
  51. 51.
    Giardina G, Brunotti P, Fiascarelli A, Cicalini A, Costa MGS et al. 2015. How pyridoxal 5′-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J 282:1225–41
    [Google Scholar]
  52. 52.
    Gimenez-Cassina A, Danial NN. 2015. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Trends Endocrinol. Metab. 26:165–75
    [Google Scholar]
  53. 53.
    Gong GH, Song MS, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2015. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350:aad2459
    [Google Scholar]
  54. 54.
    Greaves LC, Elson JL, Nooteboom M, Grady JP, Taylor GA et al. 2012. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLOS Genet 8:e1003082
    [Google Scholar]
  55. 55.
    Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD 2008. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLOS Biol 6:e204
    [Google Scholar]
  56. 56.
    Hamacher-Brady A, Brady NR. 2016. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 73:775–95
    [Google Scholar]
  57. 57.
    Holt IJ, Reyes A. 2012. Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4:a012971
    [Google Scholar]
  58. 58.
    Hsu TC, Chen YC, Tsai CC, Wu JH, Li SL, Tzang BS 2010. Protective effects of taurine against hepatic abnormality in NZB/W F1 mice fed a hypercholesterolemic diet. Food Chem 119:62–68
    [Google Scholar]
  59. 59.
    Huang F, Nie CL, Yang Y, Yue W, Ren Y et al. 2009. Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells. Free Radic. Biol. Med. 46:1186–96
    [Google Scholar]
  60. 60.
    Hyland K, Hyland L, Shoffner J 2009. Cerebral folate deficiency and mitochondrial disease. Neurology 72:A347–47
    [Google Scholar]
  61. 61.
    Ishihara M, Urushido M, Hamada K, Matsumoto T, Shimamura Y et al. 2013. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Ren. Physiol. 305:F495–509
    [Google Scholar]
  62. 62.
    Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA et al. 2015. p62/sequestosome-1, autophagy-related gene 8, and autophagy in Drosophila are regulated by nuclear factor erythroid 2-related factor 2 (NRF2), independent of transcription factor TFEB. J. Biol. Chem. 290:14945–62
    [Google Scholar]
  63. 63.
    Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R et al. 2011. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 30:4554–70
    [Google Scholar]
  64. 64.
    Jian FL, Chen D, Chen L, Yan CJ, Lu B et al. 2018. Sam50 regulates PINK1-Parkin-mediated mitophagy by controlling PINK1 stability and mitochondrial morphology. Cell Rep 23:2989–3005
    [Google Scholar]
  65. 65.
    Jin SM, Lazarou M, Wang CX, Kane LA, Narendra DP, Youle RJ 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933–42
    [Google Scholar]
  66. 66.
    Jin X, Liu MY, Zhang DF, Gao H, Wei MJ 2018. Elevated circulating magnesium levels in patients with Parkinson's disease: a meta-analysis. Neuropsychiatr. Dis. Treat. 14:3159–68
    [Google Scholar]
  67. 67.
    Jones CW, Priest DG. 1978. Interaction of pyridoxal 5-phosphate with apo-serine hydroxymethyltransferase. Biochim. Biophys. Acta Enzymol. 526:369–74
    [Google Scholar]
  68. 68.
    Jong CJ, Azuma J, Schaffer S 2012. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–32
    [Google Scholar]
  69. 69.
    Jong CJ, Ito T, Schaffer SW 2015. The ubiquitin–proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids 47:2609–22
    [Google Scholar]
  70. 70.
    Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P et al. 2014. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–813
    [Google Scholar]
  71. 71.
    Kameyama K, Motoyama K, Tanaka N, Yamashita Y, Higashi T, Arima H 2017. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin. Int. J. Nanomedicine 12:3433–46
    [Google Scholar]
  72. 72.
    Kang HT, Hwang ES. 2009. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8:426–38
    [Google Scholar]
  73. 73.
    Kauppila TES, Kauppila JHK, Larsson N-G 2017. Mammalian mitochondria and aging: an update. Cell Metab 25:57–71
    [Google Scholar]
  74. 74.
    Ke Z, Meng Y, Yong Y, Luo J 2013. Autophagy alleviates neurodegeneration caused by thiamine deficiency. Ann. Nutr. Metab. 63:555–55
    [Google Scholar]
  75. 75.
    Keene D, Price C, Shun-Shin MJ, Francis DP 2014. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117 411 patients. BMJ 349:g4379
    [Google Scholar]
  76. 76.
    Kiessling KH, Lundquist CG. 1962. Thiamine diphosphate in growing tissues. IV. Pyruvate oxidation in muscle mitochondria from young rats and in mitochondria from malignant tissues. Exp. Cell Res. 26:198–204
    [Google Scholar]
  77. 77.
    Kogot-Levin A, Saada A. 2014. Ceramide and the mitochondrial respiratory chain. Biochimie 100:88–94
    [Google Scholar]
  78. 78.
    Kujoth G, Hiona A, Pugh T, Someya S, Panzer K et al. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–84
    [Google Scholar]
  79. 79.
    Lake NJ, Compton AG, Rahman S, Thorburn DR 2016. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann. Neurol. 79:190–203
    [Google Scholar]
  80. 80.
    Larsson N, Tulinius M, Holme E, Oldfors A, Andersen O et al. 1992. Segregation and manifestations of the mtDNA tRNALys A→ G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 51:1201–12
    [Google Scholar]
  81. 81.
    Lee HN, Yoon CS, Lee YM 2018. Correlation of serum biomarkers and magnetic resonance spectroscopy in monitoring disease progression in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes due to mtDNA A3243G mutation. Front. Neurol. 9:621
    [Google Scholar]
  82. 82.
    Lee JJ, Sanchez-Martinez A, Zarate AM, Beninca C, Mayor U et al. 2018. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol. 217:1613–22
    [Google Scholar]
  83. 83.
    Lee S, Chanoit G, McIntosh R, Zvara DA, Xu ZL 2009. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 297:H569–75
    [Google Scholar]
  84. 84.
    Lee S, Le NH, Kang D 2018. Melatonin alleviates oxidative stress–inhibited osteogenesis of human bone marrow–derived mesenchymal stem cells through AMPK activation. Int. J. Med. Sci. 15:1083–91
    [Google Scholar]
  85. 85.
    Lee YJ, Weihl CC. 2017. Regulation of SQSTM1/p62 via UBA domain ubiquitination and its role in disease. Autophagy 13:1615–16
    [Google Scholar]
  86. 86.
    Li J, Qi W, Chen G, Feng D, Liu JH et al. 2015. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 11:1216–29
    [Google Scholar]
  87. 87.
    Li MT, Hou TY, Gao T, Lu XP, Yang QY et al. 2018. p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis. Cell Death Dis 9:941
    [Google Scholar]
  88. 88.
    Li T, Chen ZJJ. 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215:1287–99
    [Google Scholar]
  89. 89.
    Li Y, Qiu L, Liu X, Hou Z, Yu B 2017. PINK1 alleviates myocardial hypoxia–reoxygenation injury by ameliorating mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 484:118–24
    [Google Scholar]
  90. 90.
    Liu L, Feng D, Chen G, Chen M, Zheng QX et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177–85
    [Google Scholar]
  91. 91.
    Liu L, Sakakibara K, Chen Q, Okamoto K 2014. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–95
    [Google Scholar]
  92. 92.
    Liu SY, Chen CL, Yang TT, Huang WC, Hsieh CY et al. 2012. Albumin prevents reactive oxygen species–induced mitochondrial damage, autophagy, and apoptosis during serum starvation. Apoptosis 17:1156–69
    [Google Scholar]
  93. 93.
    Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN 2017. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 387:81–94
    [Google Scholar]
  94. 94.
    Ma SP, Zhang XF, Zheng LJ, Li ZY, Zhao XY et al. 2016. Peroxiredoxin 6 is a crucial factor in the initial step of mitochondrial clearance and is upstream of the PINK1-Parkin pathway. Antioxid. Redox Signal. 24:486–501
    [Google Scholar]
  95. 95.
    MacVicar TD, Mannack LV, Lees RM, Lane JD 2015. Targeted siRNA screens identify ER-to-mitochondrial calcium exchange in autophagy and mitophagy responses in RPE1 cells. Int. J. Mol. Sci. 16:13356–80
    [Google Scholar]
  96. 96.
    Madeo F, Eisenberg T, Pietrocola F, Kroemer G 2018. Spermidine in health and disease. Science 359:eaan2788
    [Google Scholar]
  97. 97.
    Marin JJG, Hernandez A, Revuelta IE, Gonzalez-Sanchez E, Gonzalez-Buitrago JM, Perez MJ 2013. Mitochondrial genome depletion in human liver cells abolishes bile acid–induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radic. Biol. Med. 61:218–28
    [Google Scholar]
  98. 98.
    Matilainen O, Quiros PM, Auwerx J 2017. Mitochondria and epigenetics—crosstalk in homeostasis and stress. Trends Cell Biol 27:453–63
    [Google Scholar]
  99. 99.
    McShane MA, Hammans SR, Sweeney M, Holt IJ, Beattie TJ et al. 1991. Pearson syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. Am. J. Hum. Genet. 48:39–42
    [Google Scholar]
  100. 100.
    McWilliams TG, Prescott AR, Allen GFG, Tamjar J, Munson MJ et al. 2016. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214:333–45
    [Google Scholar]
  101. 101.
    Meng X, Li Y, Li S, Zhou Y, Gan RY et al. 2017. Dietary sources and bioactivities of melatonin. Nutrients 9:367
    [Google Scholar]
  102. 102.
    Menzies KJ, Singh K, Saleem A, Hood DA 2013. Sirtuin 1–mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288:6968–79
    [Google Scholar]
  103. 103.
    Mirica SN, Duicu OM, Trancota SL, Fira-Mladinescu O, Angoulvant D, Muntean DM 2013. Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts. Can. J. Physiol. Pharmacol. 91:108–15
    [Google Scholar]
  104. 104.
    Mitsuhashi S, Nishino I. 2011. Phospholipid synthetic defect and mitophagy in muscle disease. Autophagy 7:1559–61
    [Google Scholar]
  105. 105.
    Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T et al. 2015. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6:7527
    [Google Scholar]
  106. 106.
    Murphy E, Steenbergen C. 2007. Preconditioning: the mitochondrial connection. Annu. Rev. Physiol. 69:51–67
    [Google Scholar]
  107. 107.
    Murphy MP. 2015. Redox modulation by reversal of the mitochondrial nicotinamide nucleotide transhydrogenase. Cell Metab 22:363–65
    [Google Scholar]
  108. 108.
    Nakagawa T, Lomb DJ, Haigis MC, Guarente L 2009. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–70
    [Google Scholar]
  109. 109.
    Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG et al. 2013. The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation—implications for diagnosis and management. J. Neurol. Neurosurg. Psychiatry 84:936–38
    [Google Scholar]
  110. 110.
    Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M 2016. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215:857–74
    [Google Scholar]
  111. 111.
    Norenberg MD, Rama Rao KV, Jayakumar AR 2004. Ammonia neurotoxicity and the mitochondrial permeability transition. J. Bioenerg. Biomembr. 36:303–7
    [Google Scholar]
  112. 112.
    Ohtake F, Tsuchiya H, Saeki Y, Tanaka K 2018. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. PNAS 115:E1401–8
    [Google Scholar]
  113. 113.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17:87–97
    [Google Scholar]
  114. 114.
    Ongan D, Yuksel A. 2017. What to eat for a better sleep in haemodialysis patients: potential role of B vitamins intake and appetite. Pak. J. Med. Sci. 33:417–24
    [Google Scholar]
  115. 115.
    Onodera R, Motoyama K, Tanaka N, Ohyama A, Okamatsu A et al. 2014. Involvement of autophagy in antitumor activity of folate-appended methyl-β-cyclodextrin. Sci. Rep. 4:4417
    [Google Scholar]
  116. 116.
    Palikaras K, Daskalaki I, Markaki M, Tavernarakis N 2017. Mitophagy and age-related pathologies: development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther. 178:157–74
    [Google Scholar]
  117. 117.
    Palikaras K, Lionaki E, Tavernarakis N 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20:1013–22
    [Google Scholar]
  118. 118.
    Park J, Lee SB, Lee S, Kim Y, Song S et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. . Nature 441:1157–61
    [Google Scholar]
  119. 119.
    Paul BT, Manz DH, Torti FM, Torti SV 2017. Mitochondria and iron: current questions. Expert Rev. Hematol. 10:65–79
    [Google Scholar]
  120. 120.
    Peng TI, Hsiao CW, Reiter RJ, Tanaka M, Lai YK, Jou MJ 2012. mtDNA T8993G mutation–induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca2+, and lipid insults in NARP cybrids: a potential therapeutic target for melatonin. J. Pineal Res. 52:93–106
    [Google Scholar]
  121. 121.
    Picard M, Wallace DC, Burelle Y 2016. The rise of mitochondria in medicine. Mitochondrion 30:105–16
    [Google Scholar]
  122. 122.
    Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R et al. 2014. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. PNAS 111:E4033–42
    [Google Scholar]
  123. 123.
    Pichiah PBT, Suriyakalaa U, Kamalakkannan S, Kokilavani P, Kalaiselvi S et al. 2011. Spermidine may decrease ER stress in pancreatic beta cells and may reduce apoptosis via activating AMPK dependent autophagy pathway. Med. Hypotheses 77:677–79
    [Google Scholar]
  124. 124.
    Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP et al. 2015. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87:371–81
    [Google Scholar]
  125. 125.
    Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D et al. 2015. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11:253–70
    [Google Scholar]
  126. 126.
    Powell JM, Broderick GA, Misselbrook TH 2008. Seasonal diet affects ammonia emissions from tie-stall dairy barns. J. Dairy Sci. 91:857–69
    [Google Scholar]
  127. 127.
    Qi YM, Qiu Q, Gu XY, Tian YH, Zhang YM 2016. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci. Rep. 6:24700
    [Google Scholar]
  128. 128.
    Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, Martins LM, Almeida A, Bolanos JP 2014. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat. Commun. 5:4514
    [Google Scholar]
  129. 129.
    Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F 2018. Vitamin D receptor is necessary for mitochondrial function and cell health. Int. J. Mol. Sci. 19:1672
    [Google Scholar]
  130. 130.
    Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M et al. 2010. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. PNAS 107:10775–82
    [Google Scholar]
  131. 131.
    Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CMT et al. 2013. Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 9:1677–86
    [Google Scholar]
  132. 132.
    Robb EL, Moradi F, Maddalena LA, Valente AJF, Fonseca J, Stuart JA 2017. Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2. Biochem. Biophys. Res. Commun. 485:249–54
    [Google Scholar]
  133. 133.
    Ross JM, Stewart JB, Hagström E, Brené S, Mourier A et al. 2013. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:412–15
    [Google Scholar]
  134. 134.
    Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T 2003. Mitochondrial threshold effects. Biochem. J. 370:751–62
    [Google Scholar]
  135. 135.
    Roth JA. 2009. Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. Neuromolecular Med 11:281–96
    [Google Scholar]
  136. 136.
    Ryan MT, Hoogenraad NJ. 2007. Mitochondrial–nuclear communications. Annu. Rev. Biochem. 76:701–22
    [Google Scholar]
  137. 137.
    Ryan T, Bamm VV, Stykel MG, Coackley CL, Humphries KM et al. 2018. Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat. Commun. 9:817
    [Google Scholar]
  138. 138.
    Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N et al. 2016. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22:879–88
    [Google Scholar]
  139. 139.
    Santo-Domingo J, Demaurex N. 2010. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta Bioenerg. 1797:907–12
    [Google Scholar]
  140. 140.
    Sauve AA, Youn DY. 2012. Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr. Opin. Chem. Biol. 16:535–43
    [Google Scholar]
  141. 141.
    Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM, Bohr VA 2015. Protecting the mitochondrial powerhouse. Trends Cell Biol 25:158–70
    [Google Scholar]
  142. 142.
    Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F et al. 2015. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol 25:1810–22
    [Google Scholar]
  143. 143.
    Schipper HM. 2004. Brain iron deposition and the free radical–mitochondrial theory of ageing. Ageing Res. Rev. 3:265–301
    [Google Scholar]
  144. 144.
    Schon EA, DiMauro S, Hirano M 2012. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13:878–90
    [Google Scholar]
  145. 145.
    Seibenhener ML, Du Y, Diaz-Meco MT, Moscat J, Wooten MC, Wooten MW 2013. A role for sequestosome 1/p62 in mitochondrial dynamics, import and genome integrity. Biochim. Biophys. Acta Mol. Cell Res. 1833:452–59
    [Google Scholar]
  146. 146.
    Sekine S, Youle RJ. 2018. PINK1 import regulation: a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16:2
    [Google Scholar]
  147. 147.
    Sentelle RD, Senkal CE, Jiang WH, Ponnusamy S, Gencer S et al. 2012. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8:831–38
    [Google Scholar]
  148. 148.
    Shaik A, Schiavi A, Ventura N 2016. Mitochondrial autophagy promotes healthy aging. Cell Cycle 15:1805–6
    [Google Scholar]
  149. 149.
    Sliter DA, Martinez J, Hao L, Chen X, Sun N et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–62
    [Google Scholar]
  150. 150.
    Song DM, Ma JX, Chen L, Guo CX, Zhang YY et al. 2017. FOXO3 promoted mitophagy via nuclear retention induced by manganese chloride in SH-SY5Y cells. Metallomics 9:1251–59
    [Google Scholar]
  151. 151.
    Song SB, Jang SY, Kang HT, Wei B, Jeoun UW et al. 2017. Modulation of mitochondrial membrane potential and ROS generation by nicotinamide in a manner independent of SIRT1 and mitophagy. Mol. Cells 40:503–14
    [Google Scholar]
  152. 152.
    Springer MZ, Macleod KF. 2016. Mitophagy: mechanisms and role in human disease. J. Pathol. 240:253–55
    [Google Scholar]
  153. 153.
    Steward CG, Newbury-Ecob RA, Hastings R, Smithson SF, Tsai-Goodman B et al. 2010. Barth syndrome: an X-linked cause of fetal cardiomyopathy and stillbirth. Prenat. Diagn. 30:970–76
    [Google Scholar]
  154. 154.
    Stewart JB, Chinnery PF. 2015. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16:530–42
    [Google Scholar]
  155. 155.
    Stover PJ. 2009. One-carbon metabolism–genome interactions in folate-associated pathologies. J. Nutr. 139:2402–5
    [Google Scholar]
  156. 156.
    Su HC, Hung LM, Chen JK 2006. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 290:E1339–46
    [Google Scholar]
  157. 157.
    Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ 2010. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. PNAS 107:11835–40
    [Google Scholar]
  158. 158.
    Sun N, Yun J, Liu J, Malide D, Liu CY et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:685–96
    [Google Scholar]
  159. 159.
    Tatar M, Sedivy JM. 2016. Mitochondria: masters of epigenetics. Cell 165:1052–54
    [Google Scholar]
  160. 160.
    Thakur N, Rai N, Siddiqui AF 2016. Nutrition in anemia. In Handbook of Nutrition and Diet in Leukemia and Blood Disease Therapy RR Watson, D Mahadevan 353–69 Wageningen, Neth: Wageningen Acad.
    [Google Scholar]
  161. 161.
    Thomas RL, Gustafsson AB. 2013. Mitochondrial autophagy—an essential quality control mechanism for myocardial homeostasis. Circ. J. 77:2449–54
    [Google Scholar]
  162. 162.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23
    [Google Scholar]
  163. 163.
    Varga NA, Pentelenyi K, Balicza P, Gezsi A, Remenyi V et al. 2018. Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav. Brain Funct. 14:4
    [Google Scholar]
  164. 164.
    Vazquez-Martin A, Van den Haute C, Cufi S, Corominas-Faja B, Cuyas E et al. 2016. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging 8:1330–52
    [Google Scholar]
  165. 165.
    Villa E, Marchetti S, Ricci JE 2018. No parkin zone: mitophagy without parkin. Trends Cell Biol 28:882–95
    [Google Scholar]
  166. 166.
    Wallace DC. 1997. Mitochondrial DNA in aging and disease. Sci. Am. 277:40–59
    [Google Scholar]
  167. 167.
    Wallace DC, Chalkia D. 2013. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5:a021220
    [Google Scholar]
  168. 168.
    Wang H, Jiang TY, Li W, Gao N, Zhang T 2018. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer's disease. Toxicol. Lett. 282:100–8
    [Google Scholar]
  169. 169.
    Wang H, Li L, Zhao M, Chen YH, Zhang ZH et al. 2011. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice. J. Pineal Res. 50:418–26
    [Google Scholar]
  170. 170.
    Wang X, Xu M, Frank JLA, Ke ZJ, Luo J 2017. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells. Toxicol. Appl. Pharmacol. 320:26–31
    [Google Scholar]
  171. 171.
    Wang Y, Picard M, Gu Z 2016. Genetic evidence for elevated pathogenicity of mitochondrial DNA heteroplasmy in autism spectrum disorder. PLOS Genet 12:e1006391
    [Google Scholar]
  172. 172.
    Wauer T, Komander D. 2013. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32:2099–112
    [Google Scholar]
  173. 173.
    Wei X, Qi Y, Zhang X, Qiu Q, Gu X et al. 2014. Cadmium induces mitophagy through ROS-mediated PINK1/Parkin pathway. Toxicol. Mech. Methods 24:504–11
    [Google Scholar]
  174. 174.
    Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B 2017. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:224–38
    [Google Scholar]
  175. 175.
    Weisiger RA, Fridovich I. 1973. Mitochondrial superoxide dismutase—site of synthesis and intramitochondrial localization. J. Biol. Chem. 248:4793–96
    [Google Scholar]
  176. 176.
    Wu J, Li XY, Zhu GL, Zhang YX, He M, Zhang J 2016. The role of resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp. Cell Res. 341:42–53
    [Google Scholar]
  177. 177.
    Wu SP, Zhang YG, Lu R, Xia YL, Zhou D et al. 2015. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082–94
    [Google Scholar]
  178. 178.
    Xiao B, Deng X, Lim GGY, Xie SP, Zhou ZD et al. 2017. Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria. Cell Death Dis 8:e3097
    [Google Scholar]
  179. 179.
    Xiao B, Goh JY, Xiao L, Xian H, Lim KL, Liou YC 2017. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin. J. Biol. Chem. 292:16697–708
    [Google Scholar]
  180. 180.
    Xiao YT, Zhou Y, Lu Y, Zhou KJ, Cai W 2018. PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver. Cell Death Dis 9:160
    [Google Scholar]
  181. 181.
    Xu Y, Kiningham KK, Devalaraja MN, Yeh CC, Majima H et al. 1999. An intronic NF-κB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-α and interleukin-1β. DNA Cell Biol 18:709–22
    [Google Scholar]
  182. 182.
    Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M et al. 2017. Endoplasmic reticulum–mitochondria junction is required for iron homeostasis. J. Biol. Chem. 292:13197–204
    [Google Scholar]
  183. 183.
    Yamada T, Murata D, Adachi Y, Itoh K, Kameoka S et al. 2018. Mitochondrial stasis reveals p62-mediated ubiquitination in Parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab 28:588–604.e5
    [Google Scholar]
  184. 184.
    Yamano K, Youle RJ. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–69
    [Google Scholar]
  185. 185.
    Ye K, Lu J, Ma F, Keinan A, Gu Z 2014. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. PNAS 111:10654–59
    [Google Scholar]
  186. 186.
    Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14
    [Google Scholar]
  187. 187.
    Yuan Y, Zheng YR, Zhang XN, Chen Y, Wu XL et al. 2017. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13:1754–66
    [Google Scholar]
  188. 188.
    Zhang C, Lin MH, Wu R, Wang XW, Yang B et al. 2011. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. PNAS 108:16259–64
    [Google Scholar]
  189. 189.
    Zhang HT, Mi L, Wang T, Yuan L, Li XH et al. 2016. PINK1/Parkin-mediated mitophagy play a protective role in manganese induced apoptosis in SH-SY5Y cells. Toxicol. In Vitro 34:212–19
    [Google Scholar]
  190. 190.
    Zhang J, Ney PA. 2009. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–46
    [Google Scholar]
  191. 191.
    Zhang S, Fu J, Zhou Z 2004. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol. In Vitro 18:71–77
    [Google Scholar]
  192. 192.
    Zhang TM, Xue L, Li L, Tang CY, Wan ZQ et al. 2016. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291:21616–29
    [Google Scholar]
  193. 193.
    Zhang WL, Ren H, Xu CL, Zhu CZ, Wu H et al. 2016. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5:e21407
    [Google Scholar]
  194. 194.
    Zhang X, Yuan Y, Jiang L, Zhang J, Gao J et al. 2014. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy 10:1801–13
    [Google Scholar]
  195. 195.
    Zhang Y, Tian FF, Xiao Q, Hu YJ, Li JH et al. 2013. Exploiting the role of resveratrol in rat mitochondrial permeability transition. J. Membr. Biol. 246:365–73
    [Google Scholar]
  196. 196.
    Zhou H, Zhang Y, Hu S, Shi C, Zhu P et al. 2017. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission–VDAC1–HK2–mPTP–mitophagy axis. J. Pineal Res. 63:e12413
    [Google Scholar]
  197. 197.
    Zhou XL, Xu JJ, Ni YH, Chen XC, Zhang HX et al. 2014. SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling. J. Ovarian Res. 7:97
    [Google Scholar]
  198. 198.
    Zhu LY, Wang QA, Zhang L, Fang ZX, Zhao F et al. 2010. Hypoxia induces PGC-1α expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res 20:676–87
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124643
Loading
/content/journals/10.1146/annurev-nutr-082018-124643
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error