1932

Abstract

Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051707
2018-08-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/38/1/annurev-nutr-082117-051707.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051707&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Amarra MS, Khor GL, Chan P 2016. Intake of added sugar in Malaysia: a review. Asia Pac. J. Clin. Nutr. 25:227–40
    [Google Scholar]
  2. 2.  Angyal SJ 1984. The composition of reducing sugars in solution. Adv. Carbohydrate Chem. Biochem. 42:15–68
    [Google Scholar]
  3. 3.  Bao Y, Stolzenberg-Solomon R, Jiao L, Silverman DT, Subar AF et al. 2008. Added sugar and sugar-sweetened foods and beverages and the risk of pancreatic cancer in the National Institutes of Health-AARP Diet and Health Study. Am. J. Clin. Nutr. 88:431–40
    [Google Scholar]
  4. 4.  Barone S, Fussell SL, Singh AK, Lucas F, Xu J et al. 2009. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J. Biol. Chem. 284:5056–66
    [Google Scholar]
  5. 5.  Barrett JS, Irving PM, Shepherd SJ, Muir JG, Gibson PR 2009. Comparison of the prevalence of fructose and lactose malabsorption across chronic intestinal disorders. Aliment. Pharmacol. Ther. 30:165–74
    [Google Scholar]
  6. 6.  Barron CC, Bilan PJ, Tsakiridis T, Tsiani E 2016. Facilitative glucose transporters: implications for cancer detection, prognosis and treatment. Metabolism 65:124–39
    [Google Scholar]
  7. 7.  Beyer PL, Caviar EM, McCallum RW 2005. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults. J. Am. Diet. Assoc. 105:1559–66
    [Google Scholar]
  8. 8.  Brown DG, Rao S, Weir TL, O'Malia J, Bazan M et al. 2016. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 4:11
    [Google Scholar]
  9. 9.  Choi YK, Kraft N, Zimmerman B, Jackson M, Rao SS 2008. Fructose intolerance in IBS and utility of fructose-restricted diet. J. Clin. Gastroenterol. 42:233–38
    [Google Scholar]
  10. 10.  Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G 2016. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96:365–408
    [Google Scholar]
  11. 11.  Crescenzo R, Mazzoli A, Di Luccia B, Bianco F, Cancelliere R et al. 2017. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr. Res. 61:1331657
    [Google Scholar]
  12. 12.  Crossley JN, Macdonald I 1970. The influence in male baboons, of a high sucrose diet on the portal and arterial levels of glucose and fructose following a sucrose meal. Nutr. Metab. 12:171–78
    [Google Scholar]
  13. 13.  Cui XL, Schlesier AM, Fisher EL, Cerqueira C, Ferraris RP 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G1310–20
    [Google Scholar]
  14. 14.  Cui XL, Soteropoulos P, Tolias P, Ferraris RP 2004. Fructose-responsive genes in the small intestine of neonatal rats. Physiol. Genom. 18:206–17
    [Google Scholar]
  15. 15.  Dabritz J, Muhlbauer M, Domagk D, Voos N, Hennebohl G et al. 2014. Significance of hydrogen breath tests in children with suspected carbohydrate malabsorption. BMC Pediatr 14:59
    [Google Scholar]
  16. 16.  Davidson NO, Hausman AM, Ifkovits CA, Buse JB, Gould GW et al. 1992. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 262:C795–800
    [Google Scholar]
  17. 17.  De Zutter JK, Levine KB, Deng D, Carruthers A 2013. Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J. Biol. Chem. 288:20734–44
    [Google Scholar]
  18. 18.  DeBosch BJ, Chi M, Moley KH 2012. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology 153:4181–91
    [Google Scholar]
  19. 19.  Dermaku-Sopjani M, Almilaji A, Pakladok T, Munoz C, Hosseinzadeh Z et al. 2013. Down-regulation of the Na+-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase. Kidney Blood Press Res 37:547–56
    [Google Scholar]
  20. 20.  Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P et al. 2015. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLOS ONE 10:e0134893
    [Google Scholar]
  21. 21.  Diggle CP, Shires M, Leitch D, Brooke D, Carr IM et al. 2009. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 57:763–74
    [Google Scholar]
  22. 22.  Dotimas JR, Lee AW, Schmider AB, Carroll SH, Shah A et al. 2016. Diabetes regulates fructose absorption through thioredoxin-interacting protein. eLife 5:e18313
    [Google Scholar]
  23. 23.  Douard V, Asgerally A, Sabbagh Y, Sugiura S, Shapses SA et al. 2010. Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J. Am. Soc. Nephrol. 21:261–71
    [Google Scholar]
  24. 24.  Douard V, Choi HI, Elshenawy S, Lagunoff D, Ferraris RP 2008. Developmental reprogramming of rat GLUT5 requires glucocorticoid receptor translocation to the nucleus. J. Physiol. 586:3657–73
    [Google Scholar]
  25. 25.  Douard V, Cui XL, Soteropoulos P, Ferraris RP 2008. Dexamethasone sensitizes the neonatal intestine to fructose induction of intestinal fructose transporter (Slc2A5) function. Endocrinology 149:409–23
    [Google Scholar]
  26. 26.  Douard V, Ferraris RP 2008. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295:E227–37
    [Google Scholar]
  27. 27.  Douard V, Ferraris RP 2013. The role of fructose transporters in diseases linked to excessive fructose intake. J. Physiol. 591:401–14
    [Google Scholar]
  28. 28.  Douard V, Patel C, Lee J, Tharabenjasin P, Williams E et al. 2014. Chronic high fructose intake reduces serum 1,25 (OH)2D3 levels in calcium-sufficient rodents. PLOS ONE 9:e93611
    [Google Scholar]
  29. 29.  Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW et al. 2013. Excessive fructose intake causes 1,25-(OH)2D3-dependent inhibition of intestinal and renal calcium transport in growing rats. Am. J. Physiol. Endocrinol. Metab. 304:E1303–13
    [Google Scholar]
  30. 30.  Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S et al. 2012. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)2D3 synthesis and calcium transport. FASEB J 26:707–21
    [Google Scholar]
  31. 31.  Duro D, Rising R, Cedillo M, Lifshitz F 2002. Association between infantile colic and carbohydrate malabsorption from fruit juices in infancy. Pediatrics 109:797–805
    [Google Scholar]
  32. 32.  Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E 2015. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4:51–57
    [Google Scholar]
  33. 33.  Ebert K, Ludwig M, Geillinger KE, Schoberth GC, Essenwanger J et al. 2017. Reassessment of GLUT7 and GLUT9 as putative fructose and glucose transporters. J. Membr. Biol. 250:171–82
    [Google Scholar]
  34. 34.  Egli L, Lecoultre V, Theytaz F, Campos V, Hodson L et al. 2013. Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62:2259–65
    [Google Scholar]
  35. 35.  Ferraris RP, Diamond J 1997. Regulation of intestinal sugar transport. Physiol. Rev. 77:257–302
    [Google Scholar]
  36. 36.  Franco I, Gulluni F, Campa CC, Costa C, Margaria JP et al. 2014. PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev. Cell 28:647–58
    [Google Scholar]
  37. 37.  Froesch ER, Ginsberg JL 1962. Fructose metabolism of adipose tissue. I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J. Biol. Chem. 237:3317–24
    [Google Scholar]
  38. 38.  Fukuzawa T, Fukazawa M, Ueda O, Shimada H, Kito A et al. 2013. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLOS ONE 8:e56681
    [Google Scholar]
  39. 39.  Fung TT, Arasaratnam MH, Grodstein F, Katz JN, Rosner B et al. 2014. Soda consumption and risk of hip fractures in postmenopausal women in the Nurses’ Health Study. Am. J. Clin. Nutr. 100:953–58
    [Google Scholar]
  40. 40.  George Thompson AM, Iancu CV, Nguyen TT, Kim D, Choe JY 2015. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity. Sci. Rep. 5:12804
    [Google Scholar]
  41. 41.  George Thompson AM, Ursu O, Babkin P, Iancu CV, Whang A et al. 2016. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Sci. Rep. 6:24240
    [Google Scholar]
  42. 42.  Gitzelmann R, Steinmann B, Van den Bergh G 1989. Disorders of fructose metabolism. The Metabolic Basis of Inherited Disease JB Stanbury, JB Wyngaarden, DS Fredrickson 399–424 New York: McGraw-Hill
    [Google Scholar]
  43. 43.  Gomara RE, Halata MS, Newman LJ, Bostwick HE, Berezin SH et al. 2008. Fructose intolerance in children presenting with abdominal pain. J. Pediatr. Gastroenterol. Nutr. 47:303–8
    [Google Scholar]
  44. 44.  Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A et al. 2012. Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–96
    [Google Scholar]
  45. 45.  Gouyon F, Caillaud L, Carriere V, Klein C, Dalet V et al. 2003. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J. Physiol. 552:823–32
    [Google Scholar]
  46. 46.  Grasser EK, Dulloo A, Montani JP 2014. Cardiovascular responses to the ingestion of sugary drinks using a randomised cross-over study design: Does glucose attenuate the blood pressure–elevating effect of fructose?. Br. J. Nutr. 112:183–92
    [Google Scholar]
  47. 47.  Gruzdkov AA, Gromova LV 2013. [Glucose absorption in the rat small intestine in vivo after various levels of local substrate load]. Ross Fiziol. Zh. Im. I. M. Sechenova 99:630–41
    [Google Scholar]
  48. 48.  Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R et al. 2002. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277:31646–55
    [Google Scholar]
  49. 49.  Hayward BE, Bonthron DT 1998. Structure and alternative splicing of the ketohexokinase gene. Eur. J. Biochem. 257:85–91
    [Google Scholar]
  50. 50.  He FJ, Marrero NM, MacGregor GA 2008. Salt intake is related to soft drink consumption in children and adolescents: a link to obesity?. Hypertension 51:629–34
    [Google Scholar]
  51. 51.  Helliwell PA, Richardson M, Affleck J, Kellett GL 2000. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes. Biochem. J. 350:Pt. 1163–69
    [Google Scholar]
  52. 52.  Hirayama BA, Diez-Sampedro A, Wright EM 2001. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Br. J. Pharmacol. 134:484–95
    [Google Scholar]
  53. 53.  Hostmark AT, Sogaard AJ, Alvaer K, Meyer HE 2011. The Oslo Health Study: a dietary index estimating frequent intake of soft drinks and rare intake of fruit and vegetables is negatively associated with bone mineral density. J. Osteoporos. 2011:102686
    [Google Scholar]
  54. 54.  Hui H, Huang D, McArthur D, Nissen N, Boros LG, Heaney AP 2009. Direct spectrophotometric determination of serum fructose in pancreatic cancer patients. Pancreas 38:706–12
    [Google Scholar]
  55. 55.  Hwang JJ, Johnson A, Cline G, Belfort-DeAguiar R, Snegovskikh D et al. 2015. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women. PLOS ONE 10:e0128582
    [Google Scholar]
  56. 56.  Iizuka K 2017. The role of carbohydrate response element binding protein in intestinal and hepatic fructose metabolism. Nutrients 9:E181
    [Google Scholar]
  57. 57.  Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP et al. 2012. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. PNAS 109:4320–25
    [Google Scholar]
  58. 58.  Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ et al. 2018. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27:235161
    [Google Scholar]
  59. 59.  Jiang L, David ES, Espina N, Ferraris RP 2001. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G666–74
    [Google Scholar]
  60. 60.  Jiang L, Ferraris RP 2001. Developmental reprogramming of rat GLUT5 requires de novo mRNA and protein synthesis. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G113–20
    [Google Scholar]
  61. 61.  Joh HK, Lim CS, Cho B 2015. Lifestyle and dietary factors associated with serum 25-hydroxyvitamin D levels in Korean young adults. J. Korean Med. Sci. 30:1110–20
    [Google Scholar]
  62. 62.  Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S et al. 2013. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62:3307–15
    [Google Scholar]
  63. 63.  Jones HF, Burt E, Dowling K, Davidson G, Brooks DA, Butler RN 2011. Effect of age on fructose malabsorption in children presenting with gastrointestinal symptoms. J. Pediatr. Gastroenterol. Nutr. 52:581–84
    [Google Scholar]
  64. 64.  Jordan P, Choe JY, Boles E, Oreb M 2016. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci. Rep. 6:23502
    [Google Scholar]
  65. 65.  Kawasaki T, Akanuma H, Yamanouchi T 2002. Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care 25:353–57
    [Google Scholar]
  66. 66.  Kawasaki T, Igarashi K, Ogata N, Oka Y, Ichiyanagi K, Yamanouchi T 2012. Markedly increased serum and urinary fructose concentrations in diabetic patients with ketoacidosis or ketosis. Acta Diabetol 49:119–23
    [Google Scholar]
  67. 67.  Kawasaki T, Ogata N, Akanuma H, Sakai T, Watanabe H et al. 2004. Postprandial plasma fructose level is associated with retinopathy in patients with type 2 diabetes. Metabolism 53:583–88
    [Google Scholar]
  68. 68.  Kellett GL 2001. The facilitated component of intestinal glucose absorption. J. Physiol. 531:585–95
    [Google Scholar]
  69. 69.  Kellett GL, Brot-Laroche E, Mace OJ, Leturque A 2008. Sugar absorption in the intestine: the role of GLUT2. Annu. Rev. Nutr. 28:35–54
    [Google Scholar]
  70. 70.  Kellett GL, Helliwell PA 2000. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem. J. 350:Pt. 1155–62
    [Google Scholar]
  71. 71.  Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP 2008. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am. J. Clin. Nutr. 87:1028–38
    [Google Scholar]
  72. 72.  Kishida K, Pearce SC, Yu S, Gao N, Ferraris RP 2017. Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G592–G605
    [Google Scholar]
  73. 73.  Kuhre RE, Gribble FM, Hartmann B, Reimann F, Windelov JA et al. 2014. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 306:G622–30
    [Google Scholar]
  74. 74.  Kumar Kondapi VP, Soueidan OM, Cheeseman CI, West FG 2017. Tunable GLUT-hexose binding and transport via modulation of hexose C-3 hydrogen-bonding capabilities. Chemistry 23:8073–81
    [Google Scholar]
  75. 75.  Laughlin MR 2014. Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 6:3117–29
    [Google Scholar]
  76. 76.  Le KA, Faeh D, Stettler R, Ith M, Kreis R et al. 2006. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr. 84:1374–79
    [Google Scholar]
  77. 77.  Le MT, Frye RF, Rivard CJ, Cheng J, McFann KK et al. 2012. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 61:641–51
    [Google Scholar]
  78. 78.  Lu B, Ahmad O, Zhang FF, Driban JB, Duryea J et al. 2013. Soft drink intake and progression of radiographic knee osteoarthritis: data from the osteoarthritis initiative. BMJ Open 3:e002993
    [Google Scholar]
  79. 79.  Ma D, Jones G 2004. Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case-control study. Calcif. Tissue Int. 75:286–91
    [Google Scholar]
  80. 80.  Mace OJ, Tehan B, Marshall F 2015. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Perspect. 3:e00155
    [Google Scholar]
  81. 81.  Malik AH, Akram Y, Shetty S, Malik SS, Yanchou Njike V 2014. Impact of sugar-sweetened beverages on blood pressure. Am. J. Cardiol. 113:1574–80
    [Google Scholar]
  82. 82.  Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C 2007. Facilitated hexose transporters: new perspectives on form and function. Physiology 22:234–40
    [Google Scholar]
  83. 83.  Marriott BP, Cole N, Lee E 2009. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139:1228S–35S
    [Google Scholar]
  84. 84.  Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ 2017. Regional differences in nutrient-induced secretion of gut serotonin. Physiol. Rep. 5:6e13199
    [Google Scholar]
  85. 85.  Mate A, Barfull A, Hermosa AM, Planas JM, Vazquez CM 2004. Regulation of D-fructose transporter GLUT5 in the ileum of spontaneously hypertensive rats. J. Membr. Biol. 199:173–79
    [Google Scholar]
  86. 86.  McGartland C, Robson PJ, Murray L, Cran G, Savage MJ et al. 2003. Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J. Bone Miner Res. 18:1563–69
    [Google Scholar]
  87. 87.  McWhorter TJ, Bakken BH, Karasov WH, del Rio CM 2006. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism. Biol. Lett. 2:131–34
    [Google Scholar]
  88. 88.  Melchior C, Gourcerol G, Dechelotte P, Leroi AM, Ducrotte P 2014. Symptomatic fructose malabsorption in irritable bowel syndrome: a prospective study. United Eur. Gastroenterol. J. 2:131–37
    [Google Scholar]
  89. 89.  Mishra RK, Wei C, Hresko RC, Bajpai R, Heitmeier M et al. 2015. In silico modeling-based identification of glucose transporter 4 (GLUT4)-selective inhibitors for cancer therapy. J. Biol. Chem. 290:14441–53
    [Google Scholar]
  90. 90.  Miyauchi E, Tachikawa M, Decleves X, Uchida Y, Bouillot JL et al. 2016. Quantitative atlas of cytochrome P450, UDP-glucuronosyltransferase, and transporter proteins in jejunum of morbidly obese subjects. Mol. Pharm. 13:2631–40
    [Google Scholar]
  91. 91.  Monteiro IM, Ferraris RP 1997. Precocious enhancement of intestinal fructose uptake by diet in adrenalectomized rat pups. Pediatr. Res. 41:353–58
    [Google Scholar]
  92. 92.  Mueckler M, Thorens B 2013. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34:121–38
    [Google Scholar]
  93. 93.  Naftalin RJ 2014. Does apical membrane GLUT2 have a role in intestinal glucose uptake?. F1000Res 3:304
    [Google Scholar]
  94. 94.  Nakajima K, Nagamine T, Fujita MQ, Ai M, Tanaka A, Schaefer E 2014. Apolipoprotein B-48: a unique marker of chylomicron metabolism. Adv. Clin. Chem. 64:117–77
    [Google Scholar]
  95. 95.  Newens KJ, Walton J 2016. A review of sugar consumption from nationally representative dietary surveys across the world. J. Hum. Nutr. Diet. 29:225–40
    [Google Scholar]
  96. 96.  Noble EE, Hsu TM, Jones RB, Fodor AA, Goran MI, Kanoski SE 2017. Early-life sugar consumption affects the rat microbiome independently of obesity. J. Nutr. 147:20–28
    [Google Scholar]
  97. 97.  Noh HL, Hu Y, Park TS, DiCioccio T, Nichols AJ et al. 2009. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J. Pharmacol. Exp. Ther. 328:496–503
    [Google Scholar]
  98. 98.  Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y et al. 2015. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401
    [Google Scholar]
  99. 99.  Nothlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN 2007. Dietary glycemic load, added sugars, and carbohydrates as risk factors for pancreatic cancer: the Multiethnic Cohort Study. Am. J. Clin. Nutr. 86:1495–501
    [Google Scholar]
  100. 100.  Patel C, Douard V, Yu S, Gao N, Ferraris RP 2015. Transport, metabolism, and endosomal trafficking–dependent regulation of intestinal fructose absorption. FASEB J 29:4046–58
    [Google Scholar]
  101. 101.  Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP 2015. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R499–509
    [Google Scholar]
  102. 102.  Patel C, Sugimoto K, Douard V, Shah A, Inui H et al. 2015. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G779–90
    [Google Scholar]
  103. 103.  Payne AN, Chassard C, Lacroix C 2012. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes. Rev. 13:799–809
    [Google Scholar]
  104. 104.  Powell ES, Smith-Taillie LP, Popkin BM 2016. Added sugars intake across the distribution of US children and adult consumers: 1977–2012. J. Acad. Nutr. Diet. 116:1543–50.e1
    [Google Scholar]
  105. 105.  Preston GM, Calle RA 2010. Elevated serum sorbitol and not fructose in type 2 diabetic patients. Biomark Insights 5:33–38
    [Google Scholar]
  106. 106.  Prieto PG, Cancelas J, Villanueva-Penacarrillo ML, Valverde I, Malaisse WJ 2004. Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. J. Am. Coll. Nutr. 23:414–19
    [Google Scholar]
  107. 107.  Ritze Y, Bardos G, D'Haese JG, Ernst B, Thurnheer M et al. 2014. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLOS ONE 9:e101702
    [Google Scholar]
  108. 108.  Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H 2014. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLOS ONE 9:e89977
    [Google Scholar]
  109. 109.  Rosas-Villegas A, Sanchez-Tapia M, Avila-Nava A, Ramirez V, Tovar AR, Torres N 2017. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients 9:E393
    [Google Scholar]
  110. 110.  Saito H, Kagaya M, Suzuki M, Yoshida A, Naito M 2013. Simultaneous ingestion of fructose and fat exacerbates postprandial exogenous lipidemia in young healthy Japanese women. J. Atheroscler Thromb. 20:591–600
    [Google Scholar]
  111. 111.  Saito H, Kato M, Yoshida A, Naito M 2015. The ingestion of a fructose-containing beverage combined with fat cream exacerbates postprandial lipidemia in young healthy women. J. Atheroscler. Thromb. 22:85–94
    [Google Scholar]
  112. 112.  Schalkwijk CG, Stehouwer CD, van Hinsbergh VW 2004. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab. Res. Rev. 20:369–82
    [Google Scholar]
  113. 113.  Schmitt CC, Aranias T, Viel T, Chateau D, Le Gall M et al. 2017. Intestinal invalidation of the glucose transporter GLUT2 delays tissue distribution of glucose and reveals an unexpected role in gut homeostasis. Mol. Metab. 6:61–72
    [Google Scholar]
  114. 114.  Seino Y, Ogata H, Maekawa R, Izumoto T, Iida A et al. 2015. Fructose induces glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 and insulin secretion: role of adenosine triphosphate-sensitive K+ channels. J. Diabetes Investig. 6:522–26
    [Google Scholar]
  115. 115.  Shalev A 2014. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol. Endocrinol. 28:1211–20
    [Google Scholar]
  116. 116.  Shepherd SJ, Parker FC, Muir JG, Gibson PR 2008. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin. Gastroenterol. Hepatol. 6:765–71
    [Google Scholar]
  117. 117.  Singh AK, Amlal H, Haas PJ, Dringenberg U, Fussell S et al. 2008. Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int 74:438–47
    [Google Scholar]
  118. 118.  Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM 2009. Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues. Mol. Biochem. Parasitol. 168:113–16
    [Google Scholar]
  119. 119.  Sobajima T, Yoshimura S, Iwano T, Kunii M, Watanabe M et al. 2014. Rab11a is required for apical protein localisation in the intestine. Biol. Open 4:86–94
    [Google Scholar]
  120. 120.  Softic S, Cohen DE, Kahn CR 2016. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61:1282–93
    [Google Scholar]
  121. 121.  Song X, Navarro SL, Diep P, Thomas WK, Razmpoosh EC et al. 2013. Comparison and validation of 2 analytical methods for measurement of urinary sucrose and fructose excretion. Nutr. Res. 33:696–703
    [Google Scholar]
  122. 122.  Staudacher HM, Whelan K 2017. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 66:1517–27
    [Google Scholar]
  123. 123.  Stumpel F, Burcelin R, Jungermann K, Thorens B 2001. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. PNAS 98:11330–35
    [Google Scholar]
  124. 124.  Sugimoto K, Hosotani T, Kawasaki T, Nakagawa K, Hayashi S et al. 2010. Eucalyptus leaf extract suppresses the postprandial elevation of portal, cardiac and peripheral fructose concentrations after sucrose ingestion in rats. J. Clin. Biochem. Nutr. 46:205–11
    [Google Scholar]
  125. 125.  Sugimoto K, Inui H, Yamanouchi T 2012. Assays of fructose in experimental nutrition. Dietary Sugars: Chemistry, Analysis, Function and Effects VR Preedy 466–85 London: R. Soc. Chem.
    [Google Scholar]
  126. 126.  Sun SZ, Empie MW 2012. Fructose metabolism in humans—what isotopic tracer studies tell us. Nutr. Metab. 9:89
    [Google Scholar]
  127. 127.  Suzuki T, Douard V, Mochizuki K, Goda T, Ferraris RP 2011. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem. J. 435:43–53
    [Google Scholar]
  128. 128.  Tasevska N, Jiao L, Cross AJ, Kipnis V, Subar AF et al. 2012. Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int. J. Cancer 130:159–69
    [Google Scholar]
  129. 129.  Taylor PM 2014. Role of amino acid transporters in amino acid sensing. Am. J. Clin. Nutr. 99:223S–30S
    [Google Scholar]
  130. 130.  Tharabenjasin P, Douard V, Patel C, Krishnamra N, Johnson RJ et al. 2014. Acute interactions between intestinal sugar and calcium transport in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 306:G1–12
    [Google Scholar]
  131. 131.  Theytaz F, de Giorgi S, Hodson L, Stefanoni N, Rey V et al. 2014. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 6:2632–49
    [Google Scholar]
  132. 132.  Thomik T, Wittig I, Choe JY, Boles E, Oreb M 2017. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat. Chem. Biol. 13:111158–63
    [Google Scholar]
  133. 133.  Tjaderhane L, Larmas M 1998. A high sucrose diet decreases the mechanical strength of bones in growing rats. J. Nutr. 128:1807–10
    [Google Scholar]
  134. 134.  Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP 2006. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham Osteoporosis Study. Am. J. Clin. Nutr. 84:936–42
    [Google Scholar]
  135. 135.  Ung PM, Song W, Cheng L, Zhao X, Hu H et al. 2016. Inhibitor discovery for the human GLUT1 from homology modeling and virtual screening. ACS Chem. Biol. 11:1908–16
    [Google Scholar]
  136. 136.  Wahjudi PN, Patterson ME, Lim S, Yee JK, Mao CS, Lee WN 2010. Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clin. Biochem. 43:198–207
    [Google Scholar]
  137. 137.  Wasserman D, Hoekstra JH, Tolia V, Taylor CJ, Kirschner BS et al. 1996. Molecular analysis of the fructose transporter gene (GLUT5) in isolated fructose malabsorption. J. Clin. Investig. 98:2398–402
    [Google Scholar]
  138. 138.  Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA 2004. Factors that affect bone mineral accrual in the adolescent growth spurt. J. Nutr. 134:696S–700S
    [Google Scholar]
  139. 139.  Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK et al. 2014. Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United Eur. Gastroenterol. J. 2:14–21
    [Google Scholar]
  140. 140.  Wilder-Smith CH, Materna A, Wermelinger C, Schuler J 2013. Fructose and lactose intolerance and malabsorption testing: the relationship with symptoms in functional gastrointestinal disorders. Aliment. Pharmacol. Ther. 37:1074–83
    [Google Scholar]
  141. 141.  Wilder-Smith CH, Olesen SS, Materna A, Drewes AM 2017. Predictors of response to a low-FODMAP diet in patients with functional gastrointestinal disorders and lactose or fructose intolerance. Aliment. Pharmacol. Ther. 45:1094–106
    [Google Scholar]
  142. 142.  Wittekind A, Walton J 2014. Worldwide trends in dietary sugars intake. Nutr. Res. Rev. 27:330–45
    [Google Scholar]
  143. 143.  Woodrow CJ, Burchmore RJ, Krishna S 2000. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. PNAS 97:9931–36
    [Google Scholar]
  144. 144.  Wright EM, Loo DD, Hirayama BA 2011. Biology of human sodium glucose transporters. Physiol. Rev. 91:733–94
    [Google Scholar]
  145. 145.  Wyshak G 2000. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch. Pediatr. Adolesc. Med. 154:610–13
    [Google Scholar]
  146. 146.  Yau AM, McLaughlin J, Gilmore W, Maughan RJ, Evans GH 2017. The acute effects of simple sugar ingestion on appetite, gut-derived hormone response, and metabolic markers in men. Nutrients 9:E135
    [Google Scholar]
  147. 147.  Zubiria MG, Gambaro SE, Rey MA, Carasi P, Serradell MLA, Giovambattista A 2017. Deleterious metabolic effects of high fructose intake: the preventive effect of Lactobacillus kefiri administration. Nutrients 9:E470
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051707
Loading
/content/journals/10.1146/annurev-nutr-082117-051707
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error