1932

Abstract

Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAsIII+V)- and dimethyl (DMAsIII+V)-arsenical species in a process that facilitates urinary As elimination; however, MMAs is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051757
2018-08-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/38/1/annurev-nutr-082117-051757.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051757&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H et al. 2009. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol. Appl. Pharmacol. 236:131–41
    [Google Scholar]
  2. 2.  Ahsan H, Chen Y, Kibriya MG, Slavkovich V, Parvez F et al. 2007. Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol. Biomark. Prev. 16:1270–78
    [Google Scholar]
  3. 3. Am. Cancer Soc. 2016. Known and probable human carcinogens Rep., Am. Cancer Soc. Atlanta, GA: https://www.cancer.org/cancer/cancer-causes/general-info/known-and-probable-human-carcinogens.html
  4. 4.  Aposhian HV, Aposhian MM 2006. Arsenic toxicology: five questions. Chem. Res. Toxicol. 19:1–15
    [Google Scholar]
  5. 5.  Argos M 2015. Arsenic exposure and epigenetic alterations: recent findings based on the Illumina 450K DNA Methylation Array. Curr. Environ. Health Rep. 2:2137–44
    [Google Scholar]
  6. 6.  Argos M, Chen L, Farzana J, Lin T, Pierce BL et al. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ. Health Perspect. 123:64
    [Google Scholar]
  7. 7.  Ayotte JD, Gronberg JM, Apodaca LE 2011. Trace elements and radon in groundwater across the United States, 1992–2003 US Geol. Surv. Sci. Investig. Rep. 2011-5059 US Geol. Surv. Reston, VA:
    [Google Scholar]
  8. 8.  Bailey KA, Wu MC, Ward WO, Smeester L 2013. Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J. Biochem. Mol. Toxicol. 27:106–15
    [Google Scholar]
  9. 9.  Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO et al. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ. Health Perspect. 125:15–22
    [Google Scholar]
  10. 10.  Basu A, Mitra S, Chung J, Mazumder DNG, Ghosh N et al. 2011. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India. Environ. Health Perspect. 119:1308–13
    [Google Scholar]
  11. 11.  Bednar AJ, Garbarino JR, Ranville JF, Wildeman TR 2002. Presence of organoarsenicals used in cotton production in agricultural water and soil of the southern United States. J. Agric. Food Chem. 50:7340–44
    [Google Scholar]
  12. 12.  Benbrahim-Tallaa L, Waalkes MP 2008. Inorganic arsenic and human prostate cancer. Environ. Health Perspect. 116:158–64
    [Google Scholar]
  13. 13.  Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon JJ 1999. Arsenic speciation in human organs following fatal arsenic trioxide poisoning: a case report. Clin. Chem. 45:301–6
    [Google Scholar]
  14. 14.  Bertolero F, Marafante E, Rade JE, Pietra R, Sabbioni E 1981. Biotransformation and intracellular binding of arsenic in tissues of rabbits after intraperitoneal administration of 74As labelled arsenite. Toxicology 20:35–44
    [Google Scholar]
  15. 15.  Bozack A, Hall MN, Liu X, Ilievski V, Lomax-Luu AM et al. 2017. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation trial in Bangladesh. Am. J. Clin. Nutr. In press
  16. 16.  Brandon EF, Janssen PJ, de Wit-Bos L 2014. Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Assess 31:1993–2003
    [Google Scholar]
  17. 17.  Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S et al. 2014. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J. Dev. Orig. Health Dis. 5:288–98
    [Google Scholar]
  18. 18.  Brosnan JT, da Silva RP, Brosnan ME 2011. The metabolic burden of creatine synthesis. Amino Acids 40:1325–31
    [Google Scholar]
  19. 19.  Brouwer OF, Onkenhout W, Edelbroek PM, de Kom JFM, de Wolff FA, Peters ACB 1992. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin. Neurol. Neurosurg. 94:307–10
    [Google Scholar]
  20. 20.  Buchet JP, Lauwerys R, Rooels H 1981. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsenate in man. Int. Arch. Occup. Environ. Health 48:171–79
    [Google Scholar]
  21. 21.  Carey A-M, Norton GJ, Deacon C, Scheckel KG, Lombi E et al. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 192:87–98
    [Google Scholar]
  22. 22.  Carey M, Jiujin X, Gomes Farias J, Meharg AA 2015. Rethinking rice preparation for highly efficient removal of inorganic arsenic using percolating cooking water. PLOS ONE 10:e0131608
    [Google Scholar]
  23. 23.  Carreras CW, Santi DV 1995. The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem. 64:721–62
    [Google Scholar]
  24. 24.  Challenger F 1945. Biological methylation. Chem. Rev. 36:315–61
    [Google Scholar]
  25. 25.  Chang Y-Y, Kuo T-C, Hsu C-H, Hou D-R, Kao Y-H, Huang R-N 2012. Characterization of the role of protein–cysteine residues in the binding with sodium arsenite. Arch. Toxicol. 86:911–22
    [Google Scholar]
  26. 26.  Chen J-W, Wang S-L, Wang Y-H, Sun C-W, Huang Y-L et al. 2012. Arsenic methylation, GSTO1 polymorphisms, and metabolic syndrome in an arseniasis endemic area of southwestern Taiwan. Chemosphere 88:432–38
    [Google Scholar]
  27. 27.  Chen Y-C, Guo Y-LL, Su H-JJ, Hsueh Y-M, Smith TJ et al. 2003.a Arsenic methylation and skin cancer risk in southwestern Taiwan. J. Occup. Environ. Med. 45:241–48
    [Google Scholar]
  28. 28.  Chen Y-C, Su H-JJ, Guo Y-LL, Hsueh Y-M, Smith TJ et al. 2003.b Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14:303–10
    [Google Scholar]
  29. 29.  Chung JS, Kalman DA, Moore LE, Kosnett MJ, Arroyo AP et al. 2002. Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ. Health Perspect. 110:729–33
    [Google Scholar]
  30. 30.  Combs GF, Gerald FC, Combs GF Jr. 2012. The Vitamins New York: Academic
  31. 31.  Concha G, Vogler G, Lezcano D, Nermell B, Vahter M 1998. Exposure to inorganic arsenic metabolites during early human development. Toxicol. Sci. 44:185–90
    [Google Scholar]
  32. 32.  Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S 2006. Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol. Sci. 91:372–81
    [Google Scholar]
  33. 33.  Dang HS, Jaiswal DD, Somasundaram S 1983. Distribution of arsenic in human tissues and milk. Sci. Total Environ. 29:171–75
    [Google Scholar]
  34. 34.  Davis MA, Signes-Pastor AJ, Argos M, Slaughter F, Pendergrast C et al. 2017. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 586:1237–44
    [Google Scholar]
  35. 35.  De Kimpe J, Cornelis R, Wittevrongel L, Vanholder R 1999. Dose dependent changes in 74As-arsenate metabolism of Flemish Giant rabbits. J. Trace Elements Med. Biol. 12:193–200
    [Google Scholar]
  36. 36.  Del Razo LM, Styblo M, Cullen WR, Thomas DJ 2001. Determination of trivalent methylated arsenicals in biological matrices. Toxicol. Appl. Pharmacol. 174:282–93
    [Google Scholar]
  37. 37.  Deminice R, Portari GV, Vannucchi H, Jordao AA 2009. Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br. J. Nutr. 102:110–16
    [Google Scholar]
  38. 38.  Ding W, Hudson LG, Liu KJ 2005. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol. Cell. Biochem. 279:105–12
    [Google Scholar]
  39. 39.  Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K et al. 2009. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem. Res. Toxicol. 22:1713–20
    [Google Scholar]
  40. 40.  Ducker GS, Rabinowitz JD 2017. One-carbon metabolism in health and disease. Cell Metab 25:27–42
    [Google Scholar]
  41. 41.  Engström K, Vahter M, Mlakar SJ, Concha G, Nermell B et al. 2011. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ. Health Perspect. 119:182–88
    [Google Scholar]
  42. 42.  Engström KS, Hossain MB, Lauss M, Ahmed S, Raqib R et al. 2013. Efficient arsenic metabolism—the AS3MT haplotype is associated with DNA methylation and expression of multiple genes around AS3MT. PLOS ONE 8:e53732
    [Google Scholar]
  43. 43.  Engström KS, Vahter M, Fletcher T, Leonardi G, Goessler W et al. 2015. Genetic variation in arsenic (+3 oxidation state) methyltransferase (AS3MT), arsenic metabolism and risk of basal cell carcinoma in a European population. Environ. Mol. Mutagen. 56:60–69
    [Google Scholar]
  44. 44. Environ. Prot. Agency (EPA). 2001. National primary drinking water regulations; arsenic and clarifications to compliance and new cource contaminants: final rule. Fed. Regist. 66:6996–706
    [Google Scholar]
  45. 45. Food Drug Admin. (FDA). 2016. Arsenic in rice and rice products risk assessment report Rep., Cent. Food Saf. Appl. Nutr., Food Drug Adm., US Dep. Health Hum. Serv. College Park, MD: https://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafetyAssessment/UCM486543.pdf
  46. 46. Food Drug Admin. (FDA). 2017. Total Diet Study: elements results summary statistics—market baskets 2006 through 2013 Rep., Cent. Food Saf. Appl. Nutr., Food Drug Adm., US Dep. Health Hum. Serv. College Park, MD: https://www.fda.gov/downloads/food…totaldietstudy/ucm184301.pdf
  47. 47. Food Drug Admin. (FDA), Carrington CD, Murray C, Tao S 2013. A quantitative assessment of inorganic arsenic in apple juice Draft Rep Cent. Food Saf. Appl. Nutr., Food Drug Adm., US Dep. Health Hum. Serv. College Park, MD: https://www.fda.gov/downloads/food/foodscienceresearch/risksafetyassessment/ucm360016.pdf
  48. 48.  Gamble MV, Ahsan H, Liu XH, Factor-Litvak P 2005. Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh. Am. J. Clin. Nutr. 81:1372–77
    [Google Scholar]
  49. 49.  Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V et al. 2006. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am. J. Clin. Nutr. 84:1093–101
    [Google Scholar]
  50. 50.  Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V et al. 2005. Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ. Health Perspect. 113:1683–88
    [Google Scholar]
  51. 51.  Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V et al. 2007. Folic acid supplementation lowers blood arsenic. Am. J. Clin. Nutr. 86:1202–9
    [Google Scholar]
  52. 52.  Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A et al. 2015. The genetic architecture of arsenic metabolism efficiency: a SNP-based heritability study of Bangladeshi adults. Environ. Health Perspect. 123:985–92
    [Google Scholar]
  53. 53.  Gardner RM, Nermell B, Kippler M, Grandér M, Li L et al. 2011. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod. Toxicol. 31:210–18
    [Google Scholar]
  54. 54.  Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR 2013. A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ. Health Perspect. 121:1154–60
    [Google Scholar]
  55. 55.  Gosse JA, Taylor VF, Jackson BP, Hamilton JW, Bodwell JE 2014. Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations. J. Appl. Toxicol. 34:498–505
    [Google Scholar]
  56. 56.  Guthmiller P, Van Pilsum JF, Boen JR, McGuire DM 1994. Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J. Biol. Chem. 269:17556–60
    [Google Scholar]
  57. 57.  Hall M, Gamble M, Slavkovich V, Liu X, Levy D et al. 2007. Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ. Health Perspect. 115:1503–9
    [Google Scholar]
  58. 58.  Hall MN, Liu X, Slavkovich V, Ilievski V, Mi Z et al. 2009. Influence of cobalamin on arsenic metabolism in Bangladesh. Environ. Health Perspect. 117:1724–29
    [Google Scholar]
  59. 59.  Hall MN, Liu X, Slavkovich V, Ilievski V, Pilsner JR et al. 2009. Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in Bangladesh. Environ. Health Perspect. 117:825–31
    [Google Scholar]
  60. 60.  Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S et al. 2013. Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ. Health Perspect. 121:1068–74
    [Google Scholar]
  61. 61.  Hansen HR, Raab A, Jaspars M, Milne BF, Feldmann J 2004. Sulfur-containing arsenical mistaken for dimethylarsinous acid (DMAIII) and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem. Res. Toxicol. 17:1086–91
    [Google Scholar]
  62. 62.  Hayakawa T, Kobayashi Y, Cui X, Hirano S 2005. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 79:183–91
    [Google Scholar]
  63. 63.  Heck JE, Gamble MV, Chen Y, Graziano JH, Slavkovich V et al. 2007. Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am. J. Clin. Nutr. 85:1367–74
    [Google Scholar]
  64. 64.  Heikens A 2006. Arsenic contamination of irrigation water, soil and crops in Bangladesh: risk implications for sustainable agriculture and food safety in Asia Rep. Food Agric. Organ. United Nations, Reg. Off. Asia Pac. Bangkok, Thail: http://www.fao.org/docrep/009/ag105e/AG105E00.HTM
  65. 65.  Hernandez A, Xamena N, Sekaran C, Tokunaga H, Sampayo-Reyes A et al. 2008. High arsenic metabolic efficiency in AS3MT287Thr allele carriers. Pharmacogenetics Genom 18:349–55
    [Google Scholar]
  66. 66.  Hernandez A, Xamena N, Surralles J, Sekaran C, Tokunaga H et al. 2008. Role of the Met(287)Thr polymorphism in the AS3MT gene on the metabolic arsenic profile. Mutat. Res. 637:80–92
    [Google Scholar]
  67. 67.  Hojsak I, Braegger C, Bronsky J, Campoy C, Colomb V et al. 2015. Arsenic in rice: a cause for concern. J. Pediatric Gastroenterol. Nutr. 60:142–45
    [Google Scholar]
  68. 68.  Howe CG, Gamble MV 2016. Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr. Environ. Health Rep. 3:225–37
    [Google Scholar]
  69. 69.  Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V et al. 2016. Associations between blood and urine arsenic concentrations and global levels of post-translational histone modifications in Bangladeshi men and women. Environ. Health Perspect. 124:1234–40
    [Google Scholar]
  70. 70.  Hsueh YM, Chiou HY, Huang YL, Wu WL, Huang CC et al. 1997. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol. Biomark. Prev. 6:589–96
    [Google Scholar]
  71. 71.  Huang Y-K, Huang Y-L, Hsueh Y-M, Yang M-H, Wu M-M et al. 2008. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19:829–39
    [Google Scholar]
  72. 72.  Huang Y-K, Tseng C-H, Huang Y-L, Yang M-H, Chen C-J, Hsueh Y-M 2007. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol. Appl. Pharmacol. 218:135–42
    [Google Scholar]
  73. 73.  Huang YK, Pu YS, Chung CJ, Shiue HS, Yang MH et al. 2008. Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem. Toxicol. 46:929–38
    [Google Scholar]
  74. 74.  Hughes MF, Edwards BC, Herbin-Davis KM, Saunders J, Styblo M, Thomas DJ 2010. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicol. Appl. Pharmacol. 249:217–23
    [Google Scholar]
  75. 75.  Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Razo LMD, Thomas DJ 2003. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol. Appl. Pharmacol. 191:202–10
    [Google Scholar]
  76. 76.  Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL 2012. Arsenic, organic foods, and brown rice syrup. Environ. Health Perspect. 120:623–26
    [Google Scholar]
  77. 77.  Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M et al. 2016. Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics and toxicity. Cancer Epidemiol. Biomark. Prev. 25:2381–90
    [Google Scholar]
  78. 78.  Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ 2017. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. PNAS 114:E2319–26
    [Google Scholar]
  79. 79.  Kile ML, Hoffman E, Hsueh Y-M, Afroz S, Quamruzzaman Q et al. 2009. Variability in biomarkers of arsenic exposure and metabolism in adults over time. Environ. Health Perspect. 117:455–60
    [Google Scholar]
  80. 80.  Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M et al. 2014. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9:774–82
    [Google Scholar]
  81. 81.  Klein CB, Leszczynska J, Hickey C, Rossman TG 2007. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol. Appl. Pharmacol. 222:289–97
    [Google Scholar]
  82. 82.  Kobayashi Y, Hirano S 2008. Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile. Toxicol. Appl. Pharmacol. 232:33–40
    [Google Scholar]
  83. 83.  Kuo C-C, Moon KA, Wang S-L, Silbergeld E, Navas-Acien A 2017. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ. Health Perspect. 125:087001
    [Google Scholar]
  84. 84.  Kurzius-Spencer M, da Silva V, Thomson CA, Hartz V, Hsu C-H et al. 2017. Nutrients in one-carbon metabolism and urinary arsenic methylation in the National Health and Nutrition Examination Survey (NHANES) 2003–2004. Sci. Total Environ. 607–608:381–90
    [Google Scholar]
  85. 85.  Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L et al. 2015. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ. Health Perspect. 123:186
    [Google Scholar]
  86. 86.  Lawley SD, Cinderella M, Hall MN, Gamble MV, Nijhout HF, Reed MC 2011. Mathematical model insights into arsenic detoxification. Theor. Biol. Med. Model. 8:31
    [Google Scholar]
  87. 87.  Lawley SD, Yun J, Gamble MV, Hall MN, Reed MC, Nijhout HF 2014. Mathematical modeling of the effects of glutathione on arsenic methylation. Theor. Biol. Med. Model. 11:20
    [Google Scholar]
  88. 88.  Li L, Ekstr E-C, Goessler W, Lonnerdal B, Nermell B et al. 2008. Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environ. Health Perspect. 116:315–21
    [Google Scholar]
  89. 89.  Li X, Li B, Xi S, Zheng Q, Lv X, Sun G 2013.a Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. Environ. Sci. Pollut. Res. Int. 20:8151–61
    [Google Scholar]
  90. 90.  Li X, Li B, Xi S, Zheng Q, Wang D, Sun G 2013.b Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ. Health 12:37
    [Google Scholar]
  91. 91.  Li Y, Wang D, Li X, Zheng Q, Sun G 2015. A potential synergy between incomplete arsenic methylation capacity and demographic characteristics on the risk of hypertension: findings from a cross-sectional study in an arsenic-endemic area of inner Mongolia, China. Int. J. Environ. Res. Public Health 12:3615–32
    [Google Scholar]
  92. 92.  Lin S, Shi Q, Nix FB, Styblo M, Beck MA et al. 2002. A novel S-adenosyl-L-methionine:arsenicIII methyltransferase from rat liver cytosol. J. Biol. Chem. 277:10795–803
    [Google Scholar]
  93. 93.  Lindberg A-L, Kumar R, Goessler W, Thirumaran R, Gurzau E et al. 2007. Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ. Health Perspect. 115:1081–86
    [Google Scholar]
  94. 94.  Lindberg A-L, Rahman M, Persson L-A, Vahter M 2008. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol. Appl. Pharmacol. 230:9–16
    [Google Scholar]
  95. 95.  Lindgren A, Vahter M, Dencker L 2009. Autoradiographic studies on the distribution of arsenic in mice and hamsters administered 74As-arsenite or -arsenate. Acta Pharmacol. Toxicol. 51:253–65
    [Google Scholar]
  96. 96.  López-Carrillo L, Gamboa-Loira B, Becerra W, Hernández-Alcaraz C, Hernández-Ramírez RU et al. 2016. Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ. Res. 151:445–50
    [Google Scholar]
  97. 97.  López-Carrillo L, Hernandez-Ramirez RU, Gandolfi AJ, Ornelas-Aguirre JM, Torres-Sanchez L, Cebrian ME 2014. Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol. Appl. Pharmacol. 280:53–59
    [Google Scholar]
  98. 98.  Mandal BK, Ogra Y, Suzuki KT 2001. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chem. Res. Toxicol. 14:371–78
    [Google Scholar]
  99. 99.  Markowski VP, Currie D, Reeve EA, Thompson D, Wise JP Sr. 2011. Tissue-specific and dose-related accumulation of arsenic in mouse offspring following maternal consumption of arsenic-contaminated water. Basic Clin. Pharmacol. Toxicol. 108:326–32
    [Google Scholar]
  100. 100.  Mauro M, Caradonna F, Klein CB, Dolinoy D 2016. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells. Environ. Mol. Mutagen. 57:137–50
    [Google Scholar]
  101. 101.  Mazumdar M, Ibne Hasan MOS, Hamid R, Valeri L, Paul L et al. 2015. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh. Environ. Health 14:34
    [Google Scholar]
  102. 102.  Meharg AA, Rahman MM 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic contamination. Environ. Sci. Technol. 37:229–34
    [Google Scholar]
  103. 103.  Melak D, Ferreccio C, Kalman D, Parra R, Acevedo J et al. 2014. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicol. Appl. Pharmacol. 274:225–31
    [Google Scholar]
  104. 104.  Mitra SR, Mazumder DNG, Basu A, Block G, Haque R et al. 2004. Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ. Health Perspect. 112:1104–9
    [Google Scholar]
  105. 105.  Moe B, Peng H, Lu X, Chen B, Chen LWL et al. 2016. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. J. Environ. Sci. (China) 49:113–24
    [Google Scholar]
  106. 106.  Mudd SH, Poole JR 1975. Labile methyl balances for normal humans on various dietary regimens. Metab. Clin. Exp. 24:721–35
    [Google Scholar]
  107. 107.  Muenyi CS, Ljungman M, States JC 2015. Arsenic disruption of DNA damage responses—potential role in carcinogenesis and chemotherapy. Biomolecules 5:2184–93
    [Google Scholar]
  108. 108.  Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC 2013. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based Market Basket sample. Environ. Health Perspect. 121:818–24
    [Google Scholar]
  109. 109.  Naujokas MF, Anderson B, Ahsan H, Aposhian V, Graziano JH et al. 2013. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect. 121:295
    [Google Scholar]
  110. 110.  Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E 2011. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the U.S. population. Environ. Res. 111:110–18
    [Google Scholar]
  111. 111.  Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN et al. 2013. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ. Health Perspect. 121:1306
    [Google Scholar]
  112. 112.  Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V et al. 2015. Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh. Cancer Epidemiol. Biomark. Prev. 24:1748–57
    [Google Scholar]
  113. 113.  Niedzwiecki MM, Liu X, Zhu H, Hall MN, Slavkovich V et al. 2018. Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: a one-carbon metabolism candidate gene study. Environ. Int. 113:133–42
    [Google Scholar]
  114. 114.  Pelch KE, Tokar EJ, Merrick BA, Waalkes MP 2015. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium. Toxicol. Appl. Pharmacol. 286:159–67
    [Google Scholar]
  115. 115.  Peters BA, Hall MN, Liu X, Faruque P, Sanchez TR et al. 2015. Folic acid and creatine as therapeutic approaches to lower blood arsenic: a randomized controlled trial. Environ. Health Perspect. 123:1294
    [Google Scholar]
  116. 116.  Peters BA, Hall MN, Liu X, Parvez F, Siddique AB et al. 2015. Low-dose creatine supplementation lowers plasma guanidinoacetate, but not plasma homocysteine, in a double-blind, randomized, placebo-controlled trial. J. Nutr. 145:2245–52
    [Google Scholar]
  117. 117.  Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H 2000. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 163:203–7
    [Google Scholar]
  118. 118.  Petrick JS, Jagadish B, Mash EA, Aposhian HV 2001. Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem. Res. Toxicol. 14:651–56
    [Google Scholar]
  119. 119.  Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V et al. 2007. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am. J. Clin. Nutr. 86:1179–86
    [Google Scholar]
  120. 120.  Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V et al. 2009. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ. Health Perspect. 117:254–60
    [Google Scholar]
  121. 121.  Porter KE, Basu A, Hubbard AE, Bates MN, Kalman D et al. 2010. Association of genetic variation in cystathionine-β-synthase and arsenic metabolism. Environ. Res. 110:580–87
    [Google Scholar]
  122. 122.  Potera C 2007. Food safety: U.S. rice serves up arsenic. Environ. Health Perspect. 115:A296
    [Google Scholar]
  123. 123.  Pu Y-S, Yang S-M, Huang Y-K, Chung C-J, Huang SK et al. 2007. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol. Appl. Pharmacol. 218:99–106
    [Google Scholar]
  124. 124.  Raml R, Rumpler A, Goessler W, Vahter M, Li L et al. 2007. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol. Appl. Pharmacol. 222:374–80
    [Google Scholar]
  125. 125.  Ravenscroft P, Brammer H, Richards K 2009. Arsenic Pollution: A Global Synthesis New York: Wiley-Blackwell
  126. 126.  Reed MC, Gamble MV, Hall MN, Nijhout HF 2015. Mathematical analysis of the regulation of competing methyltransferases. BMC Syst. Biol. 9:69
    [Google Scholar]
  127. 127.  Reichard JF, Puga A 2010. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104
    [Google Scholar]
  128. 128.  Schläwicke Engström K, Nermell B, Concha G, Stromberg U, Vahter M, Broberg K 2009. Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat. Res. 667:4–14
    [Google Scholar]
  129. 129.  Seow WJ, Kile ML, Baccarelli AA, Pan W-C, Byun H-M et al. 2014. Epigenome-wide DNA methylation changes with development of arsenic-induced skin lesions in Bangladesh: a case-control follow-up study. Environ. Mol. Mutagen. 55:449–56
    [Google Scholar]
  130. 130.  Signes-Pastor AJ, Carey M, Meharg AA 2017. Inorganic arsenic removal in rice bran by percolating cooking water. Food Chem 234:76–80
    [Google Scholar]
  131. 131.  Singh AP, Goel RK, Kaur T 2011. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 18:87–93
    [Google Scholar]
  132. 132.  Smith AH, Lingas EO, Rahman M 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 78:1093–103
    [Google Scholar]
  133. 133.  Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C 2012. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ. Health Perspect. 120:1527–31
    [Google Scholar]
  134. 134.  Spiegelstein O, Gould A, Wlodarczyk B, Tsie M, Lu X et al. 2005. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. Toxicol. Appl. Pharmacol. 203:18–26
    [Google Scholar]
  135. 135.  Spiegelstein O, Lu X, Le XC, Troen A, Selhub J et al. 2003. Effects of dietary folate intake and folate binding protein-1 (Folbp1) on urinary speciation of sodium arsenate in mice. Toxicol. Lett. 145:2167–74
    [Google Scholar]
  136. 136.  Spiegelstein O, Lu X, Le XC, Troen A, Selhub J et al. 2005. Effects of dietary folate intake and folate binding protein-2 (Folbp2) on urinary speciation of sodium arsenate in mice. Environ. Toxicol. Pharmacol. 19:1–7
    [Google Scholar]
  137. 137.  Spratlen MJ, Gamble MV, Grau-Perez M, Kuo C-C, Best LG et al. 2017. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: evidence from the Strong Heart Study. Food Chem. Toxicol. 105:387–97
    [Google Scholar]
  138. 138.  Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT 2001. Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am. J. Physiol. Endocrinol. Metab. 281:E1095–100
    [Google Scholar]
  139. 139.  Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL 2006. Is it time to reevaluate methyl balance in humans?. Am. J. Clin. Nutr. 83:5–10
    [Google Scholar]
  140. 140.  Steinmaus C, Bates MN, Yuan Y, Kalman D, Atallah R et al. 2006. Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States. J. Occup. Environ. Med. 48:478–88
    [Google Scholar]
  141. 141.  Steinmaus C, Carrigan K, Kalman D, Atallah R, Yuan Y, Smith AH 2005. Dietary intake and arsenic methylation in a U.S. population. Environ. Health Perspect. 113:1153–59
    [Google Scholar]
  142. 142.  Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J et al. 2014. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol. Biomark. Prev. 23:1529–38
    [Google Scholar]
  143. 143.  Steinmaus C, Ferreccio C, Yuan Y, Acevedo J, Gonzalez F et al. 2014. Elevated lung cancer in younger adults and low concentrations of arsenic in water. Am. J. Epidemiol. 180:1082–87
    [Google Scholar]
  144. 144.  Steinmaus C, Yuan Y, Kalman D, Rey OA, Skibola CF et al. 2010. Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina. Toxicol. Appl. Pharmacol. 247:138–45
    [Google Scholar]
  145. 145.  Steinmaus CM, Ferreccio C, Romo JA, Yuan Y, Cortes S et al. 2013. Drinking water arsenic in Northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol. Biomark. Prev. 22:623–30
    [Google Scholar]
  146. 146.  Stevens JT, Hall LL, Farmer JD, DiPasquale LC, Chernoff N, Durham WF 1977. Disposition of 14C and/or 74As-cacodylic acid in rats after intravenous, intratracheal, or peroral administration. Environ. Health Perspect. 19:151–57
    [Google Scholar]
  147. 147.  Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL et al. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 74:289–99
    [Google Scholar]
  148. 148.  Sun G-X, Williams PN, Zhu Y-G, Deacon C, Carey A-M et al. 2009. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ. Int. 35:473–75
    [Google Scholar]
  149. 149.  Taes YEC, Delanghe JR, De Vriese AS, Rombaut R, Van Camp J, Lameire NH 2003. Creatine supplementation decreases homocysteine in an animal model of uremia. Kidney Int 64:1331–37
    [Google Scholar]
  150. 150.  Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368:1575–84
    [Google Scholar]
  151. 151.  Thomas DJ, Waters SB, Styblo M 2004. Elucidating the pathway for arsenic methylation. Toxicol. Appl. Pharmacol. 198:319–26
    [Google Scholar]
  152. 152.  Tice RR, Yager JW, Andrews P, Crecelius E 1997. Effect of hepatic methyl donor status on urinary excretion and DNA damage in B6C3F1 mice treated with sodium arsenite. Mutat. Res. 386:3315–34
    [Google Scholar]
  153. 153.  Tseng CH, Huang YK, Huang YL, Chung CJ, Yang MH et al. 2005. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease–hyperendemic villages in Taiwan. Toxicol. Appl. Pharmacol. 206:299–308
    [Google Scholar]
  154. 154.  Tseng WP 1977. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19:109–19
    [Google Scholar]
  155. 155.  Uthus EO, Davis C 2005. Dietary arsenic affects dimethylhydrazine-induced aberrant crypt formation and hepatic global DNA methylation and DNA methyltransferase activity in rats. Biol. Trace Element Res. 103:133–45
    [Google Scholar]
  156. 156.  Vahter M, Marafante E 1987. Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol. Lett. 37:41–46
    [Google Scholar]
  157. 157.  Valenzuela OL, Borja-Aburto VH, Garcia-Vargas GG, Cruz-Gonzalez MB, Garcia-Montalvo EA et al. 2005. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environ. Health Perspect. 113:250–54
    [Google Scholar]
  158. 158.  van Breda SGJ, Claessen SMH, Lo K, van Herwijnen M, Brauers KJ et al. 2015. Epigenetic mechanisms underlying arsenic associated lung carcinogenesis. Arch. Toxicol. 89:1959–69
    [Google Scholar]
  159. 159.  Vance JE, Vance DE 2004. Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 82:113–28
    [Google Scholar]
  160. 160.  Welch AH, Stollenwerk KG, eds. 2002. Arsenic in Ground Water: Geochemistry and Occurrence New York: Kluwer Acad.
  161. 161.  Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA 2005. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. 39:5531–40
    [Google Scholar]
  162. 162.  Wilson D, Hooper C, Shi X 2012. Arsenic and lead in juice: apple, citrus, and apple-base. J. Environ. Health 75:14–20
    [Google Scholar]
  163. 163.  Wiseman H, Halliwell B 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313:17–29
    [Google Scholar]
  164. 164.  Wlodarczyk B, Spiegelstein O, Gelineau-van Waes J, Vorce RL, Lu X et al. 2001. Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice. Toxicol. Appl. Pharmacol. 177:238–46
    [Google Scholar]
  165. 165. World Health Organ. (WHO). 2008. Guidelines for Drinking-Water Quality: Incorporating the First and Second Addenda 1 Geneva: World Health Organ, 3rd ed..
  166. 166.  Wu M-M, Chiou H-Y, Hsueh Y-M, Hong C-T, Su C-L et al. 2006. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol. Appl. Pharmacol. 216:168–75
    [Google Scholar]
  167. 167.  Xu Y, Tokar EJ, Waalkes MP 2014. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation. Arch. Toxicol. 88:263–74
    [Google Scholar]
  168. 168.  Yamanaka K, Takabayashi F, Mizoi M, An Y, Hasegawa A, Okada S 2001. Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-Oxo-2′-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis. Biochem. Biophys. Res. Commun. 287:66–70
    [Google Scholar]
  169. 169.  Yamauchi H, Yamamura Y 1983. Concentration and chemical species of arsenic in human tissue. Bull. Environ. Contam. Toxicol. 31:267–70
    [Google Scholar]
  170. 170.  Yu RC, Hsu KH, Chen CJ, Froines JR 2000. Arsenic methylation capacity and skin cancer. Cancer Epidemiol. Biomark. Prev. 9:1259–62
    [Google Scholar]
  171. 171.  Zakharyan R, Wu Y, Bogdan GM, Aposhian HV 1995. Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem. Res. Toxicol. 8:1029–38
    [Google Scholar]
  172. 172.  Zakharyan RA, Ayala-Fierro F, Cullen WR, Carter DM, Aposhian HV 1999. Enzymatic methylation of arsenic compounds. VII. Monomethylarsonous acid (MMAIII) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes. Toxicol. Appl. Pharmacol. 158:9–15
    [Google Scholar]
  173. 173.  Zeisel SH 2009. Importance of methyl donors during reproduction. Am. J. Clin. Nutr. 89:673S–77S
    [Google Scholar]
  174. 174.  Zeisel SH, Warrier M 2017. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu. Rev. Nutr. 37:157–81
    [Google Scholar]
  175. 175.  Zhang J, Mu X, Xu W, Martin FL, Alamdar A et al. 2014. Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat. Sci. Total Environ. 497–498:618–25
    [Google Scholar]
  176. 176.  Zhao F, Stroud JL, Eagling T, Dunham SJ, McGrath SP, Shewry PR 2010. Accumulation, distribution, and speciation of arsenic in wheat grain. Environ. Sci. Technol. 44:145464–68
    [Google Scholar]
  177. 177.  Zhao L, Chen S, Jia L, Shu S, Zhu P, Liu Y 2012. Selectivity of arsenite interaction with zinc finger proteins. Metallomics 4:988–94
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051757
Loading
/content/journals/10.1146/annurev-nutr-082117-051757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error