1932

Abstract

Apocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin. Apocarotenoids are generated upon enzymatic and nonenzymatic cleavage of the parent compounds both in plants and in the tissues of mammals that have ingested carotenoid-containing foods. The best-characterized apocarotenoids are retinoids (vitamin A and its derivatives), generated upon central oxidative cleavage of provitamin A carotenoids, mainly β-carotene. In addition to the well-known biological actions of vitamin A, it is becoming apparent that nonretinoid apocarotenoids also have the potential to regulate a broad spectrum of critical cellular functions, thus influencing mammalian health. This review discusses the current knowledge about the generation and biological activities of nonretinoid apocarotenoids in mammals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051841
2018-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/38/1/annurev-nutr-082117-051841.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051841&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Al-Hasani SM, Parrish DB 1968. Vitamin A activity of β-apo-carotenals in Coturnix coturnix japonica. J. Nutr. 94:402–6
    [Google Scholar]
  2. 2.  Al-Hasani SM, Parrish DB 1972. Forms of vitamin A and of carotenoids in tissues, blood serum and yolk of eggs from Coturnix coturnix japonica fed β-apo-carotenals. J. Nutr. 102:1437–40
    [Google Scholar]
  3. 3.  Amengual J, Lobo GP, Golczak M, Li HN, Klimova T et al. 2011. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25:948–59
    [Google Scholar]
  4. 4.  Amengual J, Widjaja-Adhi MA, Rodriguez-Santiago S, Hessel S, Golczak M et al. 2013. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. J. Biol. Chem. 288:34081–96
    [Google Scholar]
  5. 5.  Ansari M, Emami S 2016. β-Ionone and its analogs as promising anticancer agents. Eur. J. Med. Chem. 123:141–54
    [Google Scholar]
  6. 6.  Babino D, Palczewski G, Widjaja-Adhi MA, Kiser PD, Golczak M, von Lintig J 2015. Characterization of the role of beta-carotene 9,10-dioxygenase in macular pigment metabolism. J. Biol. Chem. 290:24844–57
    [Google Scholar]
  7. 7.  Beltran JC, Stange C 2016. Apocarotenoids: a new carotenoid-derived pathway. Subcell. Biochem. 79:239–72
    [Google Scholar]
  8. 8.  Ben-Aziz A, Britton G, Goodwin TW 1973. Carotene epoxides of Lycopersicon esculentum. . Phytochemistry 12:2759–64
    [Google Scholar]
  9. 9.  Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD 2016. Vitamin A absorption, storage and mobilization. Subcell. Biochem. 81:95–125
    [Google Scholar]
  10. 10.  Campos C, Zerlotti R, Gomes A, Fernandes E, Lima JL, Bragagnolo N 2011. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem 127:419–26
    [Google Scholar]
  11. 11.  Cardenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R 2015. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genom 16:877
    [Google Scholar]
  12. 12.  Chung J, Koo K, Lian F, Hu KQ, Ernst H, Wang XD 2012. Apo-10′-lycopenoic acid, a lycopene metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice. J. Nutr. 142:405–10
    [Google Scholar]
  13. 13.  Cooperstone JL, Riedl K, Cichon MJ, Francis DM, Curley RW Jr. et al. 2017. Carotenoids and apo-carotenoids in human plasma after continued consumption of high β-carotene or high lycopene tomato juice. FASEB J. 31:635.13
    [Google Scholar]
  14. 14.  Costabile BK, Kim YK, Iqbal J, Zuccaro MV, Wassef L et al. 2016. β-Apo-10′-carotenoids modulate placental microsomal triglyceride transfer protein expression and function to optimize transport of intact β-carotene to the embryo. J. Biol. Chem. 291:18525–35
    [Google Scholar]
  15. 15.  Cui Y, Freedman JH 2009. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression. J. Biol. Chem. 284:24925–32
    [Google Scholar]
  16. 16.  Dela Sena C, Narayanasamy S, Riedl KM, Curley RW Jr., Schwartz SJ, Harrison EH 2013. Substrate specificity of purified recombinant human β-carotene 15,15′-oxygenase (BCO1). J. Biol. Chem. 288:37094–103
    [Google Scholar]
  17. 17.  Dela Sena C, Riedl KM, Narayanasamy S, Curley RW Jr., Schwartz SJ, Harrison EH 2014. The human enzyme that converts dietary provitamin A carotenoids to vitamin A is a dioxygenase. J. Biol. Chem. 289:13661–66
    [Google Scholar]
  18. 18.  Dela Sena C, Sun J, Narayanasamy S, Riedl KM, Yuan Y et al. 2016. Substrate specificity of purified recombinant chicken β-carotene 9′,10′-oxygenase (BCO2). J. Biol. Chem. 291:14609–19
    [Google Scholar]
  19. 19.  Dhinaut J, Balourdet A, Teixeira M, Chogne M, Moret Y 2017. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7:12429
    [Google Scholar]
  20. 20.  Durojaye B, Riedl K, Curley R, Harrison EH 2017. Uptake and metabolism of dietary β-apocarotenoids by Caco-2 intestinal cells. FASEB J 31:635.18
    [Google Scholar]
  21. 21.  Eroglu A, Harrison EH 2013. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. Thematic review series: fat-soluble vitamins: vitamin A. J. Lipid Res. 54:1719–30
    [Google Scholar]
  22. 22.  Eroglu A, Hruszkewycz DP, Curley RW Jr., Harrison EH 2010. The eccentric cleavage product of β-carotene, β-apo-13-carotenone, functions as an antagonist of RXRα. Arch. Biochem. Biophys. 504:11–16
    [Google Scholar]
  23. 23.  Eroglu A, Hruszkewycz DP, Dela Sena C, Narayanasamy S, Riedl KM et al. 2012. Naturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. J. Biol. Chem. 287:15886–95
    [Google Scholar]
  24. 24.  Fleshman MK, Lester GE, Riedl KM, Kopec RE, Narayanasamy S et al. 2011. Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J. Agric. Food Chem. 59:4448–54
    [Google Scholar]
  25. 25.  Ford NA, Elsen AC, Zuniga K, Lindshield BL, Erdman JW Jr 2011. Lycopene and apo-12′-lycopenal reduce cell proliferation and alter cell cycle progression in human prostate cancer cells. Nutr. Cancer 63:256–63
    [Google Scholar]
  26. 26.  Goodman DS, Huang HS 1965. Biosynthesis of vitamin A with rat intestinal enzymes. Science 149:879–80
    [Google Scholar]
  27. 27.  Guo X, Wu L, Lyu Y, Chowanadisai W, Clarke SL et al. 2017. Ablation of β,β-carotene-9′,10′-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice. J. Nutr. Biochem. 46:74–82
    [Google Scholar]
  28. 28.  Handelman GJ, van Kuijk FJ, Chatterjee A, Krinsky NI 1991. Characterization of products formed during the autoxidation of β-carotene. Free Radic. Biol. Med. 10:427–37
    [Google Scholar]
  29. 29.  Hansen S, Maret W 1988. Retinal is not formed in vitro by enzymatic central cleavage of β-carotene. Biochemistry 27:200–6
    [Google Scholar]
  30. 30.  Harrison EH, Curley RW Jr. 2016. Carotenoids and retinoids: nomenclature, chemistry, and analysis. Subcell. Biochem. 81:1–19
    [Google Scholar]
  31. 31.  Hashimoto H, Uragami C, Cogdell RJ 2016. Carotenoids and photosynthesis. Subcell. Biochem. 79:111–39
    [Google Scholar]
  32. 32.  Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S et al. 2007. CMO1 deficiency abolishes vitamin A production from β-carotene and alters lipid metabolism in mice. J. Biol. Chem. 282:33553–61
    [Google Scholar]
  33. 33.  Hoshyar R, Mollaei H 2017. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J. Pharm. Pharmacol. 69:1419–27
    [Google Scholar]
  34. 34.  Hou X, Rivers J, Leon P, McQuinn RP, Pogson BJ 2016. Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21:792–803
    [Google Scholar]
  35. 35.  Hussain MM 2014. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 25:200–6
    [Google Scholar]
  36. 36.  Ip BC, Hu KQ, Liu C, Smith DE, Obin MS et al. 2013. Lycopene metabolite, apo-10′-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev. Res. 6:1304–16
    [Google Scholar]
  37. 37.  Ip BC, Liu C, Ausman LM, von Lintig J, Wang XD 2014. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice. Cancer Prev. Res. 7:1219–27
    [Google Scholar]
  38. 38.  Ip BC, Liu C, Lichtenstein AH, von Lintig J, Wang XD 2015. Lycopene and apo-10′-lycopenoic acid have differential mechanisms of protection against hepatic steatosis in β-carotene-9′,10′-oxygenase knockout male mice. J. Nutr. 145:268–76
    [Google Scholar]
  39. 39.  Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C 2015. Nuclear and extranuclear effects of vitamin A. Can. J. Physiol. Pharmacol. 93:1065–75
    [Google Scholar]
  40. 40.  Kane MA 2012. Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim. Biophys. Acta 1821:10–20
    [Google Scholar]
  41. 41.  Kiefer C, Hessel S, Lampert JM, Vogt K, Lederer MO et al. 2001. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J. Biol. Chem. 276:14110–16
    [Google Scholar]
  42. 42.  Kiefer C, Sumser E, Wernet MF, von Lintig J 2002. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. . PNAS 99:10581–86
    [Google Scholar]
  43. 43.  Kiser PD, Golczak M, Palczewski K 2014. Chemistry of the retinoid (visual) cycle. Chem. Rev. 114:194–232
    [Google Scholar]
  44. 44.  Kopec RE, Riedl KM, Harrison EH, Curley RW Jr., Hruszkewycz DP et al. 2010. Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J. Agric. Food Chem. 58:3290–96
    [Google Scholar]
  45. 45.  Kyriakoudi A, O'Callaghan YC, Galvin K, Tsimidou MZ, O'Brien NM 2015. Cellular transport and bioactivity of a major saffron apocarotenoid, picrocrocin (4-(β-D-glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). J. Agric. Food Chem. 63:8662–68
    [Google Scholar]
  46. 46.  Lampert JM, Holzschuh J, Hessel S, Driever W, Vogt K, von Lintig J 2003. Provitamin A conversion to retinal via the β,β-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 130:2173–86
    [Google Scholar]
  47. 47.  Li B, Vachali PP, Shen Z, Gorusupudi A, Nelson K et al. 2017. Retinal accumulation of zeaxanthin, lutein, and beta-carotene in mice deficient in carotenoid cleavage enzymes. Exp. Eye Res. 159:123–31
    [Google Scholar]
  48. 48.  Lian F, Smith DE, Ernst H, Russell RM, Wang XD 2007. Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis 28:1567–74
    [Google Scholar]
  49. 49.  Lian F, Wang XD 2008. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int. J. Cancer 123:1262–68
    [Google Scholar]
  50. 50.  Lindqvist A, Andersson S 2002. Biochemical properties of purified recombinant human β-carotene 15,15′-monooxygenase. J. Biol. Chem. 277:23942–48
    [Google Scholar]
  51. 51.  Lindqvist A, Andersson S 2004. Cell type-specific expression of β-carotene 15,15′-mono-oxygenase in human tissues. J. Histochem. Cytochem. 52:491–99
    [Google Scholar]
  52. 52.  Liu JR, Chen BQ, Yang BF, Dong HW, Sun CH et al. 2004. Apoptosis of human gastric adenocarcinoma cells induced by β-ionone. World J. Gastroenterol. 10:348–51
    [Google Scholar]
  53. 53.  Liu JR, Dong HW, Sun XR, Wang Q, Sun WG et al. 2010. Effects of β-ionone on mammary carcinogenesis and antioxidant status in rats treated with DMBA. Nutr. Cancer 62:58–65
    [Google Scholar]
  54. 54.  Liu JR, Sun XR, Dong HW, Sun CH, Sun WG et al. 2008. β-Ionone suppresses mammary carcinogenesis, proliferative activity and induces apoptosis in the mammary gland of the Sprague-Dawley rat. Int. J. Cancer 122:2689–98
    [Google Scholar]
  55. 55.  Lobo GP, Isken A, Hoff S, Babino D, von Lintig J 2012. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 139:2966–77
    [Google Scholar]
  56. 56.  Marty C, Berset C 1990. Factors affecting the thermal degradation of all-trans-β-carotene. J. Agric. Food Chem. 38:1063–67
    [Google Scholar]
  57. 57.  May LG, Madine MA, Waring MJ 2004. Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Res 32:65–72
    [Google Scholar]
  58. 58.  Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD 2011. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Arch. Biochem. Biophys. 506:109–21
    [Google Scholar]
  59. 59.  Moise AR, Al-Babili S, Wurtzel ET 2014. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev. 114:164–93
    [Google Scholar]
  60. 60.  Morales A, Gonzalez A, Varela-Echavarria A, Shimada A, Mora O 2007. Differences in expression and activity of β,β′-carotene-15,15′-oxygenase in liver and duodenum of cattle with yellow or white fat. J. Anim. Physiol. Anim. Nutr. 91:341–46
    [Google Scholar]
  61. 61.  Moran NA, Jarvik T 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–27
    [Google Scholar]
  62. 62.  Nagao A, Maoka T, Ono H, Kotake-Nara E, Kobayashi M, Tomita M 2015. A 3-hydroxy β-end group in xanthophylls is preferentially oxidized to a 3-oxo ε-end group in mammals. J. Lipid Res. 56:449–62
    [Google Scholar]
  63. 63.  Narayanasamy S, Sun J, Pavlovicz RE, Eroglu A, Rush CE et al. 2017. Synthesis of apo-13- and apo-15-lycopenoids, cleavage products of lycopene that are retinoic acid antagonists. J. Lipid Res. 58:1021–29
    [Google Scholar]
  64. 64.  Olson JA, Hayaishi O 1965. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine. PNAS 54:1364–70
    [Google Scholar]
  65. 65.  Ouyang JM, Daun H, Chang SS, Ho C-T 1980. Formation of carbonyl compounds from P-carotene during palm oil deodorization. J. Food Sci. 45:1214–17
    [Google Scholar]
  66. 66.  Paik J, During A, Harrison EH, Mendelsohn CL, Lai K, Blaner WS 2001. Expression and characterization of a murine enzyme able to cleave β-carotene. The formation of retinoids. J. Biol. Chem. 276:32160–68
    [Google Scholar]
  67. 67.  Palczewski G, Amengual J, Hoppel CL, von Lintig J 2014. Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J 28:4457–69
    [Google Scholar]
  68. 68.  Patel S, Sarwat M, Khan TH 2017. Mechanism behind the anti-tumour potential of saffron (Crocus sativus L.): the molecular perspective. Crit. Rev. Oncol. Hematol. 115:27–35
    [Google Scholar]
  69. 69.  Piskunov A, Al Tanoury Z, Rochette-Egly C 2014. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected. Subcell. Biochem. 70:103–27
    [Google Scholar]
  70. 70.  Pongkan W, Takatori O, Ni Y, Xu L, Nagata N et al. 2017. β-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice. Mol. Nutr. Food Res. 61:101601077
    [Google Scholar]
  71. 71.  Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B et al. 2001. Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15′-dioxygenase. J. Biol. Chem. 276:6560–65
    [Google Scholar]
  72. 72.  Rivera SM, Canela-Garayoa R 2012. Analytical tools for the analysis of carotenoids in diverse materials. J. Chromatogr. A 1224:1–10
    [Google Scholar]
  73. 73.  Rivera-Madrid R, Aguilar-Espinosa M, Cardenas-Conejo Y, Garza-Caligaris LE 2016. Carotenoid derivates in achiote (Bixa orellana) seeds: synthesis and health promoting properties. Front. Plant Sci. 7:1406
    [Google Scholar]
  74. 74.  Rodriguez EB, Rodriguez-Amaya DB 2007. Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidation in model systems and processed foods. Food Chem 101:563–72
    [Google Scholar]
  75. 75.  Russell RM 2004. The enigma of beta-carotene in carcinogenesis: what can be learned from animal studies. J. Nutr. 134:262S–68S
    [Google Scholar]
  76. 76.  Schaub P, Wust F, Koschmieder J, Yu Q, Virk P et al. 2017. Nonenzymatic β-carotene degradation in provitamin A-biofortified crop plants. J. Agric. Food Chem. 65:6588–98
    [Google Scholar]
  77. 77.  Sharma RV, Mathur SN, Dmitrovskii AA, Das RC, Ganguly J 1976. Studies on the metabolism of β-carotene and apo-β-carotenoids in rats and chickens. Biochim. Biophys. Acta 486:183–94
    [Google Scholar]
  78. 78.  Srivastava R, Ahmed H, Dixit RK, Dharamveer Saraf SA 2010. Crocus sativus L.: a comprehensive review. Pharmacogn. Rev. 4:200–8
    [Google Scholar]
  79. 79.  Sun J, Narayanasamy S, Curley RW Jr., Harrison EH 2014. β-Apo-13-carotenone regulates retinoid X receptor transcriptional activity through tetramerization of the receptor. J. Biol. Chem. 289:33118–24
    [Google Scholar]
  80. 80.  Takitani K, Zhu CL, Inoue A, Tamai H 2006. Molecular cloning of the rat β-carotene 15,15′-monooxygenase gene and its regulation by retinoic acid. Eur. J. Nutr. 45:320–26
    [Google Scholar]
  81. 81.  Tan HL, Thomas-Ahner JM, Moran NE, Cooperstone JL, Erdman JW Jr. et al. 2017. β-Carotene 9′,10′ oxygenase modulates the anticancer activity of dietary tomato or lycopene on prostate carcinogenesis in the TRAMP model. Cancer Prev. Res. 10:161–69
    [Google Scholar]
  82. 82.  Tang GW, Wang XD, Russell RM, Krinsky NI 1991. Characterization of beta-apo-13-carotenone and beta-apo-14′-carotenal as enzymatic products of the excentric cleavage of beta-carotene. Biochemistry 30:9829–34
    [Google Scholar]
  83. 83.  von Lintig J 2010. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu. Rev. Nutr. 30:35–56
    [Google Scholar]
  84. 84.  von Lintig J 2012. Provitamin A metabolism and functions in mammalian biology. Am. J. Clin. Nutr. 96:1234S–44S
    [Google Scholar]
  85. 85.  von Lintig J, Vogt K 2000. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving β-carotene to retinal. J. Biol. Chem. 275:11915–20
    [Google Scholar]
  86. 86.  Wang CX, Jiang H, Yuen JJ, Lee SA, Narayanasamy S et al. 2015. Actions of β-apo-carotenoids in differentiating cells: differential effects in P19 cells and 3T3-L1 adipocytes. Arch. Biochem. Biophys. 572:2–10
    [Google Scholar]
  87. 87.  Wang XD 2012. Lycopene metabolism and its biological significance. Am. J. Clin. Nutr. 96:1214S–22S
    [Google Scholar]
  88. 88.  Wang XD, Russell RM 1999. Procarcinogenic and anticarcinogenic effects of beta-carotene. Nutr. Rev. 57:263–72
    [Google Scholar]
  89. 89.  Wang XD, Russell RM, Liu C, Stickel F, Smith DE, Krinsky NI 1996. Beta-oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis from beta-apocarotenoic acids. J. Biol. Chem. 271:26490–98
    [Google Scholar]
  90. 90.  Wang XD, Tang GW, Fox JG, Krinsky NI, Russell RM 1991. Enzymatic conversion of beta-carotene into beta-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues. Arch. Biochem. Biophys. 285:8–16
    [Google Scholar]
  91. 91.  Winterstein A 1960. Neuere ergebnisse der carotenoid-forschung. Angew. Chem. 72:902–10
    [Google Scholar]
  92. 92.  Wu L, Guo X, Hartson SD, Davis MA, He H et al. 2017. Lack of β,β-carotene-9′,10′-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol. Nutr. Food Res. 61:51600576
    [Google Scholar]
  93. 93.  Wyss A, Wirtz G, Woggon W, Brugger R, Wyss M et al. 2000. Cloning and expression of β,β-carotene 15,15′-dioxygenase. Biochem. Biophys. Res. Commun. 271:334–36
    [Google Scholar]
  94. 94.  Xiaobin F, Xiaodong Q, Shuwen H, Chong Y, Yumei Y, Guifen Z 2017. Extracted apocarotenoids from saffron stigmas and evaluated the quality of saffron. Nat. Prod. Res. 32:2225–28
    [Google Scholar]
  95. 95.  Xu Z, Kong XQ 2017. Bixin ameliorates high fat diet-induced cardiac injury in mice through inflammation and oxidative stress suppression. Biomed. Pharmacother. 89:991–1004
    [Google Scholar]
  96. 96.  Yan W, Jang GF, Haeseleer F, Esumi N, Chang J et al. 2001. Cloning and characterization of a human beta,beta-carotene-15,15′-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics 72:193–202
    [Google Scholar]
  97. 97.  Yeum KJ, dos Anjos Ferreira AL, Smith D, Krinsky NI, Russell RM 2000. The effect of alpha-tocopherol on the oxidative cleavage of beta-carotene. Free Radic. Biol. Med. 29:105–14
    [Google Scholar]
  98. 98.  Ziouzenkova O, Orashanu G, Sukhova G, Lau E, Berger JP et al. 2007. Asymmetric cleavage of β-carotene yields a transcriptional repressor of RXR and PPAR responses. Mol. Endocrinol. 21:77–88
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051841
Loading
/content/journals/10.1146/annurev-nutr-082117-051841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error