1932

Abstract

Insight into drug transport mechanisms is highly relevant to the efficacious treatment of tuberculosis (TB). Major problems in TB treatment are related to the transport of antituberculosis (anti-TB) drugs across human and mycobacterial membranes, affecting the concentrations of these drugs systemically and locally. Firstly, transporters located in the intestines, liver, and kidneys all determine the pharmacokinetics and pharmacodynamics of anti-TB drugs, with a high risk of drug-drug interactions in the setting of concurrent use of antimycobacterial, antiretroviral, and antidiabetic agents. Secondly, human efflux transporters limit the penetration of anti-TB drugs into the brain and cerebrospinal fluid, which is especially important in the treatment of TB meningitis. Finally, efflux transporters located in the macrophage and cell membranes play a pivotal role in the emergence of phenotypic tolerance and drug resistance, respectively. We review the role of efflux transporters in TB drug disposition and evaluate the promise of efflux pump inhibition from a novel holistic perspective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-052438
2018-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010617-052438.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-052438&mimeType=html&fmt=ahah

Literature Cited

  1. 1. WHO (World Health Organ.). 2016. Global Tuberculosis Report 2016 Geneva: WHO http://www.who.int/tb/publications/global_report/en/
  2. Zumla AI, Gillespie SH, Hoelscher M, Philips PP, Cole ST. 2.  et al. 2014. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect. Dis. 14:327–40 [Google Scholar]
  3. Van Deun A, Maug AK, Salim MA, Das PK, Sarker MR. 3.  et al. 2010. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Microb. Drug Resist. 182:684–92 [Google Scholar]
  4. Semvua HH, Kibiki GS, Kisanga ER, Boeree MJ, Burger DM, Aarnoutse R. 4.  2015. Pharmacological interactions between rifampicin and antiretroviral drugs: challenges and research priorities for resource-limited settings. Ther. Drug Monit. 37:22–32 [Google Scholar]
  5. Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJAM, van Crevel R. 5.  2010. Implications of the global increase of diabetes for tuberculosis control and patient care. Trop. Med. Int. Health 15:1289–99 [Google Scholar]
  6. Thwaites GE, van Toorn R, Schoeman J. 6.  2013. Tuberculous meningitis: more questions, still too few answers. Lancet Neurol 12:999–1010 [Google Scholar]
  7. Begley DJ. 7.  2004. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther. 104:29–45 [Google Scholar]
  8. Hartkoorn RC, Chandler B, Owen A, Ward SA, Squire SB. 8.  et al. 2007. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis 87:248–55 [Google Scholar]
  9. Marquez B. 9.  2005. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87:1137–47 [Google Scholar]
  10. Adams KN, Szumowski JD, Ramakrishnan L. 10.  2014. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J. Infect. Dis. 210:456–66 [Google Scholar]
  11. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL. 11.  et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215–36 [Google Scholar]
  12. Choudhuri S, Klaassen CD. 12.  2006. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. 25:231–59 [Google Scholar]
  13. Vasiliou V, Vasiliou K, Nebert DW. 13.  2009. Human ATP-binding cassette (ABC) transporter family. Hum. Genom. 3:281–90 [Google Scholar]
  14. Szakács G, Váradi A, Özvegy-Laczka C, Sarkadi B. 14.  2008. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov. Today 13:379–93 [Google Scholar]
  15. Endres CJ, Hsiao P, Chung FS, Unadkat JD. 15.  2006. The role of transporters in drug interactions. Eur. J. Pharm. Sci. 27:501–17 [Google Scholar]
  16. Han HK. 16.  2011. Role of transporters in drug interactions. Arch. Pharmacal Res. 34:1865–77 [Google Scholar]
  17. Schinkel AH, Jonker JW. 17.  2003. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55:3–29 [Google Scholar]
  18. König J, Müller F, Fromm MF. 18.  2013. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharm. Rev. 65:944–66 [Google Scholar]
  19. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM. 19.  et al. 2013. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin. Pharmacol. Ther. 94:80–94 [Google Scholar]
  20. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC. 20.  et al. 2001. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–64 [Google Scholar]
  21. Mao Q, Unadkat JD. 21.  2015. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—an update. AAPS J 17:65–82 [Google Scholar]
  22. Zhou SF, Wang LL, Di YM, Xue CC, Duan W. 22.  et al. 2008. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr. Med. Chem 15:1981–2039 [Google Scholar]
  23. Cole SP. 23.  2014. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu. Rev. Pharmacol. Toxicol. 54:95–117 [Google Scholar]
  24. Homolya L, Váradi A, Sarkadi B. 24.  2003. Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. BioFactors 17:103–14 [Google Scholar]
  25. Kock K, Brouwer KL. 25.  2012. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther. 92:599–612 [Google Scholar]
  26. Borst P, de Wolf C, van de Wetering K. 26.  2007. Multidrug resistance-associated proteins 3, 4, and 5. Pflügers Arch. Eur. J. Physiol. 453:661–73 [Google Scholar]
  27. Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L. 27.  et al. 2003. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol. 63:1094–103 [Google Scholar]
  28. Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. 28.  2007. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol. 71:619–27 [Google Scholar]
  29. Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier JC, Couet W. 29.  2009. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob. Agents Chemother. 53:1457–62 [Google Scholar]
  30. te Brake LH, Russel FGM, van den Heuvel JJMW, de Knegt GJ, de Steenwinkel JE. 30.  et al. 2015. Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis 96:150–57 [Google Scholar]
  31. Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. 31.  2012. Clofazimine: current status and future prospects. J. Antimicrob. Chemother. 67:290–98 [Google Scholar]
  32. Westphal K, Weinbrenner A, Zschiesche M, Franke G, Knoke M. 32.  et al. 2000. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther. 68:345–55 [Google Scholar]
  33. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O. 33.  et al. 1999. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Investig. 104:147–53 [Google Scholar]
  34. Lemmen J, Tozakidis IEP, Galla HJ. 34.  2013. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res 1491:1–13 [Google Scholar]
  35. Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK. 35.  et al. 2000. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol. 157:1575–80 [Google Scholar]
  36. Chen J, Raymond K. 36.  2006. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann. Clin. Microbiol. Antimicrob. 5:3 [Google Scholar]
  37. Regazzi M, Carvalho AC, Villani P, Matteelli A. 37.  2014. Treatment optimization in patients co-infected with HIV and Mycobacterium tuberculosis infections: focus on drug-drug interactions with rifamycins. Clin. Pharmacokinet. 53:489–507 [Google Scholar]
  38. Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R. 38.  et al. 2011. Rifampin's acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design. Clin. Pharmacol. Ther. 89:234–42 [Google Scholar]
  39. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. 39.  2012. Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab. Dispos. 40:610–16 [Google Scholar]
  40. Zong J, Pollack GM. 40.  2003. Modulation of P-glycoprotein transport activity in the mouse blood-brain barrier by rifampin. J. Pharmacol. Exp. Ther. 306:556–62 [Google Scholar]
  41. Zumla A, Nahid P, Cole ST. 41.  2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12:388–404 [Google Scholar]
  42. Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK. 42.  2008. Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin. Microbiol. Rev. 21:243–61 [Google Scholar]
  43. DeLance AR, Safaee M, Oh MC, Clark AJ, Kaur G. 43.  et al. 2013. Tuberculoma of the central nervous system. J. Clin. Neurosci. 20:1333–41 [Google Scholar]
  44. Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T. 44.  et al. 2009. British Infection Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. J. Infect. 59:167–87 [Google Scholar]
  45. Donald PR. 45.  2010. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis 90:279–92 [Google Scholar]
  46. Redzic Z. 46.  2011. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3 [Google Scholar]
  47. Nau R, Sorgel F, Eiffert H. 47.  2010. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 23:858–83 [Google Scholar]
  48. Johanson C, Stopa E, Baird A, Sharma H. 48.  2011. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. J. Neural Transm. 118:115–33 [Google Scholar]
  49. Löscher W, Potschka H. 49.  2005. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76:22–76 [Google Scholar]
  50. Shen DD, Artru AA, Adkison KK. 50.  2004. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv. Drug Deliv. Rev. 56:1825–57 [Google Scholar]
  51. Pardridge WM. 51.  2012. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 32:1959–72 [Google Scholar]
  52. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T. 52.  et al. 2011. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem. 117:333–45 [Google Scholar]
  53. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S. 53.  et al. 2011. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol. Pharm. 8:1332–41 [Google Scholar]
  54. Stieger B, Gao B. 54.  2015. Drug transporters in the central nervous system. Clin. Pharmacokinet. 54:225–42 [Google Scholar]
  55. Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD. 55.  et al. 2008. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J. Comp. Neurol. 510:497–507 [Google Scholar]
  56. Chan GN, Hoque MT, Bendayan R. 56.  2013. Role of nuclear receptors in the regulation of drug transporters in the brain. Trends Pharmacol. Sci. 34:361–72 [Google Scholar]
  57. Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD. 57.  2008. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10 [Google Scholar]
  58. te Brake L, Dian S, Ganiem AR, Ruesen C, Burger D. 58.  et al. 2015. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int. J. Antimicrob. Agents 45:496–503 [Google Scholar]
  59. Deeken JF, Löscher W. 59.  2007. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13:1663–74 [Google Scholar]
  60. Mustafa S, Pai RS, Singh G, Kusum Devi V. 60.  2015. Nanocarrier-based interventions for the management of MDR/XDR-TB. J. Drug Target. 23:287–304 [Google Scholar]
  61. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. 61.  1981. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–72 [Google Scholar]
  62. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M. 62.  et al. 2002. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Investig. 110:1309–18 [Google Scholar]
  63. Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O. 63.  et al. 2009. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos. 37:635–43 [Google Scholar]
  64. Chu X, Bleasby K, Evers R. 64.  2013. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin. Drug Metab. Toxicol. 9:237–52 [Google Scholar]
  65. Raaphorst RM, Windhorst AD, Elsinga PH, Colabufo NA, Lammertsma AA, Luurtsema G. 65.  2015. Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther. 97:362–71 [Google Scholar]
  66. Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J. 66.  et al. 2012. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin. Pharmacol. Ther. 91:227–33 [Google Scholar]
  67. Bauer M, Karch R, Zeitlinger M, Philippe C, Romermann K. 67.  et al. 2015. Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study. J. Cereb. Blood Flow Metab. 35:743–46 [Google Scholar]
  68. Russell DG. 68.  2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2:569–77 [Google Scholar]
  69. Gengenbacher M, Kaufmann SH. 69.  2012. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36:514–32 [Google Scholar]
  70. Evangelopoulos D, da Fonseca JD, Waddell SJ. 70.  2015. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. Int. J. Infect. Dis. 32:76–80 [Google Scholar]
  71. Sarathy J, Dartois V, Dick T, Gengenbacher M. 71.  2013. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57:1648–53 [Google Scholar]
  72. Zhang Y, Yew WW, Barer MR. 72.  2012. Targeting persisters for tuberculosis control. Antimicrob. Agents Chemother. 56:2223–30 [Google Scholar]
  73. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K. 73.  et al. 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53 [Google Scholar]
  74. Moreau A, Le Vee M, Jouan E, Parmentier Y, Fardel O. 74.  2011. Drug transporter expression in human macrophages. Fundam. Clin. Pharmacol. 25:743–52 [Google Scholar]
  75. Lemaire S, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM. 75.  2007. Modulation of the cellular accumulation and intracellular activity of daptomycin towards phagocytized Staphylococcus aureus by the P-glycoprotein (MDR1) efflux transporter in human THP-1 macrophages and Madin-Darby canine kidney cells. Antimicrob. Agents Chemother. 51:2748–57 [Google Scholar]
  76. Seral C, Michot JM, Chanteux H, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. 76.  2003. Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. Antimicrob. Agents Chemother. 47:1047–51 [Google Scholar]
  77. Gollapudi S, Reddy M, Gangadharam P, Tsuruo T, Gupta S. 77.  1994. Mycobacterium tuberculosis induces expression of P-glycoprotein in promonocytic U1 cells chronically infected with HIV type 1. Biochem. Biophys. Res. Commun. 199:1181–87 [Google Scholar]
  78. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA. 78.  et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–77 [Google Scholar]
  79. Seral C, Carryn S, Tulkens PM, Van Bambeke F. 79.  2003. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeriamonocytogenes or Staphylococcus aureus. J. Antimicrob. Chemother. 51:1167–73 [Google Scholar]
  80. Vallet CM, Marquez B, Ngabirano E, Lemaire S, Mingeot-Leclercq MP. 80.  et al. 2011. Cellular accumulation of fluoroquinolones is not predictive of their intracellular activity: studies with gemifloxacin, moxifloxacin and ciprofloxacin in a pharmacokinetic/pharmacodynamic model of uninfected and infected macrophages. Int. J. Antimicrob. Agents 38:249–56 [Google Scholar]
  81. Rohde KH, Abramovitch RB, Russell DG. 81.  2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352–64 [Google Scholar]
  82. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA. 82.  et al. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:693–704 [Google Scholar]
  83. Vallet CM, Marquez B, Nhiri N, Anantharajah A, Mingeot-Leclercq MP. 83.  et al. 2011. Modulation of the expression of ABC transporters in murine (J774) macrophages exposed to large concentrations of the fluoroquinolone antibiotic moxifloxacin. Toxicology 290:178–86 [Google Scholar]
  84. Caceres NE, Aerts M, Marquez B, Mingeot-Leclercq MP, Tulkens PM. 84.  et al. 2013. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLOS ONE 8:e58285 [Google Scholar]
  85. Marquez B, Caceres NE, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. 85.  2009. Identification of the efflux transporter of the fluoroquinolone antibiotic ciprofloxacin in murine macrophages: studies with ciprofloxacin-resistant cells. Antimicrob. Agents Chemother. 53:2410–16 [Google Scholar]
  86. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C. 86.  et al. 2012. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob. Agents Chemother. 56:4806–15 [Google Scholar]
  87. Spivey VL, Whalan RH, Hirst EMA, Smerdon SJ, Buxton RS. 87.  2013. An attenuated mutant of the Rv1747 ATP-binding cassette transporter of Mycobacterium tuberculosis and a mutant of its cognate kinase, PknF, show increased expression of the efflux pump-related iniBAC operon. FEMS Microbiol. Lett 347:107–15 [Google Scholar]
  88. Curry JM, Whalan R, Hunt DM, Gohil K, Strom M. 88.  et al. 2005. An ABC transporter containing a forkhead-associated domain interacts with a serine-threonine protein kinase and is required for growth of Mycobacterium tuberculosis in mice. Infect. Immun. 73:4471–77 [Google Scholar]
  89. Waddell SJ, Chung GA, Gibson KJ, Everett MJ, Minnikin DE. 89.  et al. 2005. Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett. Appl. Microbiol. 40:201–6 [Google Scholar]
  90. Rodriguez GM, Smith I. 90.  2006. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 188:424–30 [Google Scholar]
  91. Domenech P, Kobayashi H, LeVier K, Walker GC, Barry CE III. 91.  2009. BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J. Bacteriol. 191:477–85 [Google Scholar]
  92. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD. 92.  et al. 2013. A vitamin B12 transporter in Mycobacterium tuberculosis. Open Biol. 3:120175 [Google Scholar]
  93. De Rossi E, Aínsa JA, Riccardi G. 93.  2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol. Rev. 30:36–52 [Google Scholar]
  94. Gillespie SH. 94.  2002. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents Chemother. 46:267–74 [Google Scholar]
  95. Da Silva PEA, Palomino JC. 95.  2011. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother. 66:1417–30 [Google Scholar]
  96. Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. 96.  2011. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J. Infect. Dis. 204:1951–59 [Google Scholar]
  97. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR. 97.  et al. 2014. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15:490 [Google Scholar]
  98. Rodrigues L, Machado D, Couto I, Amaral L, Viveiros M. 98.  2012. Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect., Genet. Evol. 12:695–700 [Google Scholar]
  99. Louw GE, Warren RM, Gey van Pittius NC, McEvoy CRE, Van Helden PD, Victor TC. 99.  2009. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 53:3181–89 [Google Scholar]
  100. Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T. 100.  2010. Efflux-pump–derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J. Infect. Dis. 201:1225–31 [Google Scholar]
  101. da Silva PEA, Von Groll A, Martin A, Palomino JC. 101.  2011. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol 63:1–9 [Google Scholar]
  102. Pasipanodya JG, Gumbo T. 102.  2011. A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr. Opin. Pharmacol. 11:457–63 [Google Scholar]
  103. Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y. 103.  2013. Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57:893–900 [Google Scholar]
  104. Lu J, Liu M, Wang Y, Pang Y, Zhao Z. 104.  2014. Mechanisms of fluoroquinolone monoresistance in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 353:40–48 [Google Scholar]
  105. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P. 105.  2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem. J 367:279–85 [Google Scholar]
  106. Danilchanka O, Mailaender C, Niederweis M. 106.  2008. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 52:2503–11 [Google Scholar]
  107. Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G. 107.  2005. mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob. Agents Chemother 49:4775–77 [Google Scholar]
  108. Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G. 108.  2004. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48:3175–78 [Google Scholar]
  109. Aínsa JA, Blokpoel MCJ, Otal I, Young DB, De Smet KAL, Martin C. 109.  1998. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J. Bacteriol. 180:5836–43 [Google Scholar]
  110. De Rossi E, Arrigo P, Bellinzoni M, Silva PEA, Martin C. 110.  et al. 2002. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol. Med. (Cambridge, Mass.) 8:714–24 [Google Scholar]
  111. Silva PEA, Bigi F, Santangelo MP, Romano MI, Martin C. 111.  et al. 2001. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 45:800–4 [Google Scholar]
  112. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O. 112.  1998. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J. Bacteriol 180:6068–71 [Google Scholar]
  113. Ramón-Garcia S, Martin C, Thompson CJ, Aínsa JA. 113.  2009. Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob. Agents Chemother. 53:3675–82 [Google Scholar]
  114. Ramón-Garcia S, Martin C, De Rossi E, Aínsa JA. 114.  2007. Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J. Antimicrob. Chemother 59:544–47 [Google Scholar]
  115. Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M. 115.  et al. 2005. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol. Microbiol. 55:1829–40 [Google Scholar]
  116. Lin W, de Sessions PF, Teoh GHK, Mohamed ANN, Zhu YO. 116.  et al. 2016. Transcriptional profiling of Mycobacterium tuberculosis exposed to in vitro lysosomal stress. Infect. Immun. 84:2505–23 [Google Scholar]
  117. Rodrigues L, Villellas C, Bailo R, Viveiros M, Aínsa JA. 117.  2013. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57:751–57 [Google Scholar]
  118. Gupta AK, Reddy VP, Lavania M, Chauhan DS, Venkatesan K. 118.  et al. 2010. jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J. Med. Res 132:176–88 [Google Scholar]
  119. Bianco MV, Blanco FC, Imperiale B, Forrellad MA, Rocha RV. 119.  et al. 2011. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect. Dis 11:195 [Google Scholar]
  120. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U. 120.  2012. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob. Agents Chemother. 56:2643–51 [Google Scholar]
  121. Domenech P, Reed MB, Barry CE III. 121.  2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 73:3492–501 [Google Scholar]
  122. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T. 122.  et al. 2014. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat. Med. 20:152–58 [Google Scholar]
  123. Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M. 123.  et al. 2013. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob. Agents Chemother 57:1857–65 [Google Scholar]
  124. Dinesh N, Sharma S, Balganesh M. 124.  2013. Involvement of efflux pumps in the resistance to peptidoglycan synthesis inhibitors in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57:1941–43 [Google Scholar]
  125. Huang TS, Kunin CM, Wang HM, Yan BS, Huang SP. 125.  et al. 2013. Inhibition of the Mycobacterium tuberculosis reserpine-sensitive efflux pump augments intracellular concentrations of ciprofloxacin and enhances susceptibility of some clinical isolates. J. Formos. Med. Assoc 112:789–94 [Google Scholar]
  126. Amin ML. 126.  2013. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7:27–34 [Google Scholar]
  127. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD. 127.  et al. 2015. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother. 71:17–26 [Google Scholar]
  128. Song L, Wu X. 128.  2016. Development of efflux pump inhibitors in antituberculosis therapy. Int. J. Antimicrob. Agents 47:421–29 [Google Scholar]
  129. Tusnády GE, Sarkadi B, Simon I, Váradi A. 129.  2006. Membrane topology of human ABC proteins. FEBS Lett 580:1017–22 [Google Scholar]
  130. Xiong J, Feng J, Yuan D, Zhou J, Miao W. 130.  2015. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci. Rep. 5:16724 [Google Scholar]
  131. Braibant M, Gilot P, Content J. 131.  2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24:449–67 [Google Scholar]
  132. Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A. 132.  et al. 2011. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am. J. Respir. Crit. Care Med. 184:269–76 [Google Scholar]
  133. Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M. 133.  et al. 2010. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb. Drug Resist. 16:21–28 [Google Scholar]
  134. Li G, Zhang J, Guo Q, Jiang Y, Wei J. 134.  et al. 2015. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLOS ONE 10:e0119013 [Google Scholar]
  135. Coelho T, Machado D, Couto I, Maschmann R, Ramos D. 135.  et al. 2015. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Front. Microbiol. 6:330 [Google Scholar]
  136. Machado D, Couto I, Perdigão J, Rodrigues L, Portugal I. 136.  et al. 2012. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLOS ONE 7:e34538 [Google Scholar]
  137. Garima K, Pathak R, Tandon R, Rathor N, Sinha R. 137.  et al. 2015. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis 95:155–61 [Google Scholar]
  138. Machado D, Pires D, Perdigão J, Couto I, Portugal I. 138.  et al. 2016. Ion channel blockers as antimicrobial agents, efflux inhibitors, and enhancers of macrophage killing activity against drug resistant Mycobacterium tuberculosis. PLOS ONE 11:e0149326 [Google Scholar]
  139. Colangeli R, Helb D, Vilcheze C, Hazbon MH, Lee CG. 139.  et al. 2007. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLOS Pathogens 3:e87 [Google Scholar]
  140. Hartkoorn RC, Uplekar S, Cole ST. 140.  2014. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58:2979–81 [Google Scholar]
  141. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K. 141.  et al. 2005. Ancestral antibiotic resistance in Mycobacterium tuberculosis. PNAS 102:12200–5 [Google Scholar]
  142. Andries K, Villellas C, Coeck N, Thys K, Gevers T. 142.  et al. 2014. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLOS ONE 9:e102135 [Google Scholar]
  143. Chou TH, Delmar JA, Wright CC, Kumar N, Radhakrishnan A. 143.  et al. 2015. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302. Protein Sci 24:1942–55 [Google Scholar]
  144. Winglee K, Lun S, Pieroni M, Kozikowski A, Bishai W. 144.  2015. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent. Antimicrob. Agents Chemother 59:6873–81 [Google Scholar]
  145. Liu Y, Wang H, Cui T, Zhou X, Jia Y. 145.  et al. 2016. NapM, a new nucleoid-associated protein, broadly regulates gene expression and affects mycobacterial resistance to anti-tuberculosis drugs. Mol. Microbiol. 101:167–81 [Google Scholar]
  146. Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K. 146.  et al. 2016. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 60:4590–99 [Google Scholar]
  147. Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. 147.  2004. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150:853–64 [Google Scholar]
  148. de Knegt GJ, ten Kate MT, van Soolingen D, Aarnoutse R, Boeree MJ. 148.  et al. 2014. Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy. Tuberculosis 94:701–7 [Google Scholar]
  149. Dhar N, McKinney JD. 149.  2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. PNAS 107:12275–80 [Google Scholar]
  150. Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW. 150.  et al. 2011. The “specific” P-glycoprotein inhibitor tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem. Neurosci. 2:82–89 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-052438
Loading
/content/journals/10.1146/annurev-pharmtox-010617-052438
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error