1932

Abstract

Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches are beginning to be integrated into drug development and approval processes because they enable key pharmacokinetic (PK) parameters to be predicted from in vitro data. However, these approaches are hampered by many limitations, including an inability to incorporate organ-specific differentials in drug clearance, distribution, and absorption that result from differences in cell uptake, transport, and metabolism. Moreover, such approaches are generally unable to provide insight into pharmacodynamic (PD) parameters. Recent development of microfluidic Organ-on-a-Chip (Organ Chip) cell culture devices that recapitulate tissue-tissue interfaces, vascular perfusion, and organ-level functionality offer the ability to overcome these limitations when multiple Organ Chips are linked via their endothelium-lined vascular channels. Here, we discuss successes and challenges in the use of existing culture models and vascularized Organ Chips for PBPK and PD modeling of human drug responses, as well as in vitro to in vivo extrapolation (IVIVE) of these results, and how these approaches might advance drug development and regulatory review processes in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104748
2018-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010716-104748.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104748&mimeType=html&fmt=ahah

Literature Cited

  1. Clewell HJ III, Reddy MB, Lave T, Andersen ME. 1.  2008. Physiologically based pharmacokinetic modeling. Preclinical Development Handbook: ADME and Biopharmaceutical Properties SC Gad 1167–226 Hoboken, NJ: Wiley [Google Scholar]
  2. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. 2.  2015. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab. Dispos. 43:1823–37 [Google Scholar]
  3. Rowland M, Peck C, Tucker G. 3.  2011. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 51:45–73 [Google Scholar]
  4. Sung JH, Srinivasan B, Esch MB, McLamb WT, Bernabini C. 4.  et al. 2014. Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 239:1225–39 [Google Scholar]
  5. LaBonia GJ, Lockwood SY, Heller AA, Spence DM, Hummon AB. 5.  2016. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics 16:1814–21 [Google Scholar]
  6. Elliott NT, Yuan F. 6.  2011. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 100:59–74 [Google Scholar]
  7. Shamir ER, Ewald AJ. 7.  2014. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15:647–64 [Google Scholar]
  8. Prestwich GD. 8.  2008. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41:139–48 [Google Scholar]
  9. Esch MB, King TL, Shuler ML. 9.  2011. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13:55–72 [Google Scholar]
  10. Abaci HE, Shuler ML. 10.  2015. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7:383–91 [Google Scholar]
  11. Bhatia SN, Ingber DE. 11.  2014. Microfluidic organs-on-chips. Nat. Biotechnol. 32:760–72 [Google Scholar]
  12. Tatosian DA, Shuler ML. 12.  2009. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol. Bioeng. 103:187–98 [Google Scholar]
  13. Esch MB, Mahler GJ, Stokol T, Shuler ML. 13.  2014. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14:3081–92 [Google Scholar]
  14. Prot JM, Maciel L, Bricks T, Merlier F, Cotton J. 14.  et al. 2014. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 111:2027–40 [Google Scholar]
  15. Lave T, Parrott N, Grimm HP, Fleury A, Reddy M. 15.  2007. Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37:1295–310 [Google Scholar]
  16. Wang Z, Kim S, Quinney SK, Zhou J, Li L. 16.  2010. Non-compartment model to compartment model pharmacokinetics transformation meta-analysis – a multivariate nonlinear mixed model. BMC Syst. Biol. 4:Suppl. 1S8 [Google Scholar]
  17. Benet LZ. 17.  1984. Pharmacokinetic parameters: Which are necessary to define a drug substance?. Eur. J. Respir. Dis. Suppl. 134:45–61 [Google Scholar]
  18. Urso R, Blardi P, Giorgi G. 18.  2002. A short introduction to pharmacokinetics. Eur. Rev. Med. Pharmacol. Sci. 6:33–44 [Google Scholar]
  19. Rowland M, Towzer TN. 19.  2011. Clinical Pharmacokinetics and Pharmacodynamics Philadelphia: Lipincott Williams Wilkins
  20. Aungst BJ. 20.  2017. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J. Pharm. Sci. 106:921–29 [Google Scholar]
  21. Leeson P. 21.  2012. Drug discovery: chemical beauty contest. Nature 481:455–56 [Google Scholar]
  22. Pang KS. 22.  2003. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab. Dispos. 31:1507–19 [Google Scholar]
  23. Hirayama F, Horikawa T, Yamanaka M, Uekama K. 23.  1995. Enhanced bioavailability and reduced metabolism of salbutamol by perbutanoyl-β-cyclodextrin after oral administration in dogs. Pharmacy Pharmacol. Commun. 1:517–20 [Google Scholar]
  24. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. 24.  2012. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–64 [Google Scholar]
  25. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. 25.  2010. A comparison of pharmacokinetics between humans and monkeys. Drug Metab. Dispos. 38:308–16 [Google Scholar]
  26. Sharma V, McNeill JH. 26.  2009. To scale or not to scale: the principles of dose extrapolation. Br. J. Pharmacol. 157:907–21 [Google Scholar]
  27. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP. 27.  et al. 2006. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23:1675–86 [Google Scholar]
  28. Huh D, Hamilton GA, Ingber DE. 28.  2011. From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–54 [Google Scholar]
  29. Martignoni M, Groothuis GM, de Kanter R. 29.  2006. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol. 2:875–94 [Google Scholar]
  30. Smith DA, Di L, Kerns EH. 30.  2010. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov. 9:929–39 [Google Scholar]
  31. Pond SM, Tozer TN. 31.  1984. First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 9:1–25 [Google Scholar]
  32. Coleman R. 32.  1987. Biochemistry of bile secretion. Biochem. J. 244:249–61 [Google Scholar]
  33. Varma MV, Steyn SJ, Allerton C, El-Kattan AF. 33.  2015. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm. Res. 32:3785–802 [Google Scholar]
  34. Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. 34.  2005. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin. Pharmacokinet. 44:187–200 [Google Scholar]
  35. Wang L, Chiang C, Liang H, Wu H, Feng W. 35.  et al. 2015. How to choose in vitro systems to predict in vivo drug clearance: a system pharmacology perspective. Biomed. Res. Int. 2015:857327 [Google Scholar]
  36. Oie S. 36.  1986. Drug distribution and binding. J. Clin. Pharmacol. 26:583–86 [Google Scholar]
  37. Toutain PL, Bousquet-Melou A. 37.  2004. Volumes of distribution. J. Vet. Pharmacol. Ther. 27:441–53 [Google Scholar]
  38. Mager DE, Wyska E, Jusko WJ. 38.  2003. Diversity of mechanism-based pharmacodynamic models. Drug Metab. Dispos. 31:510–18 [Google Scholar]
  39. Kenakin T. 39.  2004. Principles: receptor theory in pharmacology. Trends Pharmacol. Sci. 25:186–92 [Google Scholar]
  40. Copeland RA. 40.  2010. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin. Drug Discov. 5:305–10 [Google Scholar]
  41. Li AP. 41.  2005. Preclinical in vitro screening assays for drug-like properties. Drug Discov. Today Technol. 2:179–85 [Google Scholar]
  42. Verma RP, Hansch C, Selassie CD. 42.  2007. Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption. J. Comput. Aided Mol. Des. 21:3–22 [Google Scholar]
  43. Volpe DA. 43.  2010. Application of method suitability for drug permeability classification. AAPS J 12:670–78 [Google Scholar]
  44. Artursson P, Karlsson J. 44.  1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175:880–85 [Google Scholar]
  45. Maubon N, Le Vee M, Fossati L, Audry M, Le Ferrec E. 45.  et al. 2007. Analysis of drug transporter expression in human intestinal Caco-2 cells by real-time PCR. Fundam. Clin. Pharmacol. 21:659–63 [Google Scholar]
  46. Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P. 46.  2000. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 89:63–75 [Google Scholar]
  47. Wikman A, Karlsson J, Carlstedt I, Artursson P. 47.  1993. A drug absorption model based on the mucus layer producing human intestinal goblet cell line HT29-H. Pharm. Res. 10:843–52 [Google Scholar]
  48. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. 48.  2006. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci. 29:240–50 [Google Scholar]
  49. Choe A, Ha SK, Choi I, Choi N, Sung JH. 49.  2017. Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomed. Microdevices 19:4 [Google Scholar]
  50. Kim HJ, Ingber DE. 50.  2013. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5:1130–40 [Google Scholar]
  51. Kim HJ, Lee J, Choi JH, Bahinski A, Ingber DE. 51.  2016. Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device. J. Vis. Exp. 114:e54344 [Google Scholar]
  52. Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML. 52.  2010. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem. Pharmacol. 79:1036–44 [Google Scholar]
  53. Li AP, Lu C, Brent JA, Pham C, Fackett A. 53.  et al. 1999. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem. Biol. Interact. 121:17–35 [Google Scholar]
  54. Marion MJ, Hantz O, Durantel D. 54.  2010. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol. Biol. 640:261–72 [Google Scholar]
  55. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S. 55.  et al. 2006. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34:75–83 [Google Scholar]
  56. Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I. 56.  2013. In vitro models for liver toxicity testing. Toxicol. Res. 2:23–39 [Google Scholar]
  57. Abe K, Bridges AS, Brouwer KL. 57.  2009. Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab. Dispos. 37:447–52 [Google Scholar]
  58. Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ. 58.  et al. 2005. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6:569–91 [Google Scholar]
  59. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A. 59.  et al. 2002. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78:257–69 [Google Scholar]
  60. Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG. 60.  2010. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10:51–58 [Google Scholar]
  61. Sarkar U, Rivera-Burgos D, Large EM, Hughes DJ, Ravindra KC. 61.  et al. 2015. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab. Dispos. 43:1091–99 [Google Scholar]
  62. Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J. 62.  et al. 2009. Liver tissue engineering in the evaluation of drug safety. Expert Opin. Drug Metab. Toxicol. 5:1159–74 [Google Scholar]
  63. Li C, Liu T, Cui X, Uss AS, Cheng KC. 63.  2007. Development of in vitro pharmacokinetic screens using Caco-2, human hepatocyte, and Caco-2/human hepatocyte hybrid systems for the prediction of oral bioavailability in humans. J. Biomol. Screen. 12:1084–91 [Google Scholar]
  64. Maguire TJ, Novik E, Chao P, Barminko J, Nahmias Y. 64.  et al. 2009. Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr. Drug Metab. 10:1192–99 [Google Scholar]
  65. Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H. 65.  2017. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem. Biophys. Rep. 10:186–91 [Google Scholar]
  66. Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC. 66.  et al. 2016. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLOS ONE 11:e0158674 [Google Scholar]
  67. Fagerholm U. 67.  2007. Prediction of human pharmacokinetics – renal metabolic and excretion clearance. J. Pharm. Pharmacol. 59:1463–71 [Google Scholar]
  68. Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S. 68.  et al. 2013. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5:1119–29 [Google Scholar]
  69. Weber EJ, Chapron A, Chapron BD, Voellinger JL, Lidberg KA. 69.  et al. 2016. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int 90:627–37 [Google Scholar]
  70. Kim S, LesherPerez SC, Kim BC, Yamanishi C, Labuz JM. 70.  et al. 2016. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8:015021 [Google Scholar]
  71. Musah S, Mammoto T, Mammoto A, Ferrente TC, Hirano-Kobayashi M. 71.  et al. 2017. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1:69–81 [Google Scholar]
  72. Bricks T, Hamon J, Fleury MJ, Jellali R, Merlier F. 72.  et al. 2015. Investigation of omeprazole and phenacetin first-pass metabolism in humans using a microscale bioreactor and pharmacokinetic models. Biopharm. Drug Dispos. 36:275–93 [Google Scholar]
  73. Esch MB, Ueno H, Applegate DR, Shuler ML. 73.  2016. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16:2719–29 [Google Scholar]
  74. Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY. 74.  et al. 2016. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp. Biol. Med. 241:101–14 [Google Scholar]
  75. Bricks T, Paullier P, Legendre A, Fleury MJ, Zeller P. 75.  et al. 2014. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. In Vitro 28:885–95 [Google Scholar]
  76. Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR. 76.  et al. 2017. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7:42296 [Google Scholar]
  77. Zachos NC, Kovbasnjuk O, Foulke-Abel J, In J, Blutt SE. 77.  et al. 2016. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291:3759–66 [Google Scholar]
  78. Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD. 78.  et al. 2015. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9:054124 [Google Scholar]
  79. Zhao R, Kalvass JC, Yanni SB, Bridges AS, Pollack GM. 79.  2009. Fexofenadine brain exposure and the influence of blood-brain barrier P-glycoprotein after fexofenadine and terfenadine administration. Drug Metab. Dispos. 37:529–35 [Google Scholar]
  80. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S. 80.  et al. 2012. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4:159ra47 [Google Scholar]
  81. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 81.  2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–68 [Google Scholar]
  82. Kim HJ, Li H, Collins JJ, Ingber DE. 82.  2016. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS 113:E7–15 [Google Scholar]
  83. Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. 83.  2004. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab. Investig. 84:736–52 [Google Scholar]
  84. Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ. 84.  et al. 2016. A microphysiological model of the human placental barrier. Lab Chip 16:3065–73 [Google Scholar]
  85. Abaci HE, Guo Z, Coffman A, Gillette B, Lee WH. 85.  et al. 2016. Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv. Healthc. Mater. 5:1800–87 [Google Scholar]
  86. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M. 86.  et al. 2013. Microfabrication of human organs-on-chips. Nat. Protoc. 8:2135–57 [Google Scholar]
  87. Jain A, Barrile R, van der Meer A, Mammoto A, Mammoto T. 87.  et al. 2017. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. In press. https://doi.org/10.1002/cpt.742 [Crossref]
  88. Sellgren KL, Butala EJ, Gilmour BP, Randell SH, Grego S. 88.  2014. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 14:3349–58 [Google Scholar]
  89. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C. 89.  et al. 2016. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13:151–57 [Google Scholar]
  90. Mahler GJ, Esch MB, Glahn RP, Shuler ML. 90.  2009. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104:193–205 [Google Scholar]
  91. Mahler GJ, Shuler ML, Glahn RP. 91.  2009. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20:494–502 [Google Scholar]
  92. Kim HJ, Huh D, Hamilton G, Ingber DE. 92.  2012. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–74 [Google Scholar]
  93. Frohlich EM, Zhang X, Charest JL. 93.  2012. The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function. Integr. Biol. 4:75–83 [Google Scholar]
  94. Zhou M, Zhang X, Wen X, Wu T, Wang W. 94.  et al. 2016. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6:31771 [Google Scholar]
  95. van Meer BJ, de Vries H, Firth KS, van Weerd J, Tertoolen LG. 95.  et al. 2017. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482:323–28 [Google Scholar]
  96. Somayaji MR, Das D, Przekwas A. 96.  2016. Computational approaches for modeling and analysis of human-on-chip systems for drug testing and characterization. Drug Discov. Today 21:1859–62 [Google Scholar]
  97. Yu J, Cilfone NA, Large EM, Sarkar U, Wishnok JS. 97.  et al. 2015. Quantitative systems pharmacology approaches applied to microphysiological systems (MPS): data interpretation and multi-MPS integration. CPT Pharmacometr. Syst. Pharmacol. 4:585–94 [Google Scholar]
  98. Rostami-Hodjegan A. 98.  2012. Physiologically based pharmacokinetics joined with in vitro–in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin. Pharmacol. Ther. 92:50–61 [Google Scholar]
  99. Shiran MR, Proctor NJ, Howgate EM, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. 99.  2006. Prediction of metabolic drug clearance in humans: in vitro–in vivo extrapolation versus allometric scaling. Xenobiotica 36:567–80 [Google Scholar]
  100. Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A. 100.  et al. 2013. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13:3496–511 [Google Scholar]
  101. Lenz AG, Stoeger T, Cei D, Schmidmeir M, Semren N. 101.  et al. 2014. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air-liquid interface conditions. Am. J. Respir. Cell Mol. Biol. 51:526–35 [Google Scholar]
  102. Wufuer M, Lee G, Hur W, Jeon B, Kim BJ. 102.  et al. 2016. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 6:37471 [Google Scholar]
  103. Benam KH, Dauth S, Hassell B, Herland A, Jain A. 103.  et al. 2015. Engineered in vitro disease models. Annu. Rev. Pathol. 10:195–262 [Google Scholar]
  104. Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC. 104.  et al. 2016. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 3:456–66.e4 [Google Scholar]
  105. Sugiura S, Edahiro J, Kikuchi K, Sumaru K, Kanamori T. 105.  2008. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol. Bioeng. 100:1156–65 [Google Scholar]
  106. Coppeta JR, Mescher MJ, Isenberg BC, Spencer AJ, Kim ES. 106.  et al. 2016. A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control. Lab Chip 17:134–44 [Google Scholar]
  107. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP. 107.  et al. 2015. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:2688–99 [Google Scholar]
  108. Zhang YS, Aleman J, Shin SR, Kilic T, Kim D. 108.  et al. 2017. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. PNAS 114:E2293–302 [Google Scholar]
  109. Wang JD, Douville NJ, Takayama S, ElSayed M. 109.  2012. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann. Biomed. Eng. 40:1862–73 [Google Scholar]
  110. Jain A, van der Meer AD, Papa AL, Barrile R, Lai A. 110.  et al. 2016. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed. Microdevices 18:73 [Google Scholar]
  111. Becker H, Gartner C. 111.  2000. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26 [Google Scholar]
  112. Berthier E, Young EWK, Beebe D. 112.  2012. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12:1224–37 [Google Scholar]
  113. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. 113.  2010. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39:1153–82 [Google Scholar]
  114. van Midwoud PM, Janse A, Merema MT, Groothuis GM, Verpoorte E. 114.  2012. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84:3938–44 [Google Scholar]
  115. Volpatti LR, Yetisen AK. 115.  2014. Commercialization of microfluidic devices. Trends Biotechnol 32:347–50 [Google Scholar]
  116. Leech PW. 116.  2009. Hot embossing of cyclic olefin copolymers. J. Micromech. Microeng. 19:150–58 [Google Scholar]
  117. Toepke MW, Beebe DJ. 117.  2006. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–86 [Google Scholar]
  118. Kuddannaya S, Chuah YJ, Lee MH, Menon NV, Kang Y, Zhang Y. 118.  2013. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 5:9777–84 [Google Scholar]
  119. Shirure VS, George SC. 119.  2017. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab Chip 17:681–90 [Google Scholar]
  120. Swift B, Pfeifer ND, Brouwer KL. 120.  2010. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab. Rev. 42:446–71 [Google Scholar]
  121. Lee H, Kim DS, Ha SK, Choi I, Lee JM, Sung JH. 121.  2017. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114:432–43 [Google Scholar]
  122. Squires TM, Quake SR. 122.  2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026 [Google Scholar]
  123. Moraes C, Labuz JM, Leung BM, Inoue M, Chun TH, Takayama S. 123.  2013. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5:1149–61 [Google Scholar]
  124. Shitara Y, Horie T, Sugiyama Y. 124.  2006. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27:425–46 [Google Scholar]
  125. Avdeef A. 125.  2012. Transport model. Absorption and Drug Development: Solubility, Permeability, and Charge State12–30 Hoboken, NJ: Wiley, 2nd ed.. [Google Scholar]
  126. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. 126.  2007. Prediction of intestinal first pass drug metabolism. Curr. Drug. Metab. 8:676–84 [Google Scholar]
  127. Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. 127.  2004. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20:338–45 [Google Scholar]
  128. Domansky K, Leslie DC, McKinney J, Fraser JP, Sliz JD. 128.  et al. 2013. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13:3956–64 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104748
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error