1932

Abstract

Natural products (NPs) have been used as traditional medicines since antiquity. With more than 1060 estimated compounds with molecular weights less than 500 Da representing chemical space, NPs occupy a very small percentage; however, they are significantly overrepresented in biologically relevant chemical space. The classical approach concentrates on identifying one or more NPs with biological activity from a source organism. There is much more to be learned from NPs than we can discover this narrow view. In this review, we discuss ways to harness the global properties of NPs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-105029
2018-01-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010716-105029.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-105029&mimeType=html&fmt=ahah

Literature Cited

  1. Harvey AL, Edrada-Ebel R, Quinn RJ. 1.  2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14:111–29 [Google Scholar]
  2. Molinski TF. 2.  2014. All natural: the renaissance of natural products chemistry. Org. Lett. 16:3849–55 [Google Scholar]
  3. Kupchan SM. 3.  1971. Drugs from natural products? Plant sources. Drug Discovery 108 Science and Development in a Changing Society B Bloom, GE Ullyot 1–13 Washington, DC: Am. Chem. Soc. [Google Scholar]
  4. Haefner B. 4.  2003. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 8:536–44 [Google Scholar]
  5. Cragg GM, Grothaus PG, Newman DJ. 5.  2009. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 109:3012–43 [Google Scholar]
  6. Lovering F, Bikker J, Humblet C. 6.  2009. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52:6752–56 [Google Scholar]
  7. Ritchie TJ, Macdonald SJF. 7.  2009. The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design?. Drug Discov. Today 14:1011–20 [Google Scholar]
  8. Mugumbate G, Overington JP. 8.  2015. The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorg. Med. Chem. 23:5218–24 [Google Scholar]
  9. Dömling A. 9.  2008. Small molecular weight protein-protein interaction antagonists—an insurmountable challenge?. Curr. Opin. Chem. Biol. 12:281–91 [Google Scholar]
  10. Grivas PD, Kiaris H, Papavassiliou AG. 10.  2011. Tackling transcription factors: challenges in antitumor therapy. Trends Mol. Med. 17:537–38 [Google Scholar]
  11. Ritchie TJ, Macdonald SJF, Young RJ, Pickett SD. 11.  2011. The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring type. Drug Discov. Today 16:164–71 [Google Scholar]
  12. Kombo DC, Tallapragada K, Jain R, Chewning J, Mazurov AA. 12.  et al. 2013. 3D molecular descriptors important for clinical success. J. Chem. Inf. Model. 53:327–42 [Google Scholar]
  13. Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J. 13.  et al. 2014. Back to the future with phenotypic screening. ACS Chem. Neurosci. 5:503–13 [Google Scholar]
  14. Kurita KL, Linington RG. 14.  2015. Connecting phenotype and chemotype: high-content discovery strategies for natural products research. J. Nat. Prod. 78:587–96 [Google Scholar]
  15. Schulze CJ, Bray WM, Woerhmann MH, Stuart J, Lokey RS, Linington RG. 15.  2013. “Function-first” lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20:285–95 [Google Scholar]
  16. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S. 16.  et al. 2015. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14:475–86 [Google Scholar]
  17. Hodgson J. 17.  2001. ADMET—turning chemicals into drugs. Nat. Biotechnol. 19:722–26 [Google Scholar]
  18. Quinn RJ, Carroll AR, Pham NB, Baron P, Palframan ME. 18.  et al. 2008. Developing a drug-like natural product library. J. Nat. Prod. 71:464–68 [Google Scholar]
  19. Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE. 19.  2013. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem. Biol. 8:2009–16 [Google Scholar]
  20. Petersen LM, Hoeck C, Frisvad JC, Gotfredsen CH, Larsen TO. 20.  2014. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 19:10898–921 [Google Scholar]
  21. Wolfender J-L, Queiroz EF, Hostettmann K. 21.  2006. The importance of hyphenated techniques in the discovery of new lead compounds from nature. Expert Opin. Drug Discov. 1:237–60 [Google Scholar]
  22. Morais RP, Lira SP, Seleghim MHR, Berlinck RGS. 22.  2010. A method for dextruxin analysis by HPLC-PDA-ELSD-MS. J. Braz. Chem. Soc. 21:2262–71 [Google Scholar]
  23. Carnevale Neto F, Siquitelli CD, Pilon AC, Silva DHS, VdS Bolzani, Castro-Gamboa I. 23.  2013. Dereplication of phenolic derivatives of Qualea grandiflora and Qualea cordata (Vochysiaceae) using liquid chromatography coupled with ESI-QToF-MS/MS. J. Braz. Chem. Soc. 24:758–64 [Google Scholar]
  24. Funari CS, Eugster PJ, Martel S, Carrupt P-A, Wolfender J-L, Silva DHS. 24.  2012. High resolution ultra high pressure liquid chromatography–time-of-flight mass spectrometry dereplication strategy for the metabolite profiling of Brazilian Lippia species. J. Chromatogr. A 1259:167–78 [Google Scholar]
  25. Purves K, Macintyre L, Brennan D, Hreggviðsson G, Kuttner E. 25.  et al. 2016. Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites 6:2 [Google Scholar]
  26. Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD. 26.  et al. 2013. Molecular networking as a dereplication strategy. J. Nat. Prod. 76:1686–99 [Google Scholar]
  27. Bohacek RS, McMartin C, Guida WC. 27.  1996. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16:3–50 [Google Scholar]
  28. Lipinski C, Hopkins A. 28.  2004. Navigating chemical space for biology and medicine. Nature 432:855–61 [Google Scholar]
  29. Reymond J-L. 29.  2015. The chemical space project. Acc. Chem. Res. 48:722–30 [Google Scholar]
  30. Lachance H, Wetzel S, Kumar K, Waldmann H. 30.  2012. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55:5989–6001 [Google Scholar]
  31. Kellenberger E, Hofmann A, Quinn RJ. 31.  2011. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Nat. Prod. Rep. 28:1483–92 [Google Scholar]
  32. Sturm N, Quinn RJ, Kellenberger E. 32.  2015. Similarity between flavonoid biosynthetic enzymes and flavonoid protein targets captured by three-dimensional computing approach. Planta Med 81:467–73 [Google Scholar]
  33. Friedrich L, Rodrigues T, Neuhaus SC, Schneider P, Schneider G. 33.  2016. From complex natural products to simple synthetic mimetics by computational de novo design. Angew. Chem. Int. Ed. 55:6789–92 [Google Scholar]
  34. Guenard D, Gueritte-Voegelein F, Potier P. 34.  1993. Taxol and taxotere: discovery, chemistry and structure-activity relationships. Acc. Chem. Res. 26:160–67 [Google Scholar]
  35. Malwade CR, Qu H, Rong B-G, Christensen LP. 35.  2013. Conceptual process synthesis for recovery of natural products from plants: a case study of artemisinin from Artemisia annua. Ind. Eng. Chem. Res. 52:7157–69 [Google Scholar]
  36. Beniddir MA, Martin M-T, Tran Huu Dau M-E, Grellier P, Rasoanaivo P. 36.  et al. 2012. Goniomedines A and B: unprecedented bisindole alkaloids formed through fusion of two indole moieties via a dihydropyran unit. Org. Lett. 14:4162–65 [Google Scholar]
  37. Gerwick WH, Moore BS. 37.  2012. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19:85–98 [Google Scholar]
  38. Nishikori S, Takemoto K, Kamisuki S, Nakajima S, Kuramochi K. 38.  et al. 2016. Anti-hepatitis C virus natural product from a fungus. Penicillium herquei. J. Nat. Prod. 79:442–46 [Google Scholar]
  39. Li X-H, Zhang Y, Zhang J-H, Li X-N, Cao M-M. 39.  et al. 2016. Myritonines A-C, alkaloids from Myrioneuron tonkinensis based on a novel hexacyclic skeleton. J. Nat. Prod. 79:1203–7 [Google Scholar]
  40. Pereira F, Latino DARS, Gaudêncio SP. 40.  2014. A chemoinformatics approach to the discovery of lead-like molecules from marine and microbial sources en route to antitumor and antibiotic drugs. Mar. Drugs 12:757–78 [Google Scholar]
  41. Newman DJ, Cragg GM. 41.  2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67:1216–38 [Google Scholar]
  42. Mayer AMS. 42.  2016. Marine Pharmaceuticals: The Clinical Pipeline Downers Grove, IL: Midwest. Univ http://marinepharmacology.midwestern.edu/clinPipeline.htm
  43. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR. 43.  2013. Marine natural products. Nat. Prod. Rep. 30:237–323 [Google Scholar]
  44. Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R. 44.  2012. Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting?. PLOS ONE 7:e30580 [Google Scholar]
  45. Mehbub MF, Perkins MV, Zhang W, Franco CMM. 45.  2016. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol. Adv. 34:473–91 [Google Scholar]
  46. Wu C, Zacchetti B, Ram AFJ, van Wezel GP, Claessen D, Hae Choi Y. 46.  2015. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci. Rep. 5:10868–78 [Google Scholar]
  47. Chooi Y-H, Tang Y. 47.  2012. Navigating the fungal polyketide chemical space: from genes to molecules. J. Org. Chem. 77:9933–53 [Google Scholar]
  48. McCowen MC, Callender ME, Lawlis JF, Brandt MC. 48.  1953. The effects of erythromycin (Ilotycin, Lilly) against certain parasitic organisms. Am. J. Trop. Med. Hyg. 2:212–18 [Google Scholar]
  49. Kardos N, Demain AL. 49.  2011. Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl. Microbiol. Biotechnol. 92:677–87 [Google Scholar]
  50. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L. 50.  2014. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 32:1180–204 [Google Scholar]
  51. Oh D-C, Kauffman CA, Jensen PR, Fenical W. 51.  2007. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 70:515–20 [Google Scholar]
  52. Marmann A, Aly AH, Lin W, Wang B, Proksch P. 52.  2014. Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs 12:1043–65 [Google Scholar]
  53. Onaka H, Mori Y, Igarashi Y, Furumai T. 53.  2011. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77:400–6 [Google Scholar]
  54. Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. 54.  2014. One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94 [Google Scholar]
  55. Miao LI, Kwong TFN, Qian P-Y. 55.  2006. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl. Microbiol. Biotechnol. 72:1063–73 [Google Scholar]
  56. Challis GL. 56.  2008. Genome mining for novel natural product discovery. J. Med. Chem. 51:2618–28 [Google Scholar]
  57. Ochi K, Hosaka T. 57.  2013. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97:87–98 [Google Scholar]
  58. Fang S-M, Wu C-J, Li C-W, Cui C-B. 58.  2014. A practical strategy to discover new antitumor compounds by activating silent metabolite production in fungi by diethyl sulphate mutagenesis. Mar. Drugs 12:1788–814 [Google Scholar]
  59. Wang Y, Zheng J, Liu P, Wang W, Zhu W. 59.  2011. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 9:1368–78 [Google Scholar]
  60. Park HB, Kwon MC, Lee C-H, Yang HO. 60.  2009. Glionitrin A, an antibiotic–antitumor metabolite derived from competitive interaction between abandoned mine microbes. J. Nat. Prod. 72:248–52 [Google Scholar]
  61. Pimentel-Elardo SM, Sørensen D, Ho L, Ziko M, Bueler SA. 61.  et al. 2015. Activity-independent discovery of secondary metabolites using chemical elicitation and cheminformatic inference. ACS Chem. Biol. 10:2616–23 [Google Scholar]
  62. Wohlgemuth R. 62.  2010. Biocatalysis—key to sustainable industrial chemistry. Curr. Opin. Biotechnol. 21:713–24 [Google Scholar]
  63. Joyeau R, Planchona M, Abessoloa J, Aissaa K, Bancea C, Buisson D. 63.  2012. Combinatorial approach to the selection of active microorganisms in biotransformation: application to sinomenine. J. Mol. Catal. B: Enzym. 85–86:65–70 [Google Scholar]
  64. Boufridi A, Petek S, Evanno L, Beniddir MA, Debitus C. 64.  et al. 2016. Biotransformations versus chemical modifications: new cytotoxic analogs of marine sesquiterpene ilimaquinone. Tetrahedron Lett 57:4922–25 [Google Scholar]
  65. Fromentin Y, Grellier P, Wansi JD, Lallemand M-C, Buisson D. 65.  2012. Yeast-mediated xanthone synthesis through oxidative intramolecular cyclizatio. Org. Lett. 14:5054–57 [Google Scholar]
  66. Smith SG, Goodman JM. 66.  2009. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. J. Org. Chem. 74:4597–607 [Google Scholar]
  67. Nicolaou KC, Snyder AS. 67.  2005. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. 44:1012–44 [Google Scholar]
  68. Buevich VA, Elyashberg EM. 68.  2016. Synergistic combination of CASE algorithms and DFT chemical shift predictions: a powerful approach for structure elucidation, verification, and revision. J. Nat. Prod. 79:3105–16 [Google Scholar]
  69. de Albuquerque ACF, Ribeiro DJ, de Amorim MB. 69.  2016. Structural determination of complex natural products by quantum mechanical calculations of 13C NMR chemical shifts: development of a parameterized protocol for terpenes. J. Mol. Model. 22:183 [Google Scholar]
  70. Snyder KM, Sikorska J, Ye T, Fang L, Su W. 70.  et al. 2016. Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A. Org. Biomol. Chem. 14:5826–31 [Google Scholar]
  71. Anklin C. 71.  2016. Small-volume NMR: microprobes and cryoprobes. Modern NMR Approaches to the Structure Elucidation of Natural Products 1 Instrumentation and Software A Williams, G Martin, D Rovnyak 38–57 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  72. Colson KL. 72.  2016. Cryogenically cooled NMR probes: a revolution for NMR spectroscopy. Modern NMR Approaches to the Structure Elucidation of Natural Products 1 Instrumentation and Software A Williams, G Martin, D Rovnyak 58–70 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  73. Couve-Bonnaire S, Chou DTH, Gan Z, Arya P. 73.  2004. A solid-phase, library synthesis of natural-product-like derivatives from an enantiomerically pure tetrahydroquinoline scaffold. J. Comb. Chem. 6:73–77 [Google Scholar]
  74. Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ. 74.  2000. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J. Am. Chem. Soc. 122:9939–53 [Google Scholar]
  75. Breinbauer R, Vetter IR, Waldmann H. 75.  2002. From protein domains to drug candidates—natural products as guiding principles in the design and synthesis of compound libraries. Angew. Chem. Int. Ed. 41:2878–90 [Google Scholar]
  76. Painter TO, Wang L, Majumder S, Xie X-Q, Brummond KM. 76.  2011. Diverging DOS strategy using an allene-containing tryptophan scaffold and a library design that maximizes biologically relevant chemical space while minimizing the number of compounds. ACS Comb. Sci. 13:166–74 [Google Scholar]
  77. Rafferty RJ, Hicklin RW, Maloof KA, Hergenrother PJ. 77.  2013. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew. Chem. Int. Ed. 53:220–24 [Google Scholar]
  78. Huigens RW III, Morrison KC, Hicklin RW, Flood TA Jr., Richter MF, Hergenrother PJ. 78.  2013. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat. Chem. 5:195–202 [Google Scholar]
  79. Shanahan CS, Truong P, Mason SM, Leszczynski JS, Doyle MP. 79.  2013. Diazoacetoacetate enones for the synthesis of diverse natural product-like scaffolds. Org. Lett. 15:3642–45 [Google Scholar]
  80. Koehn EF. 80.  2012. Biosynthetic medicinal chemistry of natural product drugs. Med. Chem. Commun. 3:854–65 [Google Scholar]
  81. Li Y, Zhu YM, Jiang HJ, Pan JP, Wu GS, Wu JM. 81.  2000. Synthesis and antimalarial activity of artemisinin derivatives containing an amino group. J. Med. Chem. 43:1635–40 [Google Scholar]
  82. Zheng W, Seletsky BM, Palme MH, Lydon PJ, Singer LA. 82.  et al. 2004. Macrocyclic ketone analogues of halichondrin B. Bioorg. Med. Chem. Lett. 14:5551–54 [Google Scholar]
  83. Pirali T, Busacca S, Beltrami L, Imovilli D, Pagliai F. 83.  et al. 2006. Synthesis and cytotoxic evaluation of combretafurans, potential scaffolds for dual-action antitumoral agents. J. Med. Chem. 49:5372–76 [Google Scholar]
  84. Nathwani SM, Hughes L, Greene LM, Carr M, O'Boyle NM. 84.  et al. 2013. Novel cis-restricted β-lactam combretastatin A-4 analogues display anti-vascular and anti-metastatic properties in vitro. Oncol. Rep. 29:585–94 [Google Scholar]
  85. Alvarez R, Alvarez C, Mollinedo F, Sierra BG, Medarde M, Peláez R. 85.  2009. Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds. Bioorg. Med. Chem. Lett. 17:6422–31 [Google Scholar]
  86. Barbosa FG, Bega LA, Beatriz A, Sarkar T, Hamel E. 86.  et al. 2009. A diaryl sulfide, sulfoxide, and sulfone bearing structural similarities to combretastatin A-4. Eur. J. Med. Chem. 44:2685–88 [Google Scholar]
  87. Tan DS. 87.  2005. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1:74–84 [Google Scholar]
  88. Galloway WRJD, Isidro-Llobet A, Spring DR. 88.  2010. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1:80 [Google Scholar]
  89. Zhang J, Wu J, Hong B, Ai W, Wang X. 89.  et al. 2014. Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern. Nat. Commun. 5:4614 [Google Scholar]
  90. Lenci E, Menchi G, Guarna A, Trabocchi A. 90.  2015. Skeletal diversity from carbohydrates: use of mannose for the diversity-oriented synthesis of polyhydroxylated compounds. J. Org. Chem. 80:2182–91 [Google Scholar]
  91. Moura-Letts G, DiBlasi CM, Bauer RA, Tan DS. 91.  2011. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library. PNAS 108:6745–50 [Google Scholar]
  92. Klein J, Heal JR, Hamilton WDO, Boussemghoune T, Østergaard Tange T. 92.  et al. 2014. Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synth. Biol. 3:314–23 [Google Scholar]
  93. Jenkins ID, Lacrampe F, Ripper J, Alcaraz L, Van Le P. 93.  et al. 2009. Synthesis of four novel natural product inspired scaffolds for drug discovery. J. Org. Chem. 74:1304–13 [Google Scholar]
  94. Baron PS, Neve JE, Camp D, Suraweera L, Lam A. 94.  et al. 2013. Design, synthesis and spectroscopic characterisation of a focused library based on the polyandrocarpamine natural product scaffold. Magn. Reson. Chem. 51:358–63 [Google Scholar]
  95. Boyd SM, de Kloe GE. 95.  2010. Fragment library design: efficiently hunting drugs in chemical space. Drug Discov. Today: Technol. 7:e173–e80 [Google Scholar]
  96. Congreve M, Carr R, Murray C, Jhoti H. 96.  2003. A ‘rule of three’ for fragment-based lead discovery?. Drug Discov. Today 8:876–77 [Google Scholar]
  97. Pascolutti M, Campitelli M, Nguyen B, Pham N, Gorse A-D, Quinn RJ. 97.  2015. Capturing nature's diversity. PLOS ONE 10:e0120942 [Google Scholar]
  98. Lucas X, Grüning BA, Bleher S, Günther S. 98.  2015. The purchasable chemical space: a detailed picture. J. Chem. Inf. Model. 55:915–24 [Google Scholar]
  99. 99. Excelra Knowl. Solut. 2017. GVK BIO Online Biomarker Database https://gobiomdb.com
  100. 100. Chapman Hall/CRC Chem. Database. 2017. Dictionary of Natural Products http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml
  101. Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI. 101.  2009. Novel chemical space exploration via natural products. J. Med. Chem. 52:1953–62 [Google Scholar]
  102. Muigg P, Rosén J, Bohlin L, Backlund A. 102.  2012. In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochem. Rev. 12:449–57 [Google Scholar]
  103. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KW. 103.  et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179 [Google Scholar]
  104. Muegge I. 104.  2003. Selection criteria for drug-like compounds. Med. Res. Rev. 23:302–21 [Google Scholar]
  105. Lipinski CA. 105.  2000. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–49 [Google Scholar]
  106. Wenlock MC, Barton P. 106.  2013. In silico physicochemical parameter predictions. Mol. Pharm. 10:1224–35 [Google Scholar]
  107. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 107.  1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25 [Google Scholar]
  108. Ritchie TJ, Luscombe CN, Macdonald SJF. 108.  2009. Analysis of the calculated physicochemical properties of respiratory drugs: Can we design for inhaled drugs yet?. J. Chem. Inf. Model. 49:1025–32 [Google Scholar]
  109. O'Shea R, Moser HE. 109.  2008. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51:2871–78 [Google Scholar]
  110. Leeson PD, Davis AM. 110.  2004. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47:6338–48 [Google Scholar]
  111. Stratton CF, Newman DJ, Tan DS. 111.  2015. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 25:4802–7 [Google Scholar]
  112. Pascolutti M, Quinn RJ. 112.  2014. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov. Today 19:215–21 [Google Scholar]
  113. Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. 113.  2003. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46:1250–56 [Google Scholar]
  114. Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR. 114.  et al. 2010. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem. Neurosci. 1:420–34 [Google Scholar]
  115. Meanwell NA. 115.  2011. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 24:1420–56 [Google Scholar]
  116. Tang C, Ye Y, Feng Y, Quinn RJ. 116.  2016. TCM, brain function and drug space. Nat. Prod. Rep. 33:6–25 [Google Scholar]
  117. Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. 117.  2012. Drug-like properties: guiding principles for the design of natural product libraries. J. Nat. Prod. 75:72–81 [Google Scholar]
  118. Boufridi A, Quinn JR. 118.  2016. Turning metabolomics into drug discovery. J. Braz. Chem. Soc. 27:1334–38 [Google Scholar]
  119. Oliveira TB, Gobbo-Neto L, Schmidt TJ, Da Costa FB. 119.  2015. Study of chromatographic retention of natural terpenoids by chemoinformatic tools. J. Chem. Inf. Model. 55:26–38 [Google Scholar]
  120. Lombardo F, Shalaeva MY, Tupper KA, Gao F, Abraham MH. 120.  2000. ElogPoct: a tool for lipophilicity determination in drug discovery. J. Med. Chem. 43:2922–28 [Google Scholar]
  121. Young RJ, Green DVS, Luscombe CN, Hill AP. 121.  2011. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov. Today 16:822–30 [Google Scholar]
  122. Graziose R, Lila MA, Raskin I. 122.  2010. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr. Drug Discov. Technol. 7:2–12 [Google Scholar]
  123. Yang S-P, Cai Y-J, Zhang B-L, Tong L-J, Xie H. 123.  et al. 2008. Structural modification of an angiogenesis inhibitor discovered from traditional Chinese medicine and a structure-activity relationship study. J. Med. Chem. 51:77–85 [Google Scholar]
  124. Tian S, Wang J, Li Y, Xu X, Hou T. 124.  2012. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol. Pharm. 9:2875–86 [Google Scholar]
  125. Zhao L, Nicholson JK, Lu A, Wang Z, Tang H. 125.  et al. 2012. Targeting the human genome-microbiome axis for drug discovery: inspirations from global systems biology and traditional Chinese medicine. J. Proteome Res. 11:3509–19 [Google Scholar]
  126. 126. WHO (World Health Organ.). 2015. WHO welcomes Nobel Prize in Physiology or Medicine 2015 for discoveries of drugs against tropical diseases News Release, Oct. 5. http://www.who.int/neglected_diseases/news/nobel_prize_2015/en/
  127. Jacobo-Herrera NJ, Jacobo-Herrera FE, Zentella-Dehesa A, Andrade-Cetto A, Heinrich M, Pérez-Plasencia C. 127.  2016. Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. J. Ethnopharmacol. 179:391–402 [Google Scholar]
  128. Xu L, Grandi N, Vecchio C, Mandas D, Corona A. 128.  et al. 2015. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J. Microbiol. 53:288–93 [Google Scholar]
  129. Blumenthal M. 129.  2009. African natural plant products: a foreword to the science and challenges. ACS Symposium Series 1021 African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality HR Juliani, JE Simon, C-T Ho 3–5 Washington, DC: Am. Chem. Soc. [Google Scholar]
  130. Bibi T, Ahmad M, Mohammad Tareen N, Jabeen R, Sultana S. 130.  et al. 2015. The endemic medicinal plants of Northern Balochistan, Pakistan and their uses in traditional medicine. J. Ethnopharmacol. 173:1–10 [Google Scholar]
  131. Harvey AL. 131.  2008. Natural products in drug discovery. Drug Discov. Today 13:894–901 [Google Scholar]
  132. Rishton GM. 132.  2008. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am. J. Cardiol. 101:S43–49 [Google Scholar]
  133. Rutledge PJ, Challis GL. 133.  2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13:509–23 [Google Scholar]
  134. Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U. 134.  2015. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 33:798–811 [Google Scholar]
  135. Njuguna NM, Masimirembwa C, Chibale K. 135.  2012. Identification and characterization of reactive metabolites in natural products-driven drug discovery. J. Nat. Prod. 75:507–13 [Google Scholar]
  136. Chen J, Li W, Yao H, Xu J. 136.  2015. Insights into drug discovery from natural products through structural modification. Fitoterapia 103:231–41 [Google Scholar]
  137. Newman DJ. 137.  2016. Developing natural product drugs: supply problems and how they have been overcome. Pharmacol. Ther. 162:1–9 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-105029
Loading
/content/journals/10.1146/annurev-pharmtox-010716-105029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error