1932

Abstract

Vacuoles in vegetative tissues allow the plant surface to expand by accumulating energetically cheap inorganic osmolytes, and thereby optimize the plant for absorption of sunlight and production of energy by photosynthesis. Some specialized cells, such as guard cells and pulvini motor cells, exhibit rapid volume changes. These changes require the rapid release and uptake of ions and water by the vacuole and are a prerequisite for plant survival. Furthermore, seed vacuoles are important storage units for the nutrients required for early plant development. All of these fundamental processes rely on numerous vacuolar transporters. During the past 15 years, the transporters implicated in most aspects of vacuolar function have been identified and characterized. Vacuolar transporters appear to be integrated into a regulatory network that controls plant metabolism. However, little is known about the mode of action of these fundamental processes, and deciphering the underlying mechanisms remains a challenge for the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042811-105608
2012-06-02
2024-06-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-arplant-042811-105608
Loading
/content/journals/10.1146/annurev-arplant-042811-105608
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error