1932

Abstract

Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040024
2018-04-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040024.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040024&mimeType=html&fmt=ahah

Literature Cited

  1. Akkerman M, Overdijk EJR, Schel JHN, Emons AMC, Ketelaar T. 1.  2011. Golgi body motility in the plant cortex correlates with actin cytoskeleton organization. Plant Cell Physiol 52:1844–55 [Google Scholar]
  2. Ambrose JC, Cyr R. 2.  2007. The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–36 [Google Scholar]
  3. Ambrose JC, Li W, Marcus A, Ma H, Cyr R. 3.  2005. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16:1584–92 [Google Scholar]
  4. Avisar D, Abu-Abied M, Belausov E, Sadot E. 4.  2012. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J. Exp. Bot. 63:241–49 [Google Scholar]
  5. Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA. 5.  2009. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–9 [Google Scholar]
  6. Baffet AD, Hu DJ, Vallee RB. 6.  2015. Cdk1 activates pre-mitotic nuclear envelope dynein recruitment and apical nuclear migration in neural stem cells. Dev. Cell 33:703–16 [Google Scholar]
  7. Bailey-Serres J, Sorenson R, Juntawong P. 7.  2009. Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 14:443–53 [Google Scholar]
  8. Bannigan A, Scheible WR, Lukowitz W, Fagerstrom C, Wadsworth P. 8.  et al. 2007. A conserved role for kinesin-5 in plant mitosis. J. Cell Sci. 120:2819–27 [Google Scholar]
  9. Beach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K. 9.  2000. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr. Biol. 10:1497–506 [Google Scholar]
  10. Bibeau JP, Kingsley JL, Furt F, Tüzel E, Vidali L. 10.  2017. F-actin mediated focusing of vesicles at the cell tip is essential for polarized growth. Plant Physiol 176:352–63 [Google Scholar]
  11. Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C. 11.  1998. Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–47 [Google Scholar]
  12. Buschmann H, Dols J, Kopischke S, Pena EJ, Andrade-Navarro MA. 12.  et al. 2015. Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J. Cell Sci. 128:2033–46 [Google Scholar]
  13. Buschmann H, Green P, Sambade A, Doonan JH, Lloyd CW. 13.  2011. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. New Phytol 190:258–67 [Google Scholar]
  14. Cai C, Henty-Ridilla JL, Szymanski DB, Staiger CJ. 14.  2014. Arabidopsis myosin XI: A motor rules the tracks. Plant Physiol 166:1359–70 [Google Scholar]
  15. Chen C, Marcus A, Li W, Hu Y, Calzada JP. 15.  et al. 2002. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–9 [Google Scholar]
  16. Cheney RE, Riley MA, Mooseker MS. 16.  1993. Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskelet. 24:215–23 [Google Scholar]
  17. Collings DA, Harper JDI, Marc J, Overall RL, Mullen RT. 17.  2002. Life in the fast lane: actin-based motility of plant peroxisomes. Can. J. Bot. 80:430–41 [Google Scholar]
  18. Collings DA, Wasteneys GO. 18.  2005. Actin microfilament and microtubule distribution patterns in the expanding root of Arabidopsis thaliana. Can. J. Bot 83:579–90 [Google Scholar]
  19. Corti B.19.  1774. Osservazioni Microscopiche Sulla Tremella e Sulla Circolazione del Fluido in una Pianta Acquajuola Lucca, Italy: Appresso Giuseppe Rocchi [Google Scholar]
  20. Crowell EF, Bischoff V, Desprea T, Rolland A, Stierhof Y-D. 20.  et al. 2009. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–54 [Google Scholar]
  21. de Keijzer J, Kieft H, Ketelaar T, Goshima G, Janson ME. 21.  2017. Shortening of microtubule overlap regions defines membrane delivery sites during plant cytokinesis. Curr. Biol. 27:514–20 [Google Scholar]
  22. Deng ZY, Liu LT, Li T, Yan S, Kuang BJ. 22.  et al. 2015. OsKinesin-13A is an active microtubule depolymerase involved in glume length regulation via affecting cell elongation. Sci. Rep. 5:9457 [Google Scholar]
  23. Diensthuber RP, Tominaga M, Preller M, Hartmann FK, Orii H. 23.  et al. 2015. Kinetic mechanism of Nicotiana tabacum myosin-11 defines a new type of a processive motor. FASEB J 29:81–94 [Google Scholar]
  24. Eng RC, Halat LS, Livingston SJ, Sakai T, Motose H, Wasteneys GO. 24.  2017. The ARM domain of ARMADILLO-REPEAT KINESIN 1 is not required for microtubule catastrophe but can negatively regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana. Plant Cell Physiol 58:1350–63 [Google Scholar]
  25. Eng RC, Wasteneys GO. 25.  2014. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell 26:3372–86 [Google Scholar]
  26. Esseling-Ozdoba A, Houtman D, van Lammeren AAM, Eiser E, Emons AMC. 26.  2008. Hydrodynamic flow in the cytoplasm of plant cells. J. Microsc. 231:274–83 [Google Scholar]
  27. Frey N, Klotz J, Nick P. 27.  2009. Dynamic bridges—a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:1493–506 [Google Scholar]
  28. Frey N, Klotz J, Nick P. 28.  2010. A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J. Exp. Bot. 61:3423–37 [Google Scholar]
  29. Fujikura U, Elsaesser L, Breuninger H, Sanchez-Rodriguez C, Ivakov A. 29.  et al. 2014. Atkinesin-13A modulates cell-wall synthesis and cell expansion in Arabidopsis thaliana via the THESEUS1 pathway. PLOS Genet 10:e1004627 [Google Scholar]
  30. Furt F, Liu Y-C, Bibeau JP, Tüzel E, Vidali L. 30.  2013. Apical myosin XI anticipates F-actin during polarized growth of Physcomitrella patens cells. Plant J 73:417–28 [Google Scholar]
  31. Ganguly A, DeMott L, Dixit R. 31.  2017. The Arabidopsis kinesin-4, FRA1, requires a high level of processive motility to function correctly. J. Cell Sci. 130:1232–38 [Google Scholar]
  32. Ganguly A, Dixit R. 32.  2013. Mechanisms for regulation of plant kinesins. Curr. Opin. Plant Biol. 16:704–9 [Google Scholar]
  33. Geitmann A, Nebenführ A. 33.  2015. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol. Biol. Cell 26:3373–78 [Google Scholar]
  34. Golomb L, Abu-Abied M, Belausov E, Sadot E. 34.  2008. Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3 [Google Scholar]
  35. Griffing LR, Gao HT, Sparkes IA. 35.  2014. ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front. Plant Sci. 5:218 [Google Scholar]
  36. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW. 36.  2009. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11:797–806 [Google Scholar]
  37. Hachikubo Y, Ito K, Schiefelbein JW, Manstein DJ, Yamamoto K. 37.  2007. Enzymatic activity and motility of recombinant Arabidopsis myosin XI, MYA1. Plant Cell Physiol 48:886–91 [Google Scholar]
  38. Hamada T, Tominaga M, Fukaya T, Nakamura M, Nakano A. 38.  et al. 2012. RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. Plant Cell Physiol 53:699–798 [Google Scholar]
  39. Hammer JA, Sellers JR. 39.  2012. Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13:13–26 [Google Scholar]
  40. Haraguchi T, Tominaga M, Matsumoto R, Sato K, Nakano A. 40.  et al. 2014. Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1. J. Biol. Chem. 289:12343–55 [Google Scholar]
  41. Haraguchi T, Tominaga M, Nakano A, Yamamoto K, Ito K. 41.  2016. Myosin XI-I is mechanically and enzymatically unique among class-XI myosins in Arabidopsis. Plant Cell Physiol 57:1732–43 [Google Scholar]
  42. Higashi-Fujime S, Ishikawa R, Iwasawa H, Kagami O, Kurimoto E. 42.  et al. 1995. The fastest actin-based motor protein from green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett 375:151–54 [Google Scholar]
  43. Hiwatashi Y, Obara M, Sato Y, Fujita T, Murata T, Hasebe M. 43.  2008. Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20:3094–106 [Google Scholar]
  44. Hiwatashi Y, Sato Y, Doonan JH. 44.  2014. Kinesins have a dual function in organizing microtubules during both tip growth and cytokinesis in Physcomitrella patens. Plant Cell 26:1256–66 [Google Scholar]
  45. Holding DR, Otegui MS, Li B, Meeley RB, Dam T. 45.  et al. 2007. The maize Floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19:2569–82 [Google Scholar]
  46. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS. 46.  et al. 2009. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–76 [Google Scholar]
  47. Hu DJ, Baffet AD, Nayak T, Akhmanova A, Doye V, Vallee RB. 47.  2013. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154:1300–13 [Google Scholar]
  48. Ito K, Ikebe M, Kashiyama T, Mogami T, Kon T, Yamamoto K. 48.  2007. Kinetic mechanism of the fastest motor protein, Chara myosin. J. Biol. Chem. 282:19534–45 [Google Scholar]
  49. Ito K, Yamaguchi Y, Yanase K, Ichikawa Y, Yamamoto K. 49.  2009. Unique charge distribution in surface loops confers high velocity on the fast motor protein Chara myosin. PNAS 106:21585–90 [Google Scholar]
  50. Itoh R, Fujiwara M, Yoshida S. 50.  2001. Kinesin-related proteins with a mitochondrial targeting signal. Plant Physiol 127:724–26 [Google Scholar]
  51. Jonsson E, Yamada M, Vale RD, Goshima G. 51.  2015. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat. Plants 1:15087 [Google Scholar]
  52. Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C. 52.  et al. 2009. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. PNAS 106:13106–11 [Google Scholar]
  53. Kamiya N, Kuroda K. 53.  1956. Velocity distribution of the protoplasmic streaming in Nitella cells. Bot. Mag. Tokyo 69:544–54 [Google Scholar]
  54. Kao YL, Deavours BE, Phelps KK, Walker RA, Reddy AS. 54.  2000. Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/calmodulin. Biochem. Biophys. Res. Commun. 267:201–7 [Google Scholar]
  55. Kinkema M, Schiefelbein J. 55.  1994. A myosin from a higher plant has structural similarities to class V myosins. J. Mol. Biol. 239:591–97 [Google Scholar]
  56. Kinkema M, Wang H, Schiefelbein J. 56.  1994. Molecular analysis of the myosin gene family in Arabidopsis. Plant Mol. Biol 16:1139–53 [Google Scholar]
  57. Klotz J, Nick P. 57.  2012. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol 193:576–89 [Google Scholar]
  58. Kong Z, Ioki M, Braybrook S, Li S, Ye ZH. 58.  et al. 2015. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol. Plant 8:1011–23 [Google Scholar]
  59. Korn ED.59.  2000. Coevolution of head, neck, and tail domains of myosin heavy chains. PNAS 97:12559–64 [Google Scholar]
  60. Kroeger JH, Bou Daher F, Grant M, Geitmann A. 60.  2009. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys. J. 97:1822–31 [Google Scholar]
  61. Kurth EG, Peremyslov VV, Turner HL, Makarova KS, Iranzo J. 61.  et al. 2017. Myosin-driven transport network in plants. PNAS 114:1385–94 [Google Scholar]
  62. Lau OS, Davies KA, Chang J, Adrian J, Rowe MH. 62.  et al. 2014. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science 345:1605–9 [Google Scholar]
  63. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC. 63.  et al. 2004. A standardized kinesin nomenclature. J. Cell Biol. 167:19–22 [Google Scholar]
  64. Lee YR, Giang HM, Liu B. 64.  2001. A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–39 [Google Scholar]
  65. Lee YR, Liu B. 65.  2000. Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr. Biol. 10:797–800 [Google Scholar]
  66. Lee YR, Qiu W, Liu B. 66.  2015. Kinesin motors in plants: from subcellular dynamics to motility regulation. Curr. Opin. Plant Biol. 28:120–26 [Google Scholar]
  67. Li J-F, Nebenführ A. 67.  2007. Organelle targeting of myosin XI is mediated independently by two globular tail subdomains. J. Biol. Chem. 282:20593–602 [Google Scholar]
  68. Li J-F, Nebenführ A. 68.  2008. Inter-dependence of dimerization and organelle binding in myosin XI. Plant J 55:478–90 [Google Scholar]
  69. Li J-F, Nebenführ A. 69.  2008. The tail that wags the dog: The globular tail domain defines the function of myosin V/XI. Traffic 9:290–98 [Google Scholar]
  70. Lipka E, Gadeyne A, Stockle D, Zimmermann S, De Jaeger G. 70.  et al. 2014. The phragmoplast-orienting kinesin-12 class proteins translate the positional information of the preprophase band to establish the cortical division zone in Arabidopsis thaliana. Plant Cell 26:2617–32 [Google Scholar]
  71. Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B. 71.  2005. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol. Biol. Cell 16:811–23 [Google Scholar]
  72. Madison SL, Buchanan ML, Glass JD, McClain TF, Park E, Nebenführ A. 72.  2015. Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169:1946–60 [Google Scholar]
  73. Malcos JL, Cyr RJ. 73.  2011. An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle–dependent manner. Cytoskeleton 68:247–58 [Google Scholar]
  74. Marcus AI, Ambrose JC, Blickley L, Hancock WO, Cyr RJ. 74.  2002. Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motil. Cytoskelet. 52:144–50 [Google Scholar]
  75. Marcus AI, Li W, Ma H, Cyr RJ. 75.  2003. A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol. Biol. Cell 14:1717–26 [Google Scholar]
  76. Miki T, Naito H, Nishina M, Goshima G. 76.  2014. Endogenous localizome identifies 43 mitotic kinesins in a plant cell. PNAS 111:E1053–61 [Google Scholar]
  77. Miki T, Nishina M, Goshima G. 77.  2015. RNAi screening identifies the armadillo repeat–containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol 56:737–49 [Google Scholar]
  78. Miller DD, deRuijter NCA, Bisseling T, Emons AMC. 78.  1999. The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–54 [Google Scholar]
  79. Mineyuki Y.79.  1999. The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int. Rev. Cytol. 187:1–49 [Google Scholar]
  80. Moschou PN, Gutierrez-Beltran E, Bozhkov PV, Smertenko A. 80.  2016. Separase promotes microtubule polymerization by activating CENP-E-related kinesin Kin7. Dev. Cell 37:350–61 [Google Scholar]
  81. Mühlhausen S, Kollmar M. 81.  2013. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. BMC Evol. Biol. 13:202 [Google Scholar]
  82. Muller S, Han S, Smith LG. 82.  2006. Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr. Biol 16:888–94 [Google Scholar]
  83. Nebenführ A, Gallagher L, Dunahay TG, Frohlick JA, Masurkiewicz AM. 83.  et al. 1999. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–41 [Google Scholar]
  84. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H. 84.  et al. 2002. Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99 [Google Scholar]
  85. Oda Y, Fukuda H. 85.  2012. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–36 [Google Scholar]
  86. Oda Y, Fukuda H. 86.  2013. Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25:4439–50 [Google Scholar]
  87. Oda Y, Iida Y, Kondo Y, Fukuda H. 87.  2010. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane–anchored protein. Curr. Biol. 20:1197–202 [Google Scholar]
  88. Odronitz F, Kollmar M. 88.  2007. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196 [Google Scholar]
  89. Oh SA, Allen T, Kim GJ, Sidorova A, Borg M. 89.  et al. 2012. Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. Plant J 72:308–19 [Google Scholar]
  90. Oh SA, Bourdon V, Das'Pal M, Dickinson H, Twell D. 90.  2008. Arabidopsis kinesins HINKEL and TETRASPORE act redundantly to control cell plate expansion during cytokinesis in the male gametophyte. Mol. Plant 1:794–99 [Google Scholar]
  91. Ojangu E-L, Järve K, Paves H, Truve E. 91.  2007. Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma 230:193–202 [Google Scholar]
  92. Ojangu E-L, Tanner K, Pata P, Järve K, Holweg CL. 92.  et al. 2012. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC Plant Biol 12:81 [Google Scholar]
  93. Okamoto K, Ueda H, Shimada T, Tamura K, Kato T. 93.  et al. 2015. Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton. Nat. Plants 1:15031 [Google Scholar]
  94. Pan R, Lee YR, Liu B. 94.  2004. Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220:156–64 [Google Scholar]
  95. Paredez AR, Somerville CR, Ehrhardt DW. 95.  2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–95 [Google Scholar]
  96. Park E, Nebenführ A. 96.  2013. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLOS ONE 8:e76745 [Google Scholar]
  97. Peremyslov VV, Cole RA, Fowler JE, Dolja VV. 97.  2015. Myosin-powered membrane compartment drives cytoplasmic streaming, cell expansion and plant development. PLOS ONE 10:e0139331 [Google Scholar]
  98. Peremyslov VV, Klocko AL, Fowler JE, Dolja VV. 98.  2012. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front. Plant Sci. 3:184 [Google Scholar]
  99. Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. 99.  2013. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 25:3039–51 [Google Scholar]
  100. Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV. 100.  2008. Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis thaliana. Plant Physiol 146:1109–16 [Google Scholar]
  101. Peremyslov VV, Prokhnevsky AI, Dolja VV. 101.  2010. Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell 22:1883–97 [Google Scholar]
  102. Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B. 102.  2004. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–55 [Google Scholar]
  103. Prokhnevsky AI, Peremyslov VV, Dolja VV. 103.  2008. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. PNAS 105:19744–49 [Google Scholar]
  104. Reddy ANS, Day IS. 104.  2001. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:research0024.1–0024.17 [Google Scholar]
  105. Reddy AS, Day IS. 105.  2001. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genom 2:2 [Google Scholar]
  106. Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J. 106.  et al. 1999. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–67 [Google Scholar]
  107. Richards TA, Cavalier-Smith T. 107.  2005. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–18 [Google Scholar]
  108. Richardson DN, Simmons MP, Reddy AS. 108.  2006. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genom 7:18 [Google Scholar]
  109. Rounds CM, Bezanilla M. 109.  2013. Growth mechanisms in tip-growing plant cells. Annu. Rev. Plant Biol. 64:243–65 [Google Scholar]
  110. Runions J, Brach T, Kühner S, Hawes C. 110.  2006. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J. Exp. Bot. 57:43–50 [Google Scholar]
  111. Sakai T, Honing H, Nishioka M, Uehara Y, Takahashi M. 111.  et al. 2008. Armadillo repeat–containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–71 [Google Scholar]
  112. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom JJ. 112.  et al. 2013. Patterning and lifetime of plasma membrane–localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–88 [Google Scholar]
  113. Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW. 113.  et al. 2011. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23:2302–13 [Google Scholar]
  114. Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y. 114.  2011. Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6:743–47 [Google Scholar]
  115. Sattarzadeh A, Franzen R, Schmelzer E. 115.  2008. The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil. Cytoskelet. 65:457–68 [Google Scholar]
  116. Sattarzadeh A, Schmelzer E, Hanson MR. 116.  2011. Analysis of organelle targeting by DIL domains of the Arabidopsis myosin XI family. Front. Plant Sci. 2:72 [Google Scholar]
  117. Schaefer E, Belcram K, Uyttewaal M, Duroc Y, Goussot M. 117.  et al. 2017. The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356:186–89 [Google Scholar]
  118. Schneider R, Persson S. 118.  2015. Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Front. Plant Sci. 6:415 [Google Scholar]
  119. Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I. 119.  2014. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol. Evol. 6:290–305 [Google Scholar]
  120. Shastry S, Hancock WO. 120.  2010. Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr. Biol. 20:939–43 [Google Scholar]
  121. Shastry S, Hancock WO. 121.  2011. Interhead tension determines processivity across diverse N-terminal kinesins. PNAS 108:16253–58 [Google Scholar]
  122. Shen Z, Collatos AR, Bibeau JP, Furt F, Vidali L. 122.  2012. Phylogenetic analysis of the Kinesin superfamily from Physcomitrella. Front. Plant Sci 3:230 [Google Scholar]
  123. Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tuzel E, Vidali L. 123.  2015. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. J. Integr. Plant Biol 57:106–19 [Google Scholar]
  124. Shimmen T.124.  2007. The sliding theory of cytoplasmic streaming: fifty years of progress. J. Plant Res. 120:31–43 [Google Scholar]
  125. Shimmen T, Yokota E. 125.  1994. Physiological and biochemical aspects of cytoplasmic streaming. Int. Rev. Cytol. 155:97–139 [Google Scholar]
  126. Sieberer B, Emons AMC. 126.  2000. Cytoarchitecture and pattern of cytoplasmic streaming in the root hairs of Medicago truncatula during development and deformation by nodulation factors. Protoplasma 214:118–27 [Google Scholar]
  127. Sparkes IA, Runions J, Hawes C, Griffing L. 127.  2009. Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–49 [Google Scholar]
  128. Sparkes IA, Teanby NA, Hawes C. 128.  2008. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J. Exp. Bot. 59:2499–512 [Google Scholar]
  129. Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW, Blanchoin L. 129.  2009. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184:269–80 [Google Scholar]
  130. Stanković B, Volkmann D, Sack FD. 130.  1998. Autotropism, automorphogenesis, and gravity. Physiol. Plant. 102:328–35 [Google Scholar]
  131. Stefano G, Renna L, Brandizzi F. 131.  2014. The endoplasmic reticulum exerts control over organelle streaming during cell expansion. J. Cell Sci. 127:947–53 [Google Scholar]
  132. Steffens A, Jaegle B, Tresch A, Hülskamp M, Jakoby M. 132.  2014. Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1. Plant Physiol 164:1879–892 [Google Scholar]
  133. Stephan O, Cottier S, Fahlén S, Montes-Rodriguez A, Sun J. 133.  et al. 2014. RISAP is a TGN-associated RAC5 effector regulating membrane traffic during polar cell growth in tobacco. Plant Cell 26:4426–47 [Google Scholar]
  134. Stockle D, Herrmann A, Lipka E, Lauster T, Gavidia R. 134.  et al. 2016. Putative RopGAPs impact division plane selection and interact with kinesin-12 POK1. Nat. Plants 2:16120 [Google Scholar]
  135. Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF. 135.  et al. 2002. The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle–dependent manner. Curr. Biol. 12:153–58 [Google Scholar]
  136. Suetsugu N, Dolja VV, Wada M. 136.  2010. Why have chloroplasts developed a unique motility system?. Plant Signal Behav 5:1190–96 [Google Scholar]
  137. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ. 137.  et al. 2010. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. PNAS 107:8860–65 [Google Scholar]
  138. Szymanski DB, Cosgrove DJ. 138.  2009. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol. 19:R800–11 [Google Scholar]
  139. Talts K, Ilau B, Ojangu E-L, Tanner K, Peremyslov VV. 139.  et al. 2016. Arabidopsis myosins XI1, XI2, and XIK are crucial for gravity-induced bending of inflorescence stems. Front. Plant Sci. 7:1932 [Google Scholar]
  140. Tamura K, Iwabuchi K, Fukao Y, Kondo M, Okamoto K. 140.  et al. 2013. Myosin XI-I links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Curr. Biol 23:1776–81 [Google Scholar]
  141. Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T. 141.  et al. 2004. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–211 [Google Scholar]
  142. Tian J, Han L, Feng Z, Wang G, Liu W. 142.  et al. 2015. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4:e09351 [Google Scholar]
  143. Tominaga M, Kimura A, Yokota E, Haraguchi T, Shimmen T. 143.  et al. 2013. Cytoplasmic streaming velocity as a plant size determinant. Dev. Cell 27:345–52 [Google Scholar]
  144. Tominaga M, Kojima H, Yokota E, Nakamori R, Anson M. 144.  et al. 2012. Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J. Biol. Chem. 287:30711–18 [Google Scholar]
  145. Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R. 145.  et al. 2003. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22:1263–72 [Google Scholar]
  146. Ueda H, Tamura K, Hara-Nishimura I. 146.  2015. Functions of plant-specific myosin XI: from intracellular motility to plant postures. Curr. Opin. Plant Biol. 28:30–38 [Google Scholar]
  147. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K. 147.  et al. 2010. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. PNAS 107:6894–99 [Google Scholar]
  148. Umezu N, Umeki N, Mitsui T, Kondo K, Maruta S. 148.  2011. Characterization of a novel rice kinesin O12 with a calponin homology domain. J. Biochem. 149:91–101 [Google Scholar]
  149. Vale RD.149.  1996. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135:291–302 [Google Scholar]
  150. Vale RD.150.  2003. The molecular toolbox for intracellular transport. Cell 112:467–80 [Google Scholar]
  151. Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D. 151.  2004. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–98 [Google Scholar]
  152. van Gestel K, Köhler RH, Verbelen J-P. 152.  2002. Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J. Exp. Bot. 53:659–67 [Google Scholar]
  153. Vanstraelen M, Inze D, Geelen D. 153.  2006. Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–75 [Google Scholar]
  154. Vick JK, Nebenführ A. 154.  2012. Putting on the breaks: regulating organelle movements in plant cells. J. Integr. Plant Biol. 54:868–74 [Google Scholar]
  155. Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M. 155.  2010. Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–82 [Google Scholar]
  156. Vidali L, McKenna ST, Hepler PK. 156.  2001. Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12:2534–45 [Google Scholar]
  157. Walker KL, Muller S, Moss D, Ehrhardt DW, Smith LG. 157.  2007. Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17:1827–36 [Google Scholar]
  158. Walter WJ, Machens I, Rafieian F, Diez S. 158.  2015. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities. Nat. Plants 1:15111 [Google Scholar]
  159. Wang G, Wang F, Wang G, Wang F, Zhang X. 159.  et al. 2012. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell 24:3447–62 [Google Scholar]
  160. Wightman R, Turner SR. 160.  2008. The roles of the cytoskeleton during cellulose deposition at the secondary wall. Plant J 54:794–805 [Google Scholar]
  161. Woodhouse FG, Goldstein RE. 161.  2013. Cytoplasmic streaming in plant cells emerges naturally by filament self-organization. PNAS 110:14132–37 [Google Scholar]
  162. Wu S-Z, Bezanilla M. 162.  2014. Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. eLife 3:e03498 [Google Scholar]
  163. Wu SZ, Ritchie JA, Pan AH, Quatrano RS, Bezanilla M. 163.  2011. Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens. Mol. Plant 4:909–21 [Google Scholar]
  164. Wu XS, Tsan GL, 3rd Hammer JA. 164.  2005. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171:201–7 [Google Scholar]
  165. Xu T, Qu Z, Yang X, Qin X, Xiong J. 165.  et al. 2009. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem. J. 421:171–80 [Google Scholar]
  166. Xu XM, Zhao Q, Rodrigo-Peiris T, Brkljacic J, He CS. 166.  et al. 2008. RanGAP1 is a continuous marker of the Arabidopsis cell division plane. PNAS 105:18637–42 [Google Scholar]
  167. Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. 167.  2017. Multiple kinesin-14 family members drive microtubule minus end–directed transport in plant cells. J. Cell Biol. 216:1705–14 [Google Scholar]
  168. Zhou X, Meier I. 168.  2014. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. PNAS 111:11900–5 [Google Scholar]
  169. Zhu C, Dixit R. 169.  2012. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma 249:887–99 [Google Scholar]
  170. Zhu C, Ganguly A, Baskin TI, McClosky DD, Anderson CT. 170.  et al. 2015. The Fragile Fiber1 kinesin contributes to cortical microtubule–mediated trafficking of cell wall components. Plant Physiol 167:780–82 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040024
Loading
/content/journals/10.1146/annurev-arplant-042817-040024
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error