1932

Abstract

Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040240
2019-04-29
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-042817-040240.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040240&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abley K, Locke JCW, Leyser HMO 2016. Developmental mechanisms underlying variable, invariant and plastic phenotypes. Ann. Bot. 117:733–48
    [Google Scholar]
  2. 2.  Allen T, Prosperi P, Cogill B, Flichman G 2014. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 73:498–508
    [Google Scholar]
  3. 3.  Aller EST, Jagd LM, Kliebenstein DJ, Burow M 2018. Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3 8:1733–46
    [Google Scholar]
  4. 4.  Alves ML, Belo M, Carbas B, Brites C, Paulo M et al. 2018. Long-term on-farm participatory maize breeding by stratified mass selection retains molecular diversity while improving agronomic performance. Evol. Appl. 11:254–70
    [Google Scholar]
  5. 5.  Arendt J, Reznick D 2008. Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation. ? Trends Ecol. Evol. 23:26–32
    [Google Scholar]
  6. 6.  Arnaud N, Lawrenson T, Østergaard L, Sablowski R 2011. The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Curr. Biol. 21:1215–19
    [Google Scholar]
  7. 7.  Assefa T, Sperling L, Dagne B, Argaw W, Tessema D, Beebe S 2014. Participatory plant breeding with traders and farmers for white pea bean in Ethiopia. J. Agric. Educ. Ext. 20:497–512
    [Google Scholar]
  8. 8.  Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A et al. 2017. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37:13
    [Google Scholar]
  9. 9.  Barrett RDH, Schluter D 2008. Adaptation from standing genetic variation. Trends Ecol. Evol. 23:38–44
    [Google Scholar]
  10. 10.  Beebe S, Lynch J, Galwey N, Tohme J, Ochoa I 1997. A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–36
    [Google Scholar]
  11. 11.  Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E et al. 2014. Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell 26:1901–12
    [Google Scholar]
  12. 12.  Bitocchi E, Rau D, Benazzo A, Bellucci E, Goretti D et al. 2016. High level of nonsynonymous changes in common bean suggests that selection under domestication increased functional diversity at target traits. Front. Plant Sci. 7:2005Provides evidence for an excess of nonsynonymous mutations in coding regions of domesticated genotypes, potentially due to selection for tolerance to abiotic and biotic stresses.
    [Google Scholar]
  13. 13.  Blancas J, Casas A, Pérez-Salicrup D, Caballero J, Vega E 2013. Ecological and socio-cultural factors influencing plant management in Náhuatl communities of the Tehuacán Valley, Mexico. J. Ethnobiol. Ethnomed. 9:39
    [Google Scholar]
  14. 14.  Boss PK, Sreekantan L, Thomas MR 2006. A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct. Plant Biol. 33:31–41
    [Google Scholar]
  15. 15.  Bradshaw CJA, Brook BW 2014. Human population reduction is not a quick fix for environmental problems. PNAS 111:16610–15
    [Google Scholar]
  16. 16.  Brush SB 2004. Farmers' Bounty New Haven, CT: Yale Univ. Press
    [Google Scholar]
  17. 17.  Cadotte MW 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20:989–96
    [Google Scholar]
  18. 18.  Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A et al. 2007. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLOS Genet 3:1745–56
    [Google Scholar]
  19. 19.  Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P et al. 2017. Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell 29:919–43
    [Google Scholar]
  20. 20.  Ceccarelli S, Guimaraes EP, Weltzien E 2009. Plant Breeding and Farmer Participation Rome: FAO
    [Google Scholar]
  21. 21.  Civáň P, Craig H, Cox CJ, Brown TA 2015. Three geographically separate domestications of Asian rice. Nat. Plants 1:15164
    [Google Scholar]
  22. 22.  Collins WW, Qualset CO 1999. Biodiversity in Agroecosystems Boca Raton, FL: CRC
    [Google Scholar]
  23. 23.  Comadran J, Kilian B, Russell J, Ramsay L, Stein N et al. 2012. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44:1388–92
    [Google Scholar]
  24. 24.  Coomes OT, McGuire SJ, Garine E, Caillon S, McKey D et al. 2015. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56:41–50
    [Google Scholar]
  25. 25.  Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A 2005. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15:901–13
    [Google Scholar]
  26. 26.  Cremer F, Lönnig W-E, Saedler H, Huijser P 2001. The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon. Plant Physiol 126:1031–41
    [Google Scholar]
  27. 27.  Darwin C 1859. On the Origin of Species by Means of Natural Selection London: Murray
    [Google Scholar]
  28. 28.  Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L 2017. Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–82
    [Google Scholar]
  29. 29.  Des Marais DL, Hernandez KM, Juenger TE 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu. Rev. Ecol. Evol. Syst. 44:5–29
    [Google Scholar]
  30. 30.  Dirzo R, Raven PH 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28:137–67
    [Google Scholar]
  31. 31.  Doebley JF, Gaut BS, Smith BD 2006. The molecular genetics of crop domestication. Cell 127:1309–21
    [Google Scholar]
  32. 32.  Dubcovsky J, Dvorak J 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–66
    [Google Scholar]
  33. 33.  Dutfield G 2017. Traditional knowledge, intellectual property and pharmaceutical innovation: What's left to discuss?. The Sage Handbook of Intellectual Property M David, D Halbert 649–64 London: Sage
    [Google Scholar]
  34. 34.  Duvick DN, Smith JSC, Cooper M 2004. Long-term selection in a commercial hybrid maize breeding program. Plant Breed. Rev. 24:Part 2109–51
    [Google Scholar]
  35. 35.  Dwivedi SL, Lammerts van Bueren ET, Ceccarelli S, Grando S, Upadhyaya HD, Ortiz R 2017. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci 22:842–56
    [Google Scholar]
  36. 36.  El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM 2014. Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–98
    [Google Scholar]
  37. 37.  Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N et al. 2003. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–54
    [Google Scholar]
  38. 38.  Fu Y-B 2017. The vulnerability of plant genetic resources conserved ex situ. Crop Sci 57:2314–28
    [Google Scholar]
  39. 39.  Gammans M, Mérel P, Ortiz-Bobea A 2017. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ. Res. Lett. 12:054007
    [Google Scholar]
  40. 40.  Gaut BS 2015. Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution. Mol. Biol. Evol. 32:1661–71
    [Google Scholar]
  41. 41.  Gaut BS, Díez CM, Morrell PL 2015. Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31:709–19
    [Google Scholar]
  42. 42.  Geffroy V, Sicard D, de Oliveira J, Sévignac M, Cohen S et al. 1999. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol. Plant Microbe Interact 12:774–84
    [Google Scholar]
  43. 43.  Gepts P 2004. Crop domestication as a long-term selection experiment. Plant Breed. Rev. 24:Part 21–44
    [Google Scholar]
  44. 44.  Gepts P 2004. Who owns biodiversity and how should the owners be compensated. ? Plant Physiol 134:1295–307
    [Google Scholar]
  45. 45.  Gepts P 2006. Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–92
    [Google Scholar]
  46. 46.  Gepts P 2014. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 18:51–59
    [Google Scholar]
  47. 47.  Gepts P 2017. Genetic aspects of crop domestication. Routledge Handbook of Agricultural Biodiversity D Hunter, L Guarino, C Spillane, PC McKeown 147–67 New York: Routledge
    [Google Scholar]
  48. 48.  Gepts P, Osborn TC, Rashka K, Bliss FA 1986. Phaseolin-protein variability in wild forms and land-races of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ. Bot. 40:451–68
    [Google Scholar]
  49. 49.  Gilbert ME, Medina V 2016. Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–47
    [Google Scholar]
  50. 50.  Glémin S, Bataillon T 2009. A comparative view of the evolution of grasses under domestication. New Phytol 183:273–90
    [Google Scholar]
  51. 51.  Grogan SM, Anderson J, Baenziger PS, Frels K, Guttieri MJ et al. 2016. Phenotypic plasticity of winter wheat heading date and grain yield across the US Great Plains. Crop Sci 56:2223–36
    [Google Scholar]
  52. 52.  Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR et al. 1995. Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–7
    [Google Scholar]
  53. 53.  Hammer K 1984. Das Domestikationssyndrom. Kulturpflanze 32:11–34
    [Google Scholar]
  54. 54.  Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR et al. 2013. Climate change, wine, and conservation. PNAS 110:6907–12
    [Google Scholar]
  55. 55.  Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP et al. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS 114:E9999–10008
    [Google Scholar]
  56. 56.  Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–33
    [Google Scholar]
  57. 57.  Harlan JR 1992. Crops and Man Madison, WI: Am. Soc. Agron.
    [Google Scholar]
  58. 58.  Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D et al. 2007. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24:1506–17
    [Google Scholar]
  59. 59.  Hawksworth D, Kalin-Arroyo MT, Hammond PM, Ricklefs RE, Cowling R et al. 1995. Magnitude and distribution of biodiversity. Global Biodiversity Assessment VH Heywood, RT Watson 107–92 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  60. 60.  Hegde SG, Nason JD, Clegg JM, Ellstrand NC 2006. The evolution of California's wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–97
    [Google Scholar]
  61. 61.  Heil M 2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306
    [Google Scholar]
  62. 62.  Heywood VH 2017. Plant conservation in the Anthropocene—challenges and future prospects. Plant Divers 39:314–30
    [Google Scholar]
  63. 63.  Holeski LM, Jander G, Agrawal AA 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27:618–26
    [Google Scholar]
  64. 64.  Huang X, Zhao Y, Wei X, Li C, Wang A et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44:32–39
    [Google Scholar]
  65. 65.  Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J 2013. The genomic signature of crop-wild introgression in maize. PLOS Genet. 9:e1003477Describes the genome-wide extent of introgressive hybridization between sympatric maize and wild Zea mays ssp. mexicana leading to highland adaptation in Mexico.
    [Google Scholar]
  66. 66.  Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia JM et al. 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44:808–11
    [Google Scholar]
  67. 67.  Humphries S, Rosas JC, Gómez M, Jiménez J, Sierra F et al. 2015. Synergies at the interface of farmer–scientist partnerships: agricultural innovation through participatory research and plant breeding in Honduras. Agric. Food Secur. 4:27Provides a successful example of participatory research involving local farmers, agricultural researchers, and nongovernmental organizations in using biodiversity for crop breeding.
    [Google Scholar]
  68. 68.  Hunter D, Guarino L, Spillane C, McKeown PC, eds. 2017. Routledge Handbook of Agricultural Biodiversity New York: Taylor & FrancisProvides a broad overview of agricultural biodiversity, including its nature, valuation, effect on human health, socioeconomic and legal aspects, and conservation.
    [Google Scholar]
  69. 69.  Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF et al. 2013. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am. J. Bot. 100:930–38
    [Google Scholar]
  70. 70.  Janzen GM, Wang L, Hufford MB 2019. The extent of adaptive wild introgression in crops. New Phytol 221:1279–88
    [Google Scholar]
  71. 71.  Jika AKN, Dussert Y, Raimond C, Garine E, Luxereau A et al. 2017. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad basin. Heredity 118:491–502
    [Google Scholar]
  72. 72.  Jones AD 2016. On-farm crop species richness is associated with household diet diversity and quality in subsistence- and market-oriented farming households in Malawi. J. Nutr. 147:86–96
    [Google Scholar]
  73. 73.  Jump AS, Marchant R, Peñuelas J 2009. Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58
    [Google Scholar]
  74. 74.  Kantar MB, Nashoba AR, Anderson JE, Blackman BK, Rieseberg LH 2017. The genetics and genomics of plant domestication. BioScience 67:971–82
    [Google Scholar]
  75. 75.  Kessler A, Kalske A 2018. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 49:115–38
    [Google Scholar]
  76. 76. Kew R. Bot. Gard. 2016. State of the World's Plants 2016 Kew, UK: Kew R. Bot. Gard. https://stateoftheworldsplants.org/2016/
    [Google Scholar]
  77. 77.  Khoury CK, Achicanoy HA, Bjorkman AD, Navarro-Racines C, Guarino L et al. 2016. Origins of food crops connect countries worldwide. Proc. R. Soc. London Ser. B 283:20160792Illustrates the origin and worldwide dissemination of our crops and the recent trend in mutual dependency of countries on crop biodiversity.
    [Google Scholar]
  78. 78.  Kidane YG, Mancini C, Mengistu DK, Frascaroli E, Fadda C et al. 2017. Genome wide association study to identify the genetic base of smallholder farmer preferences of durum wheat traits. Front. Plant Sci. 8:1230
    [Google Scholar]
  79. 79.  Kiers ET, Leakey RRB, Izac A-M, Heinemann JA, Rosenthal E et al. 2008. Agriculture at a crossroads. Science 320:320–21
    [Google Scholar]
  80. 80.  Knapp S, Winter M, Klotz S, Bennett J 2017. Increasing species richness but decreasing phylogenetic richness and divergence over a 320‐year period of urbanization. J. Appl. Ecol. 54:1152–60
    [Google Scholar]
  81. 81.  Kwak M, Kami JA, Gepts P 2009. The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci 49:554–63
    [Google Scholar]
  82. 82.  Kwak M, Toro O, Debouck D, Gepts P 2012. Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris L.). Ann. Bot. 110:1573–80Shows that a given (domesticated) phenotype can have multiple origins through distinct de novo lineage-specific mutations at a single locus.
    [Google Scholar]
  83. 83.  Kwak M, Velasco DM, Gepts P 2008. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J. Hered. 99:283–91
    [Google Scholar]
  84. 84.  Lam H-M, Xu X, Liu X, Chen W, Yang G et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:1053–59
    [Google Scholar]
  85. 85.  Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L et al. 2014. Current perspectives and the future of domestication studies. PNAS 111:6139–46
    [Google Scholar]
  86. 86.  Laurance WF, Clements GR, Sloan S, O'Connell CS, Mueller ND et al. 2014. A global strategy for road building. Nature 513:229–32
    [Google Scholar]
  87. 87.  Law W, Salick J 2005. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). PNAS 102:10218–20
    [Google Scholar]
  88. 88.  Leakey RRB 2012. Participatory domestication of indigenous fruit and nut trees: new crops for sustainable agriculture in developing countries. Biodiversity in Agriculture: Domestication, Evolution, and Sustainability P Gepts, TR Famula, RL Bettinger, SB Brush, AB Damania et al.479–501 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  89. 89.  Leakey RRB 2017. Multifunctional Agricultura: Achieving Sustainable Development in Africa London: Academic
    [Google Scholar]
  90. 90.  Lenser T, Theißen G 2013. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18:704–14
    [Google Scholar]
  91. 91.  Li L, Tacke E, Hofferbert H-R, Lübeck J, Strahwald J et al. 2013. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor. Appl. Genet. 126:1039–52
    [Google Scholar]
  92. 92.  Li W, Gill BS 2006. Multiple genetic pathways for seed shattering in the grasses. Funct. Integr. Genomics 6:300–9
    [Google Scholar]
  93. 93.  Lin T, Zhu G, Zhang J, Xu X, Yu Q et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:1220–26
    [Google Scholar]
  94. 94.  Lorant A, Pedersen S, Holst I, Hufford MB, Winter K et al. 2017. The potential role of genetic assimilation during maize domestication. PLOS ONE 12:e0184202
    [Google Scholar]
  95. 95.  Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22:126–31First posited a cost of domestication based on an increased frequency of nonsynonymous mutations in the rice domesticated gene pool compared to the wild one.
    [Google Scholar]
  96. 96.  Luby J, Hancock J, Dale A, Serçe S 2008. Reconstructing Fragaria × ananassa utilizing wild F. virginiana and F. chiloensis: inheritance of winter injury, photoperiod sensitivity, fruit size, female fertility and disease resistance in hybrid progenies. Euphytica 163:57–65
    [Google Scholar]
  97. 97.  Mariac C, Jehin L, Saidou AA, Thuillet AC, Couderc M et al. 2011. Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol. Ecol. 20:80–91
    [Google Scholar]
  98. 98.  Martínez-Ainsworth NE, Tenaillon MI 2016. Superheroes and masterminds of plant domestication. C. R. Biol. 339:268–73
    [Google Scholar]
  99. 99.  Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:322–34Illustrates an increase in plasticity under domestication of the symbiotic interaction with arbuscular mycorrhizae.
    [Google Scholar]
  100. 100.  Mastretta-Yanes A, Acevedo Gasman F, Burgeff C, Cano Ramírez M, Piñero D, Sarukhán J 2018. An initiative for the study and use of genetic diversity of domesticated plants and their wild relatives. Front. Plant Sci. 9:209
    [Google Scholar]
  101. 101.  Matesanz S, Gianoli E, Valladares F 2010. Global change and the evolution of phenotypic plasticity in plants. Ann. NY Acad. Sci. 1206:35–55
    [Google Scholar]
  102. 102.  Matesanz S, Milla R 2018. Differential plasticity to water and nutrients between crops and their wild progenitors. Environ. Exp. Bot. 145:54–63
    [Google Scholar]
  103. 103.  Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J 2002. A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99:6080–84
    [Google Scholar]
  104. 104.  Maxwell SL, Fuller RA, Brooks TM, Watson JEM 2016. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–45
    [Google Scholar]
  105. 105.  McClean PE, Bett KE, Stonehouse R, Lee R, Pflieger S et al. 2018. White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. New Phytol 219:1112–23
    [Google Scholar]
  106. 106.  Meyer RS, DuVal AE, Jensen HR 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48
    [Google Scholar]
  107. 107.  Meyer RS, Purugganan MD 2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14:840–52
    [Google Scholar]
  108. 108.  Miller AJ, Gross BL 2011. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98:1389–414
    [Google Scholar]
  109. 109.  Moreira PA, Mariac C, Zekraoui L, Couderc M, Rodrigues DP et al. 2017. Human management and hybridization shape treegourd fruits in the Brazilian Amazon basin. Evol. Appl. 10:577–89
    [Google Scholar]
  110. 110.  Moyers BT, Morrell PL, McKay JK 2018. Genetic costs of domestication and improvement. J. Hered. 109:103–16
    [Google Scholar]
  111. 111.  Mulumba JW, Nankya R, Adokorach J, Kiwuka C, Fadda C et al. 2012. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 157:70–86
    [Google Scholar]
  112. 112.  Murray-Kolb LE, Wenger MJ, Scott SP, Rhoten SE, Lung'aho MG, Haas JD 2017. Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial. J. Nutr. 147:2109–17
    [Google Scholar]
  113. 113.  Naderpour M, Lund OS, Larsen R, Johansen E 2010. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol. Plant Pathol. 11:255–63
    [Google Scholar]
  114. 114.  Nosil P, Crespi BJ, Sandoval CP 2002. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:440–43
    [Google Scholar]
  115. 115.  Olsen KM, Wendel JF 2013. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64:47–70
    [Google Scholar]
  116. 116.  Orozco-Ramirez Q, Ross-Ibarra J, Santacruz-Varela A, Brush S 2016. Maize diversity associated with social origin and environmental variation in Southern Mexico. Heredity 116:477–84
    [Google Scholar]
  117. 117.  Papa R, Acosta J, Delgado-Salinas A, Gepts P 2005. A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor. Appl. Genet. 111:1147–58
    [Google Scholar]
  118. 118.  Papa R, Gepts P 2003. Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106:239–50
    [Google Scholar]
  119. 119.  Pathak T, Maskey M, Dahlberg J, Kearns F, Bali K, Zaccaria D 2018. Climate change trends and impacts on California agriculture: a detailed review. Agronomy 8:25
    [Google Scholar]
  120. 120.  Pautasso M, Aistara G, Barnaud A, Caillon S, Clouvel P et al. 2013. Seed exchange networks for agrobiodiversity conservation. A review. Agron. Sustain. Dev. 33:151–75
    [Google Scholar]
  121. 121.  Peter BM, Huerta-Sanchez E, Nielsen R 2012. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLOS Genet 8:e1003011
    [Google Scholar]
  122. 122.  Pfennig KS, Kelly AL, Pierce AA 2016. Hybridization as a facilitator of species range expansion. R. Soc. Proc. B 283:20161329
    [Google Scholar]
  123. 123.  Phalan B, Onial M, Balmford A, Green RE 2011. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–91
    [Google Scholar]
  124. 124.  Pickersgill B 2018. Parallel vs. convergent evolution in domestication and diversification of crops in the Americas. Front. Ecol. Evol. 6:56
    [Google Scholar]
  125. 125.  Pigliucci M 2005. Evolution of phenotypic plasticity: Where are we going now. ? Trends Ecol. Evol. 20:481–86
    [Google Scholar]
  126. 126.  Pimm SL, Raven PH 2017. The fate of the world's plants. Trends Ecol. Evol. 32:317–20
    [Google Scholar]
  127. 127.  Piperno DR, Holst I, Winter K, McMillan O 2015. Teosinte before domestication: experimental study of growth and phenotypic variability in Late Pleistocene and early Holocene environments. Quat. Int. 363:65–77
    [Google Scholar]
  128. 128.  Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R 2009. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the central Balsas River valley, Mexico. PNAS 106:5019–24
    [Google Scholar]
  129. 129.  Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J et al. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–89
    [Google Scholar]
  130. 130.  Poets AM, Fang Z, Clegg MT, Morrell PL 2015. Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biol 16:173
    [Google Scholar]
  131. 131.  Pujol B, David P, McKey D 2005. Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol. Lett. 8:138–47
    [Google Scholar]
  132. 132.  Purugganan MD, Fuller DQ 2009. The nature of selection during plant domestication. Nature 457:843–48
    [Google Scholar]
  133. 133.  Qualset CO, McGuire PE, Warburton ML 1995. In California: ‘agrobiodiversity’ key to agricultural productivity. Calif. Agric. 49:45–49
    [Google Scholar]
  134. 134.  Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. PNAS 102:15942–47
    [Google Scholar]
  135. 135.  Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C et al. 2017. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat. Genet. 49:959–63
    [Google Scholar]
  136. 136.  Reiss ER, Drinkwater LE 2018. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28:62–77
    [Google Scholar]
  137. 137.  Renaut S, Rieseberg LH 2015. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32:2273–83
    [Google Scholar]
  138. 138.  Repinski SL, Kwak M, Gepts P 2012. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor. Appl. Genet 124:1539–47
    [Google Scholar]
  139. 139.  Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E et al. 2017. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol. Lett. 20:1576–90
    [Google Scholar]
  140. 140.  Rubel F, Kottek M 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 19:135–41
    [Google Scholar]
  141. 141.  Salman-Minkov A, Sabath N, Mayrose I 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2:16115
    [Google Scholar]
  142. 142.  Saxena RK, Obala J, Sinjushin A, Kumar CVS, Saxena KB, Varshney RK 2017. Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor. Appl. Genet. 130:1773–84
    [Google Scholar]
  143. 143.  Schmidt JE, Bowles TM, Gaudin ACM 2016. Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front. Plant Sci. 7:373
    [Google Scholar]
  144. 144.  Schrider DR, Kern AD 2016. S/HIC: robust identification of soft and hard sweeps using machine learning. PLOS Genet 12:e1005928
    [Google Scholar]
  145. 145.  Schultz J 2005. The Ecozones of the World Berlin: Springer
    [Google Scholar]
  146. 146.  Shakoor N, Lee S, Mockler TC 2017. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38:184–92
    [Google Scholar]
  147. 147.  Sheehan S, Song YS 2016. Deep learning for population genetic inference. PLOS Comput. Biol. 12:e1004845
    [Google Scholar]
  148. 148.  Shelton A, Tracy W 2016. Participatory plant breeding and organic agriculture: a synergistic model for organic variety development in the United States. Sci. Anthr. 4:143
    [Google Scholar]
  149. 149.  Shimizu-Inatsugi R, Terada A, Hirose K, Kudoh H, Sese J, Shimizu KK 2017. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Mol. Ecol. 26:193–207
    [Google Scholar]
  150. 150.  Sicard D, Michalakis Y, Dron M, Neema C 1997. Genetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of diversity of its host, Phaseolus vulgaris. Phytopathology 87:807–13
    [Google Scholar]
  151. 151.  Sinjushin AA 2015. Mutations of determinate growth and their application in legume breeding. Legum. Perspect. 6:14–15
    [Google Scholar]
  152. 152.  Skarbø K, VanderMolen K 2015. Maize migration: key crop expands to higher altitudes under climate change in the Andes. Clim. Dev. 8:245–55
    [Google Scholar]
  153. 153.  Smith M, Castillo F, Gómez F 2001. Participatory plant breeding with maize in Mexico and Honduras. Euphytica 122:551–63
    [Google Scholar]
  154. 154.  Smith S, Diers B, Specht J, Carver B, eds. 2014. Yield Gains in Major U.S. Field Crops Madison, WI: Am. Soc. Agron., Inc./Crop Sci. Soc. Am., Inc./Soil Sci. Soc. Am., Inc.
    [Google Scholar]
  155. 155.  Song Q, Zhang T, Stelly DM, Chen ZJ 2017. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99
    [Google Scholar]
  156. 156.  Stellari GM, Mazourek M, Jahn MM 2009. Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–71
    [Google Scholar]
  157. 157.  Stern DL 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:751–64
    [Google Scholar]
  158. 158.  Stetter MG, Gates DJ, Mei W, Ross-Ibarra J 2017. How to make a domesticate. Curr. Biol. 27:R896–900
    [Google Scholar]
  159. 159.  Stone EA, Sidow A 2005. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15:978–86
    [Google Scholar]
  160. 160.  Studer A, Zhao Q, Ross-Ibarra J, Doebley J 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet 43:1160–63Provides an example of standing variation arising 10,000 years before domestication and resulting from a transposable element insertion in the control region of a gene.
    [Google Scholar]
  161. 161.  Takuno S, Ralph P, Swarts K, Elshire RJ, Glaubitz JC et al. 2015. Independent molecular basis of convergent highland adaptation in maize. Genetics 200:1297–312
    [Google Scholar]
  162. 162.  Tanaka A, Fujita K 1979. Photosynthesis and yield components in relation to grain yield of the field beans. J. Fac. Agric. Hokkaido Univ. 59:145–238
    [Google Scholar]
  163. 163.  Tian Z, Wang X, Lee R, Li Y, Specht JE et al. 2010. Artificial selection for determinate growth habit in soybean. PNAS 107:8563–68
    [Google Scholar]
  164. 164.  Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT et al. 2016. Hybridization and extinction. Evol. Appl. 9:892–908
    [Google Scholar]
  165. 165.  Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV 2010. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 42:260–63
    [Google Scholar]
  166. 166. United Nations. 2017. World Population Prospects 2017 New York: UN DESA/Popul. Div. https://population.un.org/wpp/
    [Google Scholar]
  167. 167.  Vallejo-Ramos M, Moreno-Calles AI, Casas A 2016. TEK and biodiversity management in agroforestry systems of different socio-ecological contexts of the Tehuacán valley. J. Ethnobiol. Ethnomed. 12:31
    [Google Scholar]
  168. 168.  van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B 2010. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Res. 8:1–15
    [Google Scholar]
  169. 169.  van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B 2010. Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor. Appl. Genet. 120:1241–52
    [Google Scholar]
  170. 170.  van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM et al. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. PNAS 108:1088–92
    [Google Scholar]
  171. 171.  Vaughan DA, Balázs E, Heslop-Harrison JS 2007. From crop domestication to super-domestication. Ann. Bot. 100:893–901
    [Google Scholar]
  172. 172.  Vavilov NI 1922. The law of homologous series in variation. J. Genet. 12:47–89
    [Google Scholar]
  173. 173.  Vavilov NI 1926. Centers of origin of cultivated plants. Origin and Geography of Cultivated Plants VF Dorofeyev 22–135 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  174. 174.  Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL et al. 2017. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant Biol. 68:563–86
    [Google Scholar]
  175. 175.  Wambugu PW, Ndjiondjop M-N, Henry RJ 2018. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct. Genomics 17:198–206
    [Google Scholar]
  176. 176.  Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB 2017. The interplay of demography and selection during maize domestication and expansion. Genome Biol 18:215
    [Google Scholar]
  177. 177.  Westengen OT, Okongo MA, Onek L, Berg T, Upadhyaya H et al. 2014. Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems. PNAS 111:14100–5
    [Google Scholar]
  178. 178.  Wilkus EL, Berny Mier y Teran JC, Mukankusi CM, Gepts P 2018. Genetic patterns of common-bean seed acquisition and early-stage adoption among farmer groups in western Uganda. Front. Plant Sci. 9:586Illustrates how farmer management and participatory research affect seed stock genetic diversity, based on genotypic information.
    [Google Scholar]
  179. 179.  Woldeamlak A, Grando S, Maatougui M, Ceccarelli S 2008. Hanfets, a barley and wheat mixture in Eritrea: yield, stability and farmer preferences. Field Crops Res 109:50–56
    [Google Scholar]
  180. 180.  Worthington M, Soleri D, Aragón-Cuevas F, Gepts P 2012. Genetic composition and spatial distribution of farmer-managed bean plantings: an example from a village in Oaxaca, Mexico. Crop Sci 52:1721–35Shows farmers’ awareness of adaptation of species-level adaptation and the directed adaptation to local conditions (creolization) by introgressive hybridization.
    [Google Scholar]
  181. 181.  Zhang J, Percy RG, McCarty JC 2014. Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198:1–12
    [Google Scholar]
  182. 182.  Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS 2017. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. PNAS 114:11715–20
    [Google Scholar]
  183. 183.  Zimmerer KS 2010. Biological diversity in agriculture and global change. Annu. Rev. Environ. Resour. 35:137–66
    [Google Scholar]
  184. 184.  Zizumbo-Villarreal D, Colunga-GarcíaMarín P, Payró de la Cruz E, Delgado-Valerio P, Gepts P 2005. Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 35:1073–83
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040240
Loading
/content/journals/10.1146/annurev-arplant-042817-040240
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error