Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (CO) that have been unprecedented for the past 50–100+ million years according to fossil plant-based CO estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when CO was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO, contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species’ climate envelope in response to global change.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ainsworth EA, Long SP. 1.  2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–71 [Google Scholar]
  2. Ainsworth EA, Rogers A. 2.  2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–70 [Google Scholar]
  3. Algeo TJ, Scheckler SE. 3.  1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B 353:113–28One of the earliest papers highlighting the importance of plant evolution for atmospheric carbon sequestration via chemical weathering. [Google Scholar]
  4. Bacon KL, Belcher CM, Haworth M, McElwain JC. 4.  2013. Increased atmospheric SO2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLOS ONE 8:e60614 [Google Scholar]
  5. Bacon KL, Belcher CM, Hesselbo SP, McElwain JC. 5.  2011. The Triassic-Jurassic boundary carbon-isotope excursions expressed in taxonomically identified leaf cuticles. Palaios 26:461–69 [Google Scholar]
  6. Barber VA, Juday GP, Finney BP. 6.  2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668 [Google Scholar]
  7. Barclay RS, McElwain JC, Sageman BB. 7.  2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3:205–8Demonstrates important linkages between geological processes such as volcanism, atmospheric CO2 concentration, and anoxia in the world's oceans. [Google Scholar]
  8. Barke J, Abels HA, Sangiorgi F, Greenwood DR, Sweet AR. 8.  et al. 2011. Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39:427–30 [Google Scholar]
  9. Barrett PM, Willis KJ. 9.  2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev. 76:411–47 [Google Scholar]
  10. Beerling DJ.10.  2002. Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. PNAS 99:12567–71 [Google Scholar]
  11. Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR. 11.  2002. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. PNAS 99:7836–40 [Google Scholar]
  12. Beerling DJ, McElwain JC, Osborne CP. 12.  1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. J. Exp. Bot. 49:1603–7 [Google Scholar]
  13. Beerling DJ, Osborne CP. 13.  2002. Physiological ecology of Mesozoic polar forests in a high CO2 environment. Ann. Bot. 89:329–39 [Google Scholar]
  14. Beerling DJ, Royer D. 14.  2002. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annu. Rev. Earth Planet. Sci. 30:527–56 [Google Scholar]
  15. Belcher CM, Mander L, Rein G, Jervis FX, Haworth M. 15.  et al. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3:426–29 [Google Scholar]
  16. Bergman NM, Lenton TM, Watson AJ. 16.  2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304:397–437Presents one of the most important models of atmospheric oxygen evolution of the past 500 million years. [Google Scholar]
  17. Berner RA.17.  1997. The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544–46 [Google Scholar]
  18. Berner RA.18.  2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64A seminal paper and model on atmospheric CO2 and O2 change throughout Earth's history. [Google Scholar]
  19. Berner RA.19.  2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309:603–6 [Google Scholar]
  20. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD. 20.  et al. 2007. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–41 [Google Scholar]
  21. Blonder B, Royer DL, Johnson KR, Miller I, Enquist BJ. 21.  2014. Plant ecological strategies shift across the Cretaceous-Paleogene boundary. PLOS Biol 12:e1001949 [Google Scholar]
  22. Bonis NR, Kürschner WM. 22.  2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology 38:240–64 [Google Scholar]
  23. Bonis NR, Van Konijnenburg-Van Cittert J, Kürschner W. 23.  2010. Changing CO2 conditions during the End-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr. Palaeoclim. Palaeoecol. 295:146–61 [Google Scholar]
  24. Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 24.  2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B 276:1771–76 [Google Scholar]
  25. Boyce CK, Lee J-E. 25.  2017. Plant evolution and climate over geological timescales. Annu. Rev. Earth Planet. Sci. 41:61–87 [Google Scholar]
  26. Boyce CK, Zwieniecki MA. 26.  2012. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution. PNAS 109:10403–8 [Google Scholar]
  27. Brinkhuis H, Schouten S, Collinson ME, Sluijs A, Damsté JSS. 27.  et al. 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441:606Documents the remarkable finding of freshwater ferns in the Arctic Ocean during the Eocene. [Google Scholar]
  28. Callaghan TV, Tweedie CE, Åkerman J, Andrews C, Bergstedt J. 28.  et al. 2011. Multi-decadal changes in tundra environments and ecosystems: synthesis of the International Polar Year-Back to the Future project (IPY-BTF). AMBIO 40:705–16 [Google Scholar]
  29. Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG. 29.  et al. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am. J. Bot. 88:1309–15 [Google Scholar]
  30. Cleal CJ, Cascales-Miñana B. 30.  2014. Composition and dynamics of the great Phanerozoic Evolutionary Floras. Lethaia 47:469–84Provides an excellent overview of the concept and timing of the three great evolutionary floras: Paleophytic, Mesophytic, and Cenophytic. [Google Scholar]
  31. Cleal CJ, Thomas BA. 31.  2009. An Introduction to Plant Fossils Cambridge, MA: Cambridge Univ. Press [Google Scholar]
  32. Collinson ME, Barke J, van der Burgh J, van Konijnenburg-van Cittert JH. 32.  2009. A new species of the freshwater fern Azolla (Azollaceae) from the Eocene Arctic Ocean. Rev. Palaeobot. Palynol. 155:1–14 [Google Scholar]
  33. Cox PM, Betts R, Collins M, Harris PP, Huntingford C, Jones C. 33.  2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78:137–56 [Google Scholar]
  34. Crepet WL.34.  1974. Investigations of North American cycadeoids: the reproductive biology of Cycadeoidea. Palaeontogr. Abt. B 148:144–69 [Google Scholar]
  35. Crepet WL, Niklas KJ. 35.  2009. Darwin's second “abominable mystery”: Why are there so many angiosperm species?. Am. J. Bot. 96:366–81 [Google Scholar]
  36. Cúneo NR, Taylor EL, Taylor TN, Krings M. 36.  2003. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclim. Palaeoecol. 197:239–61 [Google Scholar]
  37. Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer DL. 37.  2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. PNAS 105:1960–64 [Google Scholar]
  38. Davies J, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U. 38.  2017. End-Triassic mass extinction started by intrusive CAMP activity. Nat. Commun. 8:15596 [Google Scholar]
  39. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 39.  2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. PNAS 107:5738–43 [Google Scholar]
  40. Diffenbaugh NS, Field CB. 40.  2013. Changes in ecologically critical terrestrial climate conditions. Science 341:486–92 [Google Scholar]
  41. DiMichele WA, Mamay SH, Chaney DS, Hook RW, Nelson WJ. 41.  2001. An early Permian flora with Late Permian and Mesozoic affinities from north-central Texas. J. Paleontol. 75:449–60 [Google Scholar]
  42. Doria G, Royer DL, Wolfe AP, Fox A, Westgate JA, Beerling DJ. 42.  2011. Declining atmospheric CO2 during the late Middle Eocene climate transition. Am. J. Sci. 311:63–75 [Google Scholar]
  43. Du B, Sun B, Zhang M, Yang G, Xing L. 43.  et al. 2016. Atmospheric palaeo-CO2 estimates based on the carbon isotope and stomatal data of Cheirolepidiaceae from the Lower Cretaceous of the Jiuquan Basin, Gansu Province. Cretac. Res. 62:142–53 [Google Scholar]
  44. Elliott-Kingston C, Haworth M, McElwain J. 44.  2014. Damage structures in leaf epidermis and cuticle as an indicator of elevated atmospheric sulphur dioxide in early Mesozoic floras. Rev. Palaeobot. Palynol. 208:25–42 [Google Scholar]
  45. Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC. 45.  2016. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 7:1253 [Google Scholar]
  46. Erdei B, Utescher T, Hably L, Tamas J, Roth-Nebelsick A, Grein M. 46.  2012. Early Oligocene continental climate of the Palaeogene Basin (Hungary and Slovenia) and the surrounding area. Turk. J. Earth Sci. 21:153–86 [Google Scholar]
  47. Falcon-Lang H, Cantrill D. 47.  2001. Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica. Geol. Mag. 138:39–52 [Google Scholar]
  48. Fauchald P, Park T, Tømmervik H, Myneni R, Hausner VH. 48.  2017. Arctic greening from warming promotes declines in caribou populations. Sci. Adv. 3:e1601365 [Google Scholar]
  49. Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A. 49.  et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS 108:8363–66 [Google Scholar]
  50. Feild TS, Upchurch GR, Chatelet DS, Brodribb TJ, Grubbs KC. 50.  et al. 2011. Fossil evidence for low gas exchange capacities for Early Cretaceous angiosperm leaves. Paleobiology 37:195–213 [Google Scholar]
  51. Feulner G.51.  2012. The faint young Sun problem. Rev. Geophys. 50 RG2006 [Google Scholar]
  52. Foster GL, Royer DL, Lunt DJ. 52.  2017. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8:14845 [Google Scholar]
  53. Francis J, Ashworth A, Cantrill D, Crame J, Howe J. 53.  et al. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. Antarctica: A Keystone in a Changing World A Cooper, C Raymond 19–28 Washington, DC: Natl. Acad. Press [Google Scholar]
  54. Franks PJ, Beerling DJ. 54.  2009. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227–36 [Google Scholar]
  55. Franks PJ, Beerling DJ. 55.  2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–47 [Google Scholar]
  56. Franks PJ, Royer DL. 56.  2017. Comment on “Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?” by McElwain JC et al. [Palaeogeogr. Palaeoclim. Palaeoecol. 2016;441:653–58]. Palaeogeogr. Palaeoclim. Palaeoecol. 472:256–59 [Google Scholar]
  57. Franks PJ, Royer DL, Beerling DJ, Van de Water PK, Cantrill DJ. 57.  et al. 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophys. Res. Lett. 41:4685–94 [Google Scholar]
  58. Friis EM, Pedersen KR, Crane PR. 58.  2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclim. Palaeoecol. 232:251–93 [Google Scholar]
  59. Ganino C, Arndt NT. 59.  2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323–26 [Google Scholar]
  60. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA. 60.  2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–38One of the first papers to demonstrate the potential impact of changing plant physiology in response to elevated CO2 on the global hydrological cycle. [Google Scholar]
  61. Glasspool IJ, Scott AC. 61.  2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3:627 [Google Scholar]
  62. Greenwood DR, Basinger JF. 62.  1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Rev. Palaeobot. Palynol. 81:83–97 [Google Scholar]
  63. Greenwood DR, Scarr MJ, Christophel DC. 63.  2003. Leaf stomatal frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric pCO2. Palaeogeogr. Palaeoclim. Palaeoecol. 196:375–93 [Google Scholar]
  64. Grein M, Konrad W, Wilde V, Utescher T, Roth-Nebelsick A. 64.  2011. Reconstruction of atmospheric CO2 during the early middle Eocene by application of a gas exchange model to fossil plants from the Messel Formation. Germany: Palaeogeogr. Palaeoclim. Palaeoecol. 309383–91 [Google Scholar]
  65. Grein M, Oehm C, Konrad W, Utescher T, Kunzmann L, Roth-Nebelsick A. 65.  2013. Atmospheric CO2 from the Late Oligocene to Early Miocene based on photosynthesis data and fossil leaf characteristics. Palaeogeogr. Palaeoclim. Palaeoecol. 374:41–51 [Google Scholar]
  66. Harris TM.66.  1926. The Rhaetic flora of Scoresby Sound, East Greenland. Meddelelser Om Grønland 68:1–43 [Google Scholar]
  67. Haworth M, Elliott-Kingston C, McElwain JC. 67.  2011. Stomatal control as a driver of plant evolution. J. Exp. Bot. 62:2419–23 [Google Scholar]
  68. Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt JW. 68.  2005. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33:749–52 [Google Scholar]
  69. Herman AB, Spicer RA. 69.  1997. New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeogr. Palaeoclim. Palaeoecol. 128:227–51 [Google Scholar]
  70. Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ, Farrimond P. 70.  et al. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392–95 [Google Scholar]
  71. Hickey LJ, Johnson KR, Dawson MR. 71.  1988. The stratigraphy, sedimentology, and fossils of the Haughton Formation: a post-impact crater-fill, Devon Island, N.W.T., Canada. Meteorit. Planet. Sci. 23:221–31 [Google Scholar]
  72. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB. 72.  et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 72:251–98 [Google Scholar]
  73. Huber M, Caballero R. 73.  2011. The Early Eocene equable climate problem revisited. Clim. Past 7:603Reviews paleotemperature proxy data and paleoclimate models of Eocene climate. [Google Scholar]
  74. Jahren AH, Sternberg LS. 74.  2008. Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): isotopic signatures of precipitation, relative humidity, and deciduousness. Geology 36:99–102 [Google Scholar]
  75. Jaramillo C, Hoorn C, Silva SA, Leite F, Herrera F. 75.  et al. 2010. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. Amazonia: Landscape and Species Evolution: A Look into the Past C Hoorn, FP Wesselingh 317–34 Oxford, UK: Wiley Blackwell [Google Scholar]
  76. Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal-Ortiz H. 76.  et al. 2010. Effects of rapid global warming at the Paleocene-Eocene boundary on Neotropical vegetation. Science 330:957–61 [Google Scholar]
  77. Jaramillo C, Rueda MJ, Mora G. 77.  2006. Cenozoic plant diversity in the Neotropics. Science 311:1893–96 [Google Scholar]
  78. Johnson KR, Ellis B. 78.  2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296:2379–83 [Google Scholar]
  79. Ju J, Masek JG. 79.  2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176:1–16 [Google Scholar]
  80. Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ. 80.  et al. 2014. Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the “southern wet forest survivors.”. Am. J. Bot. 101:2121–35 [Google Scholar]
  81. Kürschner WM, Batenburg SJ, Mander L. 81.  2013. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic-Jurassic transition. Proc. R. Soc. Lond. B 280:20131708 [Google Scholar]
  82. Kürschner WM, Kvacek Z, Dilcher DL. 82.  2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. PNAS 105:449–53 [Google Scholar]
  83. Kürschner WM, Wagner F, Dilcher DL, Visscher H. 83.  2001. Using fossil leaves for the reconstruction of Cenozoic paleoatmospheric CO2 concentrations. Geological Perspectives of Global Climate Change LC Gerhard, WE Harrison, BM Hanson 169–89 Tulsa, OK: Am. Assoc. Pet. Geol. [Google Scholar]
  84. Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. 84.  2011. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. PNAS 108:4035–40 [Google Scholar]
  85. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 85.  2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60:2859–76 [Google Scholar]
  86. Leuzinger S, Körner C. 86.  2010. Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Chang. Biol. 16:246–54 [Google Scholar]
  87. Lindström S, van de Schootbrugge B, Hansen KH, Pedersen GK, Alsen P. 87.  et al. 2017. A new correlation of Triassic-Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: a time-line for the End-Triassic mass extinction. Palaeogeogr. Palaeoclim. Palaeoecol. 478:80–102 [Google Scholar]
  88. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 88.  2009. The velocity of climate change. Nature 462:1052 [Google Scholar]
  89. Lupia R, Lidgard S, Crane PR. 89.  1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305–40 [Google Scholar]
  90. Mander L, Kürschner WM, McElwain JC. 90.  2010. An explanation for conflicting records of Triassic-Jurassic plant diversity. PNAS 107:15351–56 [Google Scholar]
  91. Maslin M, Owen M, Betts R, Day S, Jones TD, Ridgwell A. 91.  2010. Gas hydrates: past and future geohazard?. Philos. Trans. R. Soc. A 368:2369–93 [Google Scholar]
  92. Maxbauer DP, Royer DL, LePage BA. 92.  2014. High Arctic forests during the middle Eocene supported by moderate levels of atmospheric CO2. Geology 42:1027–30 [Google Scholar]
  93. Mays C, Steinthorsdottir M, Stilwell JD. 93.  2015. Climatic implications of Ginkgoites waarrensis Douglas emend. from the south polar Tupuangi flora, Late Cretaceous (Cenomanian), Chatham Islands. Palaeogeogr. Palaeoclim. Palaeoecol. 438:308–26 [Google Scholar]
  94. McElwain JC, Beerling DJ, Woodward FI. 94.  1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–90 [Google Scholar]
  95. McElwain JC, Chaloner WG. 95.  1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Ann. Bot. 76:389–95 [Google Scholar]
  96. McElwain JC, Montañez I, White JD, Wilson JP, Yiotis C. 96.  2016. Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?. Palaeogeogr. Palaeoclim. Palaeoecol. 441:653–58 [Google Scholar]
  97. McElwain JC, Montañez I, White JD, Wilson JC, Yiotis C. 97.  2017. Reply to Comment on “Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?” [Palaeogeogr. Palaeoclim. Palaeoecol. 2016;441:653–58]. Palaeogeogr. Palaeoclim. Palaeoecol. 472:260–63 [Google Scholar]
  98. McElwain JC, Popa ME, Hesselbo SP, Haworth M, Surlyk F. 98.  2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33:547–73 [Google Scholar]
  99. McElwain JC, Punyasena SW. 99.  2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22:548–57 [Google Scholar]
  100. McElwain JC, Wade-Murphy J, Hesselbo SP. 100.  2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435:479–82 [Google Scholar]
  101. McElwain JC, Wagner PJ, Hesselbo SP. 101.  2009. Fossil plant relative abundances indicates sudden loss of Late Triassic biodiversity in East Greenland. Science 324:1554–56 [Google Scholar]
  102. McElwain JC, Yiotis C, Lawson T. 102.  2016. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol 209:94–103 [Google Scholar]
  103. McInerney FA, Wing SL. 103.  2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516 [Google Scholar]
  104. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma M. 104.  et al. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 109:213 [Google Scholar]
  105. Mills BJ, Belcher CM, Lenton TM, Newton RJ. 105.  2016. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44:1023–26 [Google Scholar]
  106. Montañez IP, McElwain JC, Poulsen CJ, White JD, DiMichele WA. 106.  et al. 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles. Nat. Geosci. 9:824–28 [Google Scholar]
  107. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T. 107.  et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6:045509 [Google Scholar]
  108. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR. 108.  2009. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60:2249–70 [Google Scholar]
  109. Niinemets Ü, Flexas J, Peñuelas J. 109.  2011. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol. Evol. 26:136–42 [Google Scholar]
  110. Niklas KJ, Tiffney BH. 110.  1994. The quantification of plant biodiversity through time. Philos. Trans. R. Soc. B 345:35–44 [Google Scholar]
  111. Norby RJ, Zak DR. 111.  2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42:181–203 [Google Scholar]
  112. Olsen PE, Fowell SJ, Cornet B. 112.  1990. The Triassic/Jurassic boundary in continental rocks of eastern North America: a progress report. Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality VL Sharpton, PD Ward 585–93 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  113. Pachauri RK, Meyer LA. 113.  2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: Intergov. Panel Clim. Chang. [Google Scholar]
  114. Passalia MG.114.  2009. Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeogr. Palaeoclim. Palaeoecol. 273:17–24 [Google Scholar]
  115. Pole M.115.  1999. Structure of a near-polar latitude forest from the New Zealand Jurassic. Palaeogeogr. Palaeoclim. Palaeoecol. 147:121–39 [Google Scholar]
  116. Poulsen CJ, Tabor C, White JD. 116.  2015. Long-term climate forcing by atmospheric oxygen concentrations. Science 348:1238–41 [Google Scholar]
  117. Pound MJ, Salzmann U. 117.  2017. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci. Rep. 7:43386 [Google Scholar]
  118. Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM. 118.  et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77 [Google Scholar]
  119. Quan C, Sun CL, Sun YW, Sun G. 119.  2009. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretac. Res. 30:424–28 [Google Scholar]
  120. Rees PM, Ziegler AM, Gibbs MT, Kutzbach JE, Behling PJ, Rowley DB. 120.  2002. Permian phytogeographic patterns and climate data/model comparisons. J. Geol. 110:1–31 [Google Scholar]
  121. Rees PM, Ziegler AM, Valdes PJ. 121.  2000. Jurassic phytogeography and climates: new data and model comparisons. Warm Climates in Earth History BT Huber, KG Macleod, SL Wing 297–318 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  122. Reichgelt T, D'Andrea WJ, Fox BR. 122.  2016. Abrupt plant physiological changes in southern New Zealand at the termination of the Mi-1 event reflect shifts in hydroclimate and pCO2. Earth Planet. Sci. Lett. 455:115–24 [Google Scholar]
  123. Retallack GJ.123.  2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287 [Google Scholar]
  124. Retallack GJ.124.  2002. Carbon dioxide and climate over the past 300 Myr. Philos. Trans. R. Soc. A 360:659–73 [Google Scholar]
  125. Roth-Nebelsick A, Grein M, Utescher T, Konrad W. 125.  2012. Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction. Rev. Palaeobot. Palynol. 174:106–12 [Google Scholar]
  126. Roth-Nebelsick A, Konrad W. 126.  2003. Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr. Palaeoclim. Palaeoecol. 202:153–78 [Google Scholar]
  127. Roth-Nebelsick A, Oehm C, Grein M, Utescher T, Kunzmann L. 127.  et al. 2014. Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene. Rev. Palaeobot. Palynol. 206:1–9 [Google Scholar]
  128. Royer DL.128.  2002. Estimating Latest Cretaceous and Tertiary atmospheric CO2 concentration from stomatal indices. Causes and Consequences of Globally Warm Climates in the Early Paleogene SL Wing, PD Gingerich, B Schmitz, E Thomas 79–93 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  129. Royer DL.129.  2016. Climate sensitivity in the geologic past. Annu. Rev. Earth Planet. Sci. 44:277–93 [Google Scholar]
  130. Royer DL, Chernoff B. 130.  2013. Diversity in Neotropical wet forests during the Cenozoic is linked more to atmospheric CO2 than temperature. Proc. R. Soc. Lond. B 280:20131024 [Google Scholar]
  131. Royer DL, Osborne CP, Beerling DJ. 131.  2003. Carbon loss by deciduous trees in a CO2-rich ancient polar environment. Nature 424:60–62 [Google Scholar]
  132. Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL. 132.  et al. 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310–13 [Google Scholar]
  133. Ruhl M, Bonis NR, Reichart G-J, Damsté JSS, Kürschner WM. 133.  2011. Atmospheric carbon injection linked to End-Triassic mass extinction. Science 333:430–34 [Google Scholar]
  134. Schäfer KV, Oren R, Lai CT, Katul GG. 134.  2002. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob. Chang. Biol. 8:895–911 [Google Scholar]
  135. Schaller MF, Wright JD, Kent DV. 135.  2011. Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–9 [Google Scholar]
  136. Schubert BA, Jahren AH, Eberle JJ, Sternberg LS, Eberth DA. 136.  2012. A summertime rainy season in the Arctic forests of the Eocene. Geology 40:523–26 [Google Scholar]
  137. Sepkoski JJ, Miller AI. 137.  1998. Analysing diversification through time. Trends Ecol. Evol. 13:158–59 [Google Scholar]
  138. Serreze MC, Barry RG. 138.  2011. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Chang. 77:85–96 [Google Scholar]
  139. Silvestro D, Cascales-Miñana B, Bacon CD, Antonelli A. 139.  2015. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol 207:425–36 [Google Scholar]
  140. Smith RY, Greenwood DR, Basinger JF. 140.  2010. Estimating paleoatmospheric pCO2 during the early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeogr. Palaeoclim. Palaeoecol. 293:120–31 [Google Scholar]
  141. Soh W, Wright I, Bacon K, Lenz T, Steinthorsdottir M. 141.  et al. 2017. Palaeo leaf economics reveal a shift in ecosystem function associated with the End-Triassic mass extinction event. Nat. Plants 3:17104 [Google Scholar]
  142. Spicer RA, Herman AB. 142.  2010. The Late Cretaceous environment of the Arctic: a quantitative reassessment based on plant fossils. Palaeogeogr. Palaeoclim. Palaeoecol. 295:423–42 [Google Scholar]
  143. Steinthorsdottir M, Jeram AJ, McElwain JC. 143.  2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr. Palaeoclim. Palaeoecol. 308:418–32 [Google Scholar]
  144. Steinthorsdottir M, Porter A, Holohan A, Kunzmann L, Collinson M, McElwain J. 144.  2016. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary. Clim. Past 12:439–54 [Google Scholar]
  145. Steinthorsdottir M, Vajda V. 145.  2015. Early Jurassic (late Pliensbachian) CO2 concentrations based on stomatal analysis of fossil conifer leaves from eastern Australia. Gondwana Res 27:932–39 [Google Scholar]
  146. Steinthorsdottir M, Woodward FI, Surlyk F, McElwain JC. 146.  2012. Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration. Geology 40:815–18 [Google Scholar]
  147. Stewart WN, Rothwell GW. 147.  1993. Paleobotany and the Evolution of Plants Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  148. Strömberg CA.148.  2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39:517–44 [Google Scholar]
  149. Stults DZ, Wagner-Cremer F, Axsmith BJ. 149.  2011. Atmospheric paleo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of Eastern North America. Palaeogeogr. Palaeoclim. Palaeoecol. 309:327–32 [Google Scholar]
  150. Sun B-N, Wang Q-J, Konrad W, Ma F-J, Dong J-L, Wang Z-X. 150.  2017. Reconstruction of atmospheric CO2 during the Oligocene based on leaf fossils from the Ningming Formation in Guangxi, China. Palaeogeogr. Palaeoclim. Palaeoecol. 467:5–15 [Google Scholar]
  151. Sun Y, Li X, Zhao G, Liu H, Zhang Y. 151.  2016. Aptian and Albian atmospheric CO2 changes during oceanic anoxic events: evidence from fossil Ginkgo cuticles in Jilin Province, Northeast China. Cretac. Res. 62:130–41 [Google Scholar]
  152. Svensen H, Sverre P, Malthe-Sørenssen A, Jamtveit B, Myklebust R. 152.  et al. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–45 [Google Scholar]
  153. Taylor EL, Taylor TN, Isbell JL, Cúneo R. 153.  1989. Fossil floras of southern Victoria Land. 2. Kennar Valley. Antarct. J. U.S. 24:26–28 [Google Scholar]
  154. Taylor EL, Taylor TN, Krings M. 154.  2009. Paleobotany: The Biology and Evolution of Fossil Plants New York: Academic Press. , 2nd ed.. [Google Scholar]
  155. Traverse A.155.  1988. Plant evolution dances to a different beat: plant and evolutionary mechanisms compared. Hist. Biol. 1:277–356 [Google Scholar]
  156. Truswell E, Macphail M. 156.  2009. Polar forests on the edge of extinction: What does the fossil spore and pollen evidence from East Antarctica say?. Aust. Syst. Bot. 22:57–106 [Google Scholar]
  157. Utescher T, Mosbrugger V. 157.  2007. Eocene vegetation patterns reconstructed from plant diversity—a global perspective. Palaeogeogr. Palaeoclim. Palaeoecol. 247:243–71 [Google Scholar]
  158. van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist-Burkhardt S. 158.  et al. 2007. End-Triassic calcification crisis and blooms of organic-walled ‘disaster species.’ Palaeogeogr. Palaeoclim. Palaeoecol 244:126–41 [Google Scholar]
  159. van de Schootbrugge B, Wignall PB. 159.  2016. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geol. Mag. 153:332–54 [Google Scholar]
  160. Van Der Burgh J, Visscher H, Dilcher DL, Kürschner WM. 160.  1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260:1788–90 [Google Scholar]
  161. Wan C, Wang D, Zhu Z, Quan C. 161.  2011. Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: evidence from plant fossils. Sci. China Earth Sci. 54:1338–45 [Google Scholar]
  162. Wang Y, Momohara A, Wang L, Lebreton-Anberrée J, Zhou Z. 162.  2015. Evolutionary history of atmospheric CO2 during the late Cenozoic from fossilized Metasequoia needles. PLOS ONE 10:e0130941 [Google Scholar]
  163. West CK, Greenwood DR, Basinger JF. 163.  2015. Was the Arctic Eocene ‘rainforest’ monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut. Earth Planet. Sci. Lett. 427:18–30 [Google Scholar]
  164. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB. 164.  et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13:1310–24 [Google Scholar]
  165. Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T. 165.  2003. Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–92 [Google Scholar]
  166. Willis KJ, McElwain JC. 166.  2014. The Evolution of Plants Oxford, UK: Oxford Univ. Press [Google Scholar]
  167. Wilson JP, Knoll AH. 167.  2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36:335–55 [Google Scholar]
  168. Wilson JP, Montañez IP, White JD, DiMichele WA, McElwain JC. 168.  et al. 2017. Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytol 215:1333–53 [Google Scholar]
  169. Wilson JP, White JD, DiMichele WA, Hren MT, Poulsen CJ. 169.  et al. 2015. Reconstructing extinct plant water use for understanding vegetation-climate feedbacks: methods, synthesis and a case study using the Paleozoic era medullosan seed ferns. Paleontol. Soc. Pap. 21:167–95Reviews methods that can be used on fossil plants to reconstruct their ecophysiology from anatomical and morphological observations. [Google Scholar]
  170. Wing SL.170.  2004. Mass extinctions in plant evolution. Extinctions in the History of Life PD Taylor 61–97 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  171. Wing SL, Currano ED. 171.  2013. Plant response to a global greenhouse event 56 million years ago. Am. J. Bot. 100:1234–54 [Google Scholar]
  172. Wing SL, Harrington GJ. 172.  2001. Floral responses to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539–64 [Google Scholar]
  173. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH. 173.  2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–96Demonstrates mass migration of low-latitude tropical plant taxa into higher-latitude communities in response to global warming across the PETM. [Google Scholar]
  174. Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC. 174.  2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. PNAS 106:18627–32 [Google Scholar]
  175. Wotzlaw J-F, Guex J, Bartolini A, Gallet Y, Krystyn L. 175.  et al. 2014. Towards accurate numerical calibration of the Late Triassic: high-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42:571–74 [Google Scholar]
  176. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z. 176.  et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–27 [Google Scholar]
  177. Wu J-Y, Ding S-T, Li Q-J, Sun B-N, Wang Y-D. 177.  2016. Reconstructing paleoatmospheric CO2 levels based on fossil Ginkgoites from the Upper Triassic and Middle Jurassic in Northwest China. PalZ 90:377–87 [Google Scholar]
  178. Yan D, Sun B, Xie S, Li X, Wen W. 178.  2009. Response to paleoatmospheric CO2 concentration of Solenites vimineus (Phillips) Harris (Ginkgophyta) from the Middle Jurassic of the Yaojie Basin, Gansu Province, China. Sci. China Ser. D 52:2029–39 [Google Scholar]
  179. Yiotis C, Evans-Fitz Gerald C, McElwain JC. 179.  2017. Differences in the photosynthetic plasticity of ferns and Ginkgo grown in experimentally controlled low [O2]:[CO2] atmospheres may explain their contrasting ecological fate across the Triassic-Jurassic mass extinction boundary. Ann. Bot. 119:1385–95 [Google Scholar]
  180. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 180.  2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error