Plant communities have undergone dramatic changes in recent centuries, although not all such changes fit with the dominant biodiversity-crisis narrative used to describe them. At the global scale, future declines in plant species diversity are highly likely given habitat conversion in the tropics, although few extinctions have been documented for the Anthropocene to date (<0.1%). Nonnative species introductions have greatly increased plant species richness in many regions of the world at the same time that they have led to the creation of new hybrid polyploid species by bringing previously isolated congeners into close contact. At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change—e.g., climate warming, habitat fragmentation, and nitrogen deposition—have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero. These results prompt a reassessment of how conservation goals are defined and justified.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arroyo-Rodríguez V, Cavender-Bares J, Escobar F, Melo FP, Tabarelli M, Santos BA. 1.  2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J. Ecol. 100:702–11 [Google Scholar]
  2. Baeten L, Hermy M, Van Daele S, Verheyen K. 2.  2010. Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J. Ecol. 98:1447–53 [Google Scholar]
  3. Baeten L, Warton DI, Van Calster H, De Frenne P, Verstraeten G. 3.  et al. 2014. A model-based approach to studying changes in compositional heterogeneity. Methods Ecol. Evol. 5:156–64 [Google Scholar]
  4. Bai E, Li S, Xu W, Li W, Dai W, Jiang P. 4.  2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199:441–51 [Google Scholar]
  5. Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML. 5.  2012. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B 279:4772–77 [Google Scholar]
  6. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B. 6.  et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:51–57 [Google Scholar]
  7. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R. 7.  et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20:30–59 [Google Scholar]
  8. Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G. 8.  et al. 2016. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. PNAS 113:6388–96 [Google Scholar]
  9. Bowman WD, Gartner JR, Holland K, Wiedermann M. 9.  2006. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet?. Ecol. Appl. 16:1183–93 [Google Scholar]
  10. Brennan AC, Woodward G, Seehausen O, Muñoz-Fuentes V, Moritz C. 10.  et al. 2015. Hybridization due to changing species distributions: adding problems or solutions to conservation of biodiversity during global change?. Evol. Ecol. Res. 16:475–91 [Google Scholar]
  11. Bruna EM, Vasconcelos HL, Heredia S. 11.  2005. The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biol. Conserv. 124:209–16 [Google Scholar]
  12. Brundu G, Camarda I. 12.  2013. The flora of Chad: a checklist and brief analysis. PhytoKeys 23:1–18 [Google Scholar]
  13. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C. 13.  et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67 [Google Scholar]
  14. Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL. 14.  et al. 2013. Sensitivity of grassland plant community composition to spatial versus temporal variation in precipitation. Ecology 94:1687–96 [Google Scholar]
  15. Cleland EE, Harpole WS. 15.  2010. Nitrogen enrichment and plant communities. Ann. N.Y. Acad. Sci. 1195:46–61 [Google Scholar]
  16. Cronk Q.16.  2016. Plant extinctions take time. Science 353:446–47 [Google Scholar]
  17. Damschen EI, Harrison S, Grace JB. 17.  2010. Climate change effects on an endemic-rich edaphic flora: resurveying Robert H. Whittaker's Siskiyou sites (Oregon, USA). Ecology 91:3609–19 [Google Scholar]
  18. Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ. 18.  et al. 2011. Don't judge species on their origins. Nature 474:153–54 [Google Scholar]
  19. De Camargo RX, Currie DJ. 19.  2015. An empirical investigation of why species–area relationships overestimate species losses. Ecology 96:1253–63 [Google Scholar]
  20. De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A. 20.  et al. 2011. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 20:803–16 [Google Scholar]
  21. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL. 21.  2015. Estimating the normal background rate of species extinction. Conserv. Biol. 29:452–62 [Google Scholar]
  22. Debinski DM, Holt RD. 22.  2000. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14:342–55 [Google Scholar]
  23. Diamond JM.23.  1972. Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest Pacific islands. PNAS 69:3199–203 [Google Scholar]
  24. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F. 24.  et al. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–99 [Google Scholar]
  25. Duguid MC, Ashton MS. 25.  2013. A meta-analysis of the effect of forest management for timber on understory plant species diversity in temperate forests. For. Ecol. Manag. 303:81–90 [Google Scholar]
  26. Ellis EC.26.  2015. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85:287–331 [Google Scholar]
  27. Elmendorf SC, Henry GH, Hollister RD, Björk RG, Bjorkman AD. 27.  et al. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15:164–75 [Google Scholar]
  28. Fahrig L.28.  2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515 [Google Scholar]
  29. Faith DP.29.  1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61:1–10 [Google Scholar]
  30. Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF. 30.  et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36:132–47 [Google Scholar]
  31. FitzJohn RG, Pennell MW, Zanne AE, Stevens PF, Tank DC, Cornwell WK. 31.  2014. How much of the world is woody?. J. Ecol. 102:1266–72 [Google Scholar]
  32. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW. 32.  et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226 [Google Scholar]
  33. Gedan KB, Bertness MD. 33.  2009. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecol. Lett. 12:842–48 [Google Scholar]
  34. Gentry AH.34.  1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75:1–34 [Google Scholar]
  35. Guariguata MR, Ostertag R. 35.  2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148:185–206 [Google Scholar]
  36. Halpern CB, Spies TA. 36.  1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol. Appl. 5:913–34 [Google Scholar]
  37. Harrison SP, Gornish ES, Copeland S. 37.  2015. Climate-driven diversity loss in a grassland community. PNAS 112:8672–77 [Google Scholar]
  38. Hobbs RJ, Huenneke LF. 38.  1992. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6:324–37 [Google Scholar]
  39. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA. 39.  et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–8 [Google Scholar]
  40. Hulme PE, Bernard-Verdier M, Bufford JL, Godsoe W. 40.  2015. Rapid Anthropocene speciation reveals pull of the recent: a response to Thomas. Trends Ecol. Evol. 30:635–36 [Google Scholar]
  41. Ibáñez I, Katz DS, Peltier D, Wolf SM, Barrie C, Benjamin T. 41.  2014. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess–multiresponse dynamics. J. Ecol. 102:882–95 [Google Scholar]
  42. 42. IUCN (Int. Union Conserv. Nat.) 2016. The IUCN Red List of Threatened Species. Version 2016-1, accessed July 29, 2016 http://www.iucnredlist.org
  43. Jackson ST, Sax DF. 43.  2010. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25:153–60 [Google Scholar]
  44. Javeline D, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Cornejo RC. 44.  2015. Expert opinion on extinction risk and climate change adaptation for biodiversity. Elementa 3:000057 [Google Scholar]
  45. Joppa LN, Roberts DL, Pimm SL. 45.  2010. How many species of flowering plants are there?. Proc. R. Soc. Lond. B 278:554–59 [Google Scholar]
  46. Klein JA, Harte J, Zhao XQ. 46.  2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett. 7:1170–79 [Google Scholar]
  47. Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S. 47.  et al. 2005. Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433:621–24 [Google Scholar]
  48. Knapp S, Kühn I, Stolle J, Klotz S. 48.  2010. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 12:235–44 [Google Scholar]
  49. Kraft NJ, Comita LS, Chase JM, Sanders NJ, Swenson NG. 49.  et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:1755–58 [Google Scholar]
  50. La Sorte FA, McKinney ML, Pyšek P. 50.  2007. Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange. Glob. Change Biol. 13:913–21 [Google Scholar]
  51. Laliberté E, Legendre P. 51.  2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305 [Google Scholar]
  52. Laurance WF.52.  2007. Have we overstated the tropical biodiversity crisis?. Trends Ecol. Evol. 22:65–70 [Google Scholar]
  53. Laurance WF, Camargo JL, Luizão RC, Laurance SG, Pimm SL. 53.  et al. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144:56–67 [Google Scholar]
  54. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS. 54.  et al. 2006. Rapid decay of tree-community composition in Amazonian forest fragments. PNAS 103:19010–14 [Google Scholar]
  55. Levin DA, Francisco-Ortega J, Jansen RK. 55.  1996. Hybridization and the extinction of rare plant species. Conserv. Biol. 10:10–16 [Google Scholar]
  56. Levin DA, Wilson AC. 56.  1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. PNAS 73:2086–90 [Google Scholar]
  57. Levine JM, D'Antonio CM. 57.  2003. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17:322–26 [Google Scholar]
  58. Lin D, Xia J, Wan S. 58.  2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 188:187–98 [Google Scholar]
  59. Lockwood JL, Hoopes MF, Marchetti MP. 59.  2013. Invasion Ecology London: Wiley- Blackwell
  60. Mackey RL, Currie DJ. 60.  2001. The diversity–disturbance relationship: Is it generally strong and peaked?. Ecology 82:3479–92 [Google Scholar]
  61. Magnago LFS, Edwards DP, Edwards FA, Magrach A, Martins SV, Laurance WF. 61.  2014. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102:475–85 [Google Scholar]
  62. Magurran AE.62.  2003. Measuring Biological Diversity London: Wiley-Blackwell
  63. Maier DS.63.  2012. What's So Good About Biodiversity? A Call for Better Reasoning About Nature's Value Dordrecht, Neth.: Springer
  64. McCune JL, Vellend M. 64.  2013. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape. J. Ecol. 101:1542–51 [Google Scholar]
  65. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. 65.  2015. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30:104–13 [Google Scholar]
  66. 66. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being. Washington, DC: Island Press
  67. 67. Minist. Water Environ 2009. Fourth national report to the convention on biological diversity. Rep., Minist. Water Environ., Natl. Environ. Manag. Auth., Kampala, Uganda
  68. Morar N, Toadvine T, Bohannan BJM. 68.  2015. Biodiversity at twenty-five years: revolution or red herring?. Ethics Policy Environ 18:16–29 [Google Scholar]
  69. Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I. 69.  et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45–50 [Google Scholar]
  70. Novacek MJ.70.  2001. The Biodiversity Crisis: Losing What Counts New York: New Press
  71. Odland A, Høitomt T, Olsen SL. 71.  2010. Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arct. Antarct. Alp. Res. 42:458–70 [Google Scholar]
  72. Parmesan C, Yohe G. 72.  2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  73. Pärtel M, Helm A, Reitalu T, Liira J, Zobel M. 73.  2007. Grassland diversity related to the Late Iron Age human population density. J. Ecol. 95:574–82 [Google Scholar]
  74. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M. 74.  et al. 2012. Recent plant diversity changes on Europe's mountain summits. Science 336:353–55 [Google Scholar]
  75. Pautasso M.75.  2007. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10:16–24 [Google Scholar]
  76. Peltzer DA, Bast ML, Wilson SD, Gerry AK. 76.  2000. Plant diversity and tree responses following contrasting disturbances in boreal forest. For. Ecol. Manag. 127:191–203 [Google Scholar]
  77. Peñuelas J, Prieto P, Beier C, Cesaraccio C, De Angelis P. 77.  et al. 2007. Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13:2563–81 [Google Scholar]
  78. Pimm SL, Joppa LN. 78.  2015. How many plant species are there, where are they, and at what rate are they going extinct?. Ann. Mo. Bot. Gard. 100:170–76 [Google Scholar]
  79. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J. 79.  et al. 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. PNAS 107:12157–62 [Google Scholar]
  80. Rabosky DL.80.  2016. Reproductive isolation and the causes of speciation rate variation in nature. Biol. J. Linn. Soc. 118:13–25 [Google Scholar]
  81. Regan HM, Lupia R, Drinnan AN, Burgman MA. 81.  2001. The currency and tempo of extinction. Am. Nat. 157:1–10 [Google Scholar]
  82. Reid WV.82.  1992. How many species will there be?. Tropical Deforestation and Species Extinction TC Whitmore, JA Sayer 55–71 London: Chapman & Hall [Google Scholar]
  83. Ricklefs RE.83.  1987. Community diversity: relative roles of local and regional processes. Science 235:167–71 [Google Scholar]
  84. Rosenzweig ML.84.  2001. The four questions: What does the introduction of exotic species do to diversity?. Evol. Ecol. Res. 3:361–67 [Google Scholar]
  85. Santos BA, Arroyo-Rodríguez V, Moreno CE, Tabarelli M. 85.  2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLOS ONE 5e12625
  86. Savage J, Vellend M. 86.  2015. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38:546–55 [Google Scholar]
  87. Sax DF, Gaines SD. 87.  2003. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18:561–66 [Google Scholar]
  88. Sax DF, Gaines SD. 88.  2008. Species invasions and extinction: the future of native biodiversity on islands. PNAS 105:11490–97 [Google Scholar]
  89. Sax DF, Gaines SD, Brown JH. 89.  2002. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am. Nat. 160:766–83 [Google Scholar]
  90. Scariot A.90.  1999. Forest fragmentation effects on palm diversity in central Amazonia. J. Ecol. 87:66–76 [Google Scholar]
  91. Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J. 91.  et al. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. PNAS 113:4086–91 [Google Scholar]
  92. Smith BD, Zeder MA. 92.  2013. The onset of the Anthropocene. Anthropocene 4:8–13 [Google Scholar]
  93. Smith MD, Knapp AK, Collins SL. 93.  2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–89 [Google Scholar]
  94. Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W. 94.  2010. Projected impacts of climate change on regional capacities for global plant species richness. Proc. R. Soc. Lond. B 277:2271–80 [Google Scholar]
  95. Stanley SM.95.  1985. Rates of evolution. Paleobiology 11:13–26 [Google Scholar]
  96. Steffen W, Grinevald J, Crutzen P, McNeill J. 96.  2011. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369:842–67 [Google Scholar]
  97. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJ. 97.  et al. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158:2940–45 [Google Scholar]
  98. Stork NE.98.  2010. Re-assessing current extinction rates. Biodivers. Conserv. 19:357–71 [Google Scholar]
  99. Storkey J, Macdonald A, Poulton P, Scott T, Köhler I. 99.  et al. 2015. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–4 [Google Scholar]
  100. Stouffer PC, Johnson EI, Bierregaard RO Jr., Lovejoy TE. 100.  2011. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLOS ONE 6:e20543 [Google Scholar]
  101. Takacs D.101.  1996. The Idea of Biodiversity: Philosophies of Paradise Baltimore, MD: Johns Hopkins Univ. Press
  102. Thomas CD.102.  2013. The Anthropocene could raise biological diversity. Nature 502:7 [Google Scholar]
  103. Thomas CD.103.  2015. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30:448–55 [Google Scholar]
  104. Tilman D, El Haddi A. 104.  1992. Drought and biodiversity in grasslands. Oecologia 89:257–64 [Google Scholar]
  105. Tilman D, May RM, Lehman CL, Nowak MA. 105.  1994. Habitat destruction and the extinction debt. Nature 371:65–66 [Google Scholar]
  106. Tilman D, Reich PB, Isbell F. 106.  2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. PNAS 109:10394–97 [Google Scholar]
  107. Urban MC.107.  2015. Accelerating extinction risk from climate change. Science 348:571–73 [Google Scholar]
  108. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M. 108.  et al. 2015. Global exchange and accumulation of non-native plants. Nature 525:100–103 [Google Scholar]
  109. van Vuuren DP, Sala OE, Pereira HM. 109.  2006. The future of vascular plant diversity under four global scenarios. Ecol. Soc. 11:25 [Google Scholar]
  110. Vellend M.110.  2016. The Theory of Ecological Communities Princeton NJ: Princeton Univ. Press
  111. Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R. 111.  et al. 2013. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. PNAS 110:19456–59 [Google Scholar]
  112. Vellend M, Cornwell WK, Magnuson-Ford K, Mooers . 112.  2010. Measuring phylogenetic biodiversity. Biological Diversity: Frontiers in Measurement and Assessment AE Magurran, B McGill 194–207 New York: Oxford Univ. Press [Google Scholar]
  113. Vellend M, Dornelas M, Baeten L, Beauséjour R, Brown C. 113.  et al. 2017. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98583–90
  114. Vellend M, Harmon LJ, Lockwood JL, Mayfield MM, Hughes AR. 114.  et al. 2007. Effects of exotic species on evolutionary diversification. Trends Ecol. Evol. 22:481–88 [Google Scholar]
  115. Vellend M, Verheyen K, Jacquemyn H, Kolb A, Van Calster H. 115.  et al. 2006. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–48 [Google Scholar]
  116. Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C. 116.  et al. 2016. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41 [Google Scholar]
  117. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L. 117.  et al. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30:257–300 [Google Scholar]
  118. Wardle DA.118.  2016. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?. J. Veg. Sci. 27:646–53 [Google Scholar]
  119. Whittaker RH.119.  1975. Communities and Ecosystems New York: Macmillan
  120. Willis K, McElwain J. 120.  2014. The Evolution of Plants Oxford, UK: Oxford Univ. Press
  121. Wilson EO, Peter FM. 121.  1988. Biodiversity Washington, DC: Natl. Acad. Press
  122. Wing SL.122.  2004. Mass extinctions in plant evolution. Extinctions in the History of Life PD Taylor 61–98 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  123. Winter M, Kühn I, La Sorte FA, Schweiger O, Nentwig W, Klotz S. 123.  2010. The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Glob. Ecol. Biogeogr. 19:332–42 [Google Scholar]
  124. Winter M, Schweiger O, Klotz S, Nentwig W, Andriopoulos P. 124.  et al. 2009. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. PNAS 106:21721–25 [Google Scholar]
  125. Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL. 125.  et al. 2012. Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–97 [Google Scholar]
  126. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 126.  2009. The frequency of polyploid speciation in vascular plants. PNAS 106:13875–79 [Google Scholar]
  127. 127. World Conserv. Monit. Cent 1992. Global Biodiversity: Status of the Earth's Living Resources London: Chapman & Hall
  128. Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. 128.  2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17:927–42 [Google Scholar]
  129. Zartman CE.129.  2003. Habitat fragmentation impacts on epiphyllous bryophyte communities in central Amazonia. Ecology 84:948–54 [Google Scholar]
  130. Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE. 130.  et al. 2003. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73:585–604 [Google Scholar]
  131. Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF. 131.  2014. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–11 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error