1932

Abstract

Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-041007
2017-04-28
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-042916-041007.html?itemId=/content/journals/10.1146/annurev-arplant-042916-041007&mimeType=html&fmt=ahah

Literature Cited

  1. Andersson MX, Goksor M, Sandelius AS. 1.  2007. Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J. Biol. Chem. 282:1170–74 [Google Scholar]
  2. Batistic O, Kudla J. 2.  2012. Analysis of calcium signaling pathways in plants. Biochim. Biophys. Acta 1820:1283–93 [Google Scholar]
  3. Bjornson M, Dandekar A, Dehesh K. 3.  2016. Determinants of timing and amplitude in the plant general stress response. J. Integr. Plant Biol. 58:119–26 [Google Scholar]
  4. Blanco NE, Guinea-Díaz M, Whelan J, Strand A. 4.  2014. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philos. Trans. R. Soc. Lond. B 369:20130231 [Google Scholar]
  5. Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A. 5.  2013. Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor. Plant Physiol 163:1230–41 [Google Scholar]
  6. Bradbeer JW, Atkinson YE, Borner T, Hagemann R. 6.  1979. Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesised RNA. Nature 279:816–17 [Google Scholar]
  7. Browse J.7.  2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205 [Google Scholar]
  8. Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K. 8.  et al. 2015. Chloroplast stromules function during innate immunity. Dev. Cell 34:45–57 [Google Scholar]
  9. Cecchini NM, Steffes K, Schläppi MR, Gifford AN, Greenberg JT. 9.  2015. Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nat. Commun. 6:7658 [Google Scholar]
  10. Chan KX, Crisp PA, Estavillo GM, Pogson BJ. 10.  2010. Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling. Plant Signal. Behav. 5:1575–82 [Google Scholar]
  11. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F. 11.  et al. 2008. Distinct roles of jasmonates and aldehydes in plant-defense responses. PLOS ONE 3:e1904 [Google Scholar]
  12. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. 12.  2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. PNAS 102:19237–42 [Google Scholar]
  13. Chi W, Feng P, Ma J, Zhang L. 13.  2015. Metabolites and chloroplast retrograde signaling. Curr. Opin. Plant Biol. 25:32–38 [Google Scholar]
  14. Choudhury S, Panda P, Sahoo L, Panda SK. 14.  2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 8:e23681 [Google Scholar]
  15. Cui LG, Shan JX, Shi M, Gao JP, Lin HX. 15.  2014. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80:1108–17 [Google Scholar]
  16. Das P, Nutan KK, Singla-Pareek SL, Pareek A. 16.  2015. Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front. Environ. Sci. 2:70 [Google Scholar]
  17. De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW. 17.  et al. 2013. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–90 [Google Scholar]
  18. De Pinto MC, Locato V, De Gara L. 18.  2012. Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–44 [Google Scholar]
  19. Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, Howell SH. 19.  2011. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. PNAS 108:7247–52 [Google Scholar]
  20. DeWitt DA, Hurd JA, Fox N, Townsend BE, Griffioen KJS. 20.  et al. 2006. Peri-nuclear clustering of mitochondria is triggered during aluminum maltolate induced apoptosis. J. Alzheimer's Dis. 9:195–205 [Google Scholar]
  21. Dichtl B, Stevens A, Tollervey D. 21.  1997. Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J 16:7184–95 [Google Scholar]
  22. Dietzel L, Gläßer C, Liebers M, Hiekel S, Courtois F. 22.  et al. 2015. Identification of early nuclear target genes of plastidial redox signals that trigger the long-term response of Arabidopsis to light quality shifts. Mol. Plant 8:1237–52 [Google Scholar]
  23. Duanmu D, Casero D, Dent RM, Gallaher S, Yang W. 23.  et al. 2013. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. PNAS 110:3621–26 [Google Scholar]
  24. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D. 24.  et al. 2011. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012 [Google Scholar]
  25. Froehlich JE, Itoh A, Howe GA. 25.  2001. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–17 [Google Scholar]
  26. Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM. 26.  2008. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–34 [Google Scholar]
  27. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN. 27.  et al. 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–45 [Google Scholar]
  28. Gandin A, Duffes C, Day DA, Cousins AB. 28.  2012. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. Plant Cell Physiol 53:1627–37 [Google Scholar]
  29. Gangappa SN, Botto JF. 29.  2014. The BBX family of plant transcription factors. Trends Plant Sci 19:460–70 [Google Scholar]
  30. Gao H, Metz J, Teanby NA, Ward AD, Botchway SW. 30.  et al. 2015. In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers. Plant Physiol 170:263–72 [Google Scholar]
  31. Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M. 31.  et al. 2014. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–30 [Google Scholar]
  32. Giraud E, Van Aken O, Ho LH, Whelan J. 32.  2009. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a. Plant Physiol 150:1286–96 [Google Scholar]
  33. Grieshaber NA, Fischer ER, Mead DJ, Dooley CA, Hackstadt T. 33.  2004. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. PNAS 101:7451–56 [Google Scholar]
  34. Grieshaber NA, Sager JB, Dooley CA, Hayes SF, Hackstadt T. 34.  2006. Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent. J. Bacteriol. 188:5289–92 [Google Scholar]
  35. Guha M, Avadhani NG. 35.  2013. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13:577–91 [Google Scholar]
  36. Henriquez-Valencia C, Moreno AA, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F. 36.  et al. 2015. bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J. Cell Biochem. 116:1638–45 [Google Scholar]
  37. Hetz C, Chevet E, Oakes SA. 37.  2015. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17:829–38 [Google Scholar]
  38. Howell SH.38.  2013. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64:477–99 [Google Scholar]
  39. Huang J, Zhao X, Weng X, Wang L, Xie W. 39.  2012. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLOS ONE 7:e48242 [Google Scholar]
  40. Iwata Y, Koizumi N. 40.  2012. Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci 17:720–27 [Google Scholar]
  41. Jabs T, Dietrich RA, Dangl JL. 41.  1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–56 [Google Scholar]
  42. Jaipargas EA, Mathur N, Bou Daher F, Wasteneys GO, Mathur J. 42.  2016. High light intensity leads to increased peroxule-mitochondria interactions in plants. Front. Cell Dev. Biol. 4:6 [Google Scholar]
  43. Jarvis P, López-Juez E. 43.  2013. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14:787–802 [Google Scholar]
  44. Jazwinski SM.44.  2005. Rtg2 protein: at the nexus of yeast longevity and aging. FEMS Yeast Res 5:1253–59 [Google Scholar]
  45. Jazwinski SM.45.  2013. The retrograde response: when mitochondrial quality control is not enough. Biochim. Biophys. Acta 1833:400–9 [Google Scholar]
  46. Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P. 46.  2003. Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15:2952–65 [Google Scholar]
  47. Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. 47.  2007. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol. Biol. 63:257–71 [Google Scholar]
  48. Kachroo A, Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P. 48.  2004. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. PNAS 101:5152–57 [Google Scholar]
  49. Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M. 49.  et al. 2009. The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–20 [Google Scholar]
  50. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY. 50.  et al. 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4:1352 [Google Scholar]
  51. Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E. 51.  et al. 2012. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta 1823:398–405 [Google Scholar]
  52. Kobayashi Y, Imamura S, Hanaoka M, Tanaka K. 52.  2011. A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat. Cell Biol. 13:483–87 [Google Scholar]
  53. Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K. 53.  2009. Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. PNAS 106:803–7 [Google Scholar]
  54. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G. 54.  et al. 2007. Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–19 [Google Scholar]
  55. Larkin RM, Alonso JM, Ecker JR, Chory J. 55.  2003. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–6 [Google Scholar]
  56. Lecourieux D, Ranjeva R, Pugin A. 56.  2006. Calcium in plant defence-signalling pathways. New Phytol 171:249–69 [Google Scholar]
  57. Liao X, Butow RA. 57.  1993. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71 [Google Scholar]
  58. Ling Q, Huang W, Baldwin A, Jarvis P. 58.  2012. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338:655–59 [Google Scholar]
  59. Ling Q, Jarvis P. 59.  2015. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol. 25:2527–34 [Google Scholar]
  60. Love J, Dodd AN, Webb AA. 60.  2004. Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16:956–66 [Google Scholar]
  61. Lv F, Zhou J, Zeng L, Xing D. 61.  2015. β-Cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J. Exp. Bot. 66:4719–32 [Google Scholar]
  62. Maag D, Erb M, Köllner TG, Gershenzon J. 62.  2015. Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays 37:167–74 [Google Scholar]
  63. Mandal MK, Chandra-Shekara AC, Jeong RD, Yu K, Zhu S. 63.  et al. 2012. Oleic acid-dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide–mediated defense signaling in Arabidopsis. Plant Cell 24:1654–74 [Google Scholar]
  64. Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Luque F. 64.  et al. 2016. Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol 170:686–701 [Google Scholar]
  65. Mechold U, Ogryzko V, Ngo S, Danchin A. 65.  2006. Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res 34:2364–73 [Google Scholar]
  66. Miwa H, Sun J, Oldroyd GE, Downie JA. 66.  2006. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol. Plant-Microbe Interact. 19:914–23 [Google Scholar]
  67. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. 67.  2001. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. PNAS 98:2053–58 [Google Scholar]
  68. Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. 68.  2008. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. PNAS 105:15184–89 [Google Scholar]
  69. Møller IM, Sweetlove LJ. 69.  2010. ROS signalling—specificity is required. Trends Plant Sci 15:370–74 [Google Scholar]
  70. Montes G, Bradbeer JW. 70.  1976. An association of chloroplasts and mitochondria in Zea mays and Hyptis suaveolens. Plant Sci. Lett. 6:35–41 [Google Scholar]
  71. Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I. 71.  et al. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLOS ONE 7:e31944 [Google Scholar]
  72. Mori K.72.  2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146:743–50 [Google Scholar]
  73. Mou Z, He Y, Dai Y, Liu X, Li J. 73.  2000. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12:405–18 [Google Scholar]
  74. Moulin M, McCormac AC, Terry MJ, Smith AG. 74.  2008. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. PNAS 105:15178–83 [Google Scholar]
  75. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M. 75.  et al. 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–85 [Google Scholar]
  76. Nagashima Y, Iwata Y, Ashida M, Mishiba KI, Koizumi N. 76.  2014. Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis. Plant Cell Physiol 55:1772–78 [Google Scholar]
  77. Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A. 77.  et al. 2014. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol. Plant 7:1075–93 [Google Scholar]
  78. Ng S, Giraud E, Duncan O, Law SR, Wang Y. 78.  et al. 2013. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J. Biol. Chem. 288:3449–59 [Google Scholar]
  79. Ng S, Ivanova A, Duncan O, Law SR, Van Aken O. 79.  et al. 2013. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25:3450–71 [Google Scholar]
  80. Noverr MC, Erb-Downward JR, Huffnagle GB. 80.  2003. Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Microbiol. Rev. 16:517–33 [Google Scholar]
  81. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C. 81.  et al. 2007. Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–61 [Google Scholar]
  82. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T. 82.  et al. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402 [Google Scholar]
  83. Oikawa K, Matsunaga S, Mano S, Kondo M, Yamamda K. 83.  et al. 2015. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat. Plants 1:15035 [Google Scholar]
  84. Ostrovsky D, Diomina G, Lysak E, Matveeva E, Ogrel O, Trutko S. 84.  1998. Effect of oxidative stress on the biosynthesis of 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate and isoprenoids by several bacterial strains. Arch. Microbiol. 171:69–72 [Google Scholar]
  85. Ostrovsky D, Kharatian E, Malarova I, Shipanova I, Sibeldina L. 85.  et al. 1992. Synthesis of a new organic pyrophosphate in large quantities is induced in some bacteria by oxidative stress. Biofactors 3:261–64 [Google Scholar]
  86. Pandey GK.86.  2008. Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol. Mol. Biol. Plants 14:51–68 [Google Scholar]
  87. Park SW, Li W, Viehhauser A, He B, Kim S. 87.  et al. 2013. Cyclophilin 20–3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. PNAS 110:9559–64 [Google Scholar]
  88. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B. 88.  et al. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–34 [Google Scholar]
  89. Picard M, Shirihai OS, Gentil BJ, Burelle Y. 89.  2013. Mitochondrial morphology transitions and functions: implications for retrograde signaling?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304:R393–406 [Google Scholar]
  90. Potters G, Pasternak TP, Guisez Y, Jansen MA. 90.  2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–69 [Google Scholar]
  91. Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL. 91.  et al. 2002. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol. Cell. Biol. 22:8774–86 [Google Scholar]
  92. Prinz WA.92.  2014. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205:759–69 [Google Scholar]
  93. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M. 93.  2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. PNAS 109:5535–40 [Google Scholar]
  94. Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F. 94.  et al. 2013. Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25:1445–62 [Google Scholar]
  95. Riboni M, Galbiati M, Tonelli C, Conti L. 95.  2013. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–19 [Google Scholar]
  96. Ribot C, Zimmerli C, Farmer EE, Reymond P, Poirier Y. 96.  2008. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol 147:696–706 [Google Scholar]
  97. Ricker KE, Bostock RM. 97.  1992. Evidence for release of the elicitor arachidonic-acid and its metabolites from sporangia of Phytophthora infestans during infection of potato. Physiol. Mol. Plant Pathol. 41:61–72 [Google Scholar]
  98. Rudolph V, Rudolph TK, Schopfer FJ, Bonacci G, Woodcock SR. 98.  et al. 2010. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 85:155–66 [Google Scholar]
  99. Ryan CA.99.  1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28:425–49 [Google Scholar]
  100. Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR. 100.  et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–60 [Google Scholar]
  101. Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R. 101.  et al. 2010. Arachidonic acid: An evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–205 [Google Scholar]
  102. Schaller A, Stintzi A. 102.  2009. Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry 70:1532–38 [Google Scholar]
  103. Schlicke H, Hartwig AS, Firtzlaff V, Richter AS, Gläßer C. 103.  et al. 2014. Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling. Mol. Plant 7:1211–27 [Google Scholar]
  104. Schopfer FJ, Cipollina C, Freeman BA. 104.  2011. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111:5997–6021 [Google Scholar]
  105. Seemann M, Wegner P, Schunemann V, Bui BT, Wolff M. 105.  et al. 2005. Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J. Biol. Inorg. Chem. 10:131–37 [Google Scholar]
  106. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G. 106.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–5 [Google Scholar]
  107. Short EF, North KA, Roberts MR, Hetherington AM, Shirras AD, McAinsh MR. 107.  2012. A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis. Plant J. 71:948–61 [Google Scholar]
  108. Sun X, Feng P, Xu X, Guo H, Ma J. 108.  et al. 2011. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat. Commun. 2:477 [Google Scholar]
  109. Susek RE, Ausubel FM, Chory J. 109.  1993. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–99 [Google Scholar]
  110. Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. 110.  2008. Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–44 [Google Scholar]
  111. Tanaka K, Hanaoka M. 111.  2012. The early days of plastid retrograde signaling with respect to replication and transcription. Front. Plant Sci. 3:301 [Google Scholar]
  112. Tanaka R, Tanaka A. 112.  2007. Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58:321–46 [Google Scholar]
  113. Toledano E, Ogryzko V, Danchin A, Ladant D, Mechold U. 113.  2012. 3′-5′ phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem. J. 443:485–90 [Google Scholar]
  114. Torelli NQ, Ferreira-Júnior JR, Kowaltowski AJ, da Cunha FM. 114.  2015. RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae. Free Radic. Biol. Med. 81:30–37 [Google Scholar]
  115. Tuteja N, Mahajan S. 115.  2007. Calcium signaling network in plants: an overview. Plant Signal. Behav. 2:79–85 [Google Scholar]
  116. Upchurch RG.116.  2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30:967–77 [Google Scholar]
  117. Van Aken O, Zhang B, Law S, Narsai R, Whelan J. 117.  2013. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol 162:254–71 [Google Scholar]
  118. van Heusden GP, Steensma HY. 118.  2001. 14-3-3 proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae. Yeast 18:1479–91 [Google Scholar]
  119. von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF. 119.  2008. Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20:552–67 [Google Scholar]
  120. Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. 120.  2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 16:520–26 [Google Scholar]
  121. Walley JW, Xiao Y, Wang JZ, Baidoo EE, Keasling JD. 121.  et al. 2015. Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum. PNAS 112:6212–17 [Google Scholar]
  122. Walter P, Ron D. 122.  2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–86 [Google Scholar]
  123. Wang CQ, Dehesh K. 123.  2015. From retrograde signaling to flowering time. Plant Signal. Behav. 10:e1022012 [Google Scholar]
  124. Wang CQ, Guthrie C, Sarmast MK, Dehesh K. 124.  2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell 26:3589–602 [Google Scholar]
  125. Wang CQ, Sarmast MK, Jiang J, Dehesh K. 125.  2015. The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidopsis. Plant Cell 27:1128–39 [Google Scholar]
  126. Wittek F, Hoffmann T, Kanawati B, Bichlmeier M, Knappe C. 126.  et al. 2014. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. J. Exp. Bot. 65:5919–31 [Google Scholar]
  127. Woodson JD, Joens MS, Sinson AB, Gilkerson J, Salome PA. 127.  et al. 2015. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science 350:450–54 [Google Scholar]
  128. Woodson JD, Perez-Ruiz JM, Chory J. 128.  2011. Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr. Biol. 21:897–903 [Google Scholar]
  129. Wu J, Sun Y, Zhao Y, Zhang J, Luo L. 129.  et al. 2015. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 25:621–33 [Google Scholar]
  130. Xia Y, Gao QM, Yu KS, Lapchyk L, Navarre D. 130.  et al. 2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151–65 [Google Scholar]
  131. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM. 131.  et al. 2012. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149:1525–35 [Google Scholar]
  132. Xiao Y, Wang J, Dehesh K. 132.  2013. Review of stress specific organelles-to-nucleus metabolic signal molecules in plants. Plant Sci. 212:102–7 [Google Scholar]
  133. Xu MY, Zhang L, Li WW, Hu XL, Wang MB. 133.  et al. 2014. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J. Exp. Bot. 65:89–101 [Google Scholar]
  134. Yoshida H.134.  2009. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life 61:871–79 [Google Scholar]
  135. Yoshida K, Noguchi K. 135.  2009. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol 50:1449–62 [Google Scholar]
  136. Yoshida K, Noguchi K. 136.  2011. Interaction between chloroplasts and mitochondria: activity, function, and regulation of the mitochondrial respiratory system during photosynthesis. Plant Mitochondria 1:383–409 [Google Scholar]
  137. Zhang L, Chen H, Brandizzi F, Verchot J, Wang A. 137.  2015. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLOS Genet. 11:e1005164 [Google Scholar]
  138. Zoeller M, Stingl N, Krischke M, Fekete A, Waller F. 138.  et al. 2012. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–78 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-041007
Loading
/content/journals/10.1146/annurev-arplant-042916-041007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error