The eukaryotic nucleus is enclosed by the nuclear envelope, which is perforated by the nuclear pores, the gateways of macromolecular exchange between the nucleoplasm and cytoplasm. The nucleoplasm is organized in a complex three-dimensional fashion that changes over time and in response to stimuli. Within the cell, the nucleus must be viewed as an organelle (albeit a gigantic one) that is a recipient of cytoplasmic forces and capable of morphological and positional dynamics. The most dramatic reorganization of this organelle occurs during mitosis and meiosis. Although many of these aspects are less well understood for the nuclei of plants than for those of animals or fungi, several recent discoveries have begun to place our understanding of plant nuclei firmly into this broader cell-biological context.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aaronson RP, Blobel G. 1.  1975. Isolation of nuclear pore complexes in association with a lamina. PNAS 72:1007–11 [Google Scholar]
  2. Aebi U, Cohn J, Buhle L, Gerace L. 2.  1986. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–64 [Google Scholar]
  3. Anderson DJ, Hetzer MW. 3.  2008. Shaping the endoplasmic reticulum into the nuclear envelope. J. Cell Sci. 121:137–42 [Google Scholar]
  4. Anderson DJ, Vargas JD, Hsiao JP, Hetzer MW. 4.  2009. Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J. Cell Biol. 186:183–91 [Google Scholar]
  5. Armstrong SJ, Franklin FCH, Jones GH. 5.  2001. Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J. Cell Sci. 114:4207–17 [Google Scholar]
  6. Baroux C, Pecinka A, Fuchs J, Kreth G, Schubert I, Grossniklaus U. 6.  2017. Non-random chromosome arrangement in triploid endosperm nuclei. Chromosoma In press. https://doi.org/10.1007/s00412-016-0578-5 [Google Scholar]
  7. Bass HW.7.  2003. Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell. Mol. Life Sci. 60:2319–24 [Google Scholar]
  8. Batzenschlager M, Masoud K, Janski N, Houlné G, Herzog E. 8.  et al. 2013. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Front. Plant Sci. 4:480 [Google Scholar]
  9. Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. 9.  2002. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96 [Google Scholar]
  10. Binarová P, Cenklová V, Procházková J, Doskocilová A, Volc J. 10.  et al. 2006. γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–212 [Google Scholar]
  11. Binder A, Parniske M. 11.  2013. Analysis of the Lotus japonicus nuclear pore NUP107-160 subcomplex reveals pronounced structural plasticity and functional redundancy. Front. Plant Sci. 4:552 [Google Scholar]
  12. Boeglin M, Fuglsang AT, Luu DT, Sentenac H, Gaillard I, Cherel I. 12.  2016. Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis. BMC Plant Biol. 16:2 [Google Scholar]
  13. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. 13.  2007. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8:574–85 [Google Scholar]
  14. Bone CR, Starr DA. 14.  2016. Nuclear migration events throughout development. J. Cell Sci. 129:1951–61 [Google Scholar]
  15. Boruc J, Griffis AHN, Rodrigo-Peiris T, Zhou X, Tilford B. 15.  et al. 2015. GAP activity, but not subcellular targeting, is required for Arabidopsis RanGAP cellular and developmental functions. Plant Cell 27:1985–98 [Google Scholar]
  16. Boudolf V, Barroco R, Engler JD, Verkest A, Beeckman T. 16.  et al. 2004. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16:945–55 [Google Scholar]
  17. Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H. 17.  et al. 2009. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol 150:1482–93 [Google Scholar]
  18. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. 18.  2010. The nucleolus under stress. Mol. Cell 40:216–27 [Google Scholar]
  19. Brandizzi F, Irons SL, Evans DE. 19.  2004. The plant nuclear envelope: new prospects for a poorly understood structure. New Phytol 163:227–46 [Google Scholar]
  20. Brangwynne CP, Mitchison TJ, Hyman AA. 20.  2011. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. PNAS 108:4334–39 [Google Scholar]
  21. Braud C, Zheng W, Xiao W. 21.  2012. LONO1 encoding a nucleoporin is required for embryogenesis and seed viability in Arabidopsis. Plant Physiol 160:823–36 [Google Scholar]
  22. Brohawn SG, Partridge JR, Whittle JR, Schwartz TU. 22.  2009. The nuclear pore complex has entered the atomic age. Structure 17:1156–68 [Google Scholar]
  23. Bukata L, Parker SL, D'Angelo MA. 23.  2013. Nuclear pore complexes in the maintenance of genome integrity. Curr. Opin. Cell Biol. 25:378–86 [Google Scholar]
  24. Burke B, Ellenberg J. 24.  2002. Remodelling the walls of the nucleus. Nat. Rev. Mol. Cell Biol. 3:487–97 [Google Scholar]
  25. Burke B, Roux KJ. 25.  2009. Nuclei take a position: managing nuclear location. Dev. Cell 17:587–97 [Google Scholar]
  26. Burke B, Stewart CL. 26.  2013. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14:13–24 [Google Scholar]
  27. Butin-Israeli V, Adam SA, Goldman AE, Goldman RD. 27.  2012. Nuclear lamin functions and disease. Trends Genet 28:464–71 [Google Scholar]
  28. Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M. 28.  et al. 2011. Nuclear membranes control symbiotic calcium signaling of legumes. PNAS 108:14348–53 [Google Scholar]
  29. Chan J, Calder GM, Doonan JH, Lloyd CW. 29.  2003. EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5:967–71 [Google Scholar]
  30. Chan J, Calder GM, Fox S, Lloyd CW. 30.  2005. Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–48 [Google Scholar]
  31. Charpentier M, Oldroyd GE. 31.  2013. Nuclear calcium signaling in plants. Plant Physiol 163:496–503 [Google Scholar]
  32. Charpentier M, Sun J, Martins TV, Radhakrishnan GV, Findlay K. 32.  et al. 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:1102–5 [Google Scholar]
  33. Chase D, Serafinas C, Ashcroft N, Kosinski M, Longo D. 33.  et al. 2000. The Polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 26:26–41 [Google Scholar]
  34. Chen M, Schwab R, Chory J. 34.  2003. Characterization of the requirements for localization of phytochrome B to nuclear bodies. PNAS 100:14493–98 [Google Scholar]
  35. Cheng YT, Germain H, Wiermer M, Bi D, Xu F. 35.  et al. 2009. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21:2503–16 [Google Scholar]
  36. Chi YH, Haller K, Peleponese JM, Jang KT. 36.  2007. Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in decondensation of mitotic chromosomes. J. Biol. Chem. 282:27447–58 [Google Scholar]
  37. Chuang CH, Belmont AS. 37.  2007. Moving chromatin within the interphase nucleus-controlled transitions?. Semin. Cell Dev. Biol. 18:698–706 [Google Scholar]
  38. Ciska M, Masuda K, Moreno Díaz de la Espina S. 38.  2013. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa. J. Exp. Bot. 64:1553–64 [Google Scholar]
  39. Ciska M, Moreno Díaz de la Espina S. 39.  2014. The intriguing plant nuclear lamina. Front. Plant Sci. 5:166 [Google Scholar]
  40. Collas P, Le Guellec K, Tasken K. 40.  1999. The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J. Cell Biol. 147:1167–80 [Google Scholar]
  41. Collings DA, Carter CN, Rink JC, Scott AC, Wyatt SE, Strömgren AN. 41.  2000. Plant nuclei can contain extensive grooves and invaginations. Plant Cell 12:2425–40 [Google Scholar]
  42. Courchaine EM, Lu A, Neugebauer KM. 42.  2016. Droplet organelles?. EMBO J 35:1603–12 [Google Scholar]
  43. Courvalin JC, Segil N, Blobel G, Worman HJ. 43.  1992. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase. J. Biol. Chem. 267:19035–38 [Google Scholar]
  44. Cremer T, Cremer M. 44.  2010. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2:a003889 [Google Scholar]
  45. D'Angelo MA, Hetzer MW. 45.  2008. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18:456–66 [Google Scholar]
  46. Davidson PM, Lammerding J. 46.  2014. Broken nuclei—lamins, nuclear mechanics, and disease. Trends Cell Biol 24:247–56 [Google Scholar]
  47. Dawson TR, Lazarus MD, Hetzer MW, Wente SR. 47.  2009. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 184:659–75 [Google Scholar]
  48. Dechat T, Gotzmann J, Stockinger A, Harris CA, Talle MA. 48.  et al. 1998. Detergent-salt resistance of LAP2α in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 17:4887–902 [Google Scholar]
  49. Dekker J, Marti-Renom MA, Mirny LA. 49.  2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14:390–403 [Google Scholar]
  50. Dhonukshe P, Mathur J, Hulskamp M, Gadella TWJ. 50.  2005. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11 [Google Scholar]
  51. Ding D, Muthuswamy S, Meier I. 51.  2012. Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol. Biol. 79:203–16 [Google Scholar]
  52. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. 52.  2007. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12:863–72 [Google Scholar]
  53. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ. 53.  2007. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19:2793–803 [Google Scholar]
  54. Dixit R, Cyr RJ. 54.  2002. Spatio-temporal relationship between nuclear-envelope breakdown and preprophase band disappearance in cultured tobacco cells. Protoplasma 219:116–21 [Google Scholar]
  55. Dong CH, Hu X, Tang W, Zheng X, Kim YS. 55.  et al. 2006. A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol. Cell Biol. 26:9533–43 [Google Scholar]
  56. Dong F, Jiang J. 56.  1998. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–58 [Google Scholar]
  57. Dundr M.57.  2012. Nuclear bodies: multifunctional companions of the genome. Curr. Opin. Cell Biol. 24:415–22 [Google Scholar]
  58. Egecioglu D, Brickner JH. 58.  2011. Gene positioning and expression. Curr. Opin. Cell Biol. 23:338–45 [Google Scholar]
  59. Eissenberg JC, Elgin SC. 59.  2000. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10:204–10 [Google Scholar]
  60. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF. 60.  et al. 1997. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138:1193–206 [Google Scholar]
  61. Evans DE, Irons SL, Graumann K, Runions J. 61.  2009. The plant nuclear envelope. Functional Organization of the Plant Nucleus I Meier 1–20 Plant Cell Monogr 14 Berlin: Springer [Google Scholar]
  62. Evans DE, Pawar V, Smith SJ, Graumann K. 62.  2014. Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex. Front. Plant Sci. 5:183 [Google Scholar]
  63. Evans DE, Shvedunova M, Graumann K. 63.  2011. The nuclear envelope in the plant cell cycle: structure, function and regulation. Ann. Bot. 107:1111–18 [Google Scholar]
  64. Fåhraeus G.64.  1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16:374–81 [Google Scholar]
  65. Fang Y, Spector DL. 65.  2005. Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell 16:5710–18 [Google Scholar]
  66. Fang Y, Spector DL. 66.  2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17:818–23 [Google Scholar]
  67. Fawcett DW.67.  1966. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119:129–45 [Google Scholar]
  68. Feng CM, Qiu Y, Van Buskirk EK, Yang EJ, Chen M. 68.  2014. Light-regulated gene repositioning in Arabidopsis. Nat. Commun. 5:3027 [Google Scholar]
  69. Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. 69.  2014. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55:694–707 [Google Scholar]
  70. Feng W, Michaels SD. 70.  2015. Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. Annu. Rev. Genet. 49:439–59 [Google Scholar]
  71. Ferrández-Ayela A, Alonso-Peral MM, Sánchez-García AB, Micol-Ponce R, Pérez-Pérez JM. 71.  et al. 2013. Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel. PLOS ONE 8:e67661 [Google Scholar]
  72. Figueroa RA, Gudise S, Hallberg E. 72.  2011. Microtubule-associated nuclear envelope proteins in interphase and mitosis. Biochem. Soc. Trans. 39:1786–89 [Google Scholar]
  73. Fiserova J, Kiseleva E, Goldberg MW. 73.  2009. Nuclear envelope and nuclear pore complex structure and organisation in tobacco BY-2 cells. Plant J 59:243–55 [Google Scholar]
  74. Folkers U, Berger J, Hulskamp M. 74.  1997. Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 124:3779–86 [Google Scholar]
  75. Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I. 75.  2002. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. PNAS 99:14584–89 [Google Scholar]
  76. Freytag S, Arabatzis N, Hahlbrock K, Schmelzer E. 76.  1994. Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell death and defense-related gene activation in potato/Phytophthora infestans interactions. Planta 194:123–35 [Google Scholar]
  77. 76a.  Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A. et al. 2016. DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis. Development. 1431623–31 [Google Scholar]
  78. Galy V, Antonin W, Jaedicke A, Sachse M, Santarella R. 77.  et al. 2008. A role for gp210 in mitotic nuclear-envelope breakdown. J. Cell Sci. 121:317–28 [Google Scholar]
  79. Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. 78.  2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula. Daucus carota. Plant Cell 20:1407–20 [Google Scholar]
  80. Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 79.  2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–34 [Google Scholar]
  81. Gerace L, Blum A, Blobel G. 80.  1978. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J. Cell Biol. 79:546–66 [Google Scholar]
  82. Gong DQ, Pomerening JR, Myers JW, Gustavsson C, Jones JT. 81.  et al. 2007. Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr. Biol. 17:85–91 [Google Scholar]
  83. Goss VL, Hocevar BA, Thompson LJ, Stratton CA, Burns DJ, Fields AP. 82.  1994. Identification of nuclear βII protein kinase C as a mitotic lamin kinase. J. Biol. Chem. 269:19074–80 [Google Scholar]
  84. Goto C, Tamura K, Fukao Y, Shimada T, Hara-Nishimura I. 83.  2014. The novel nuclear envelope protein KAKU4 modulates nuclear morphology in Arabidopsis. Plant Cell 26:2143–55 [Google Scholar]
  85. Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J. 84.  et al. 2012. Buffering capacity explains signal variation in symbiotic calcium oscillations. Plant Physiol 160:2300–10 [Google Scholar]
  86. Graumann K.85.  2014. Evidence for LINC1-SUN associations at the plant nuclear periphery. PLOS ONE 9:e93406 [Google Scholar]
  87. Graumann K, Evans DE. 86.  2011. Nuclear envelope dynamics during plant cell division suggest common mechanisms between kingdoms. Biochem. J. 435:661–67 [Google Scholar]
  88. Graumann K, Runions J, Evans DE. 87.  2010. Characterisation of SUN-domain proteins at the higher plant nuclear envelope. Plant J 61:134–44 [Google Scholar]
  89. Graumann K, Vanrobays E, Tutois S, Probst AV, Evans DE, Tatout C. 88.  2014. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65:6499–512 [Google Scholar]
  90. Grob S, Schmid MW, Grossniklaus U. 89.  2014. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55:678–93 [Google Scholar]
  91. Groth M, Takeda N, Perry J, Uchida H, Dräxl S. 90.  et al. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–26 [Google Scholar]
  92. Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, Dong X. 91.  2016. Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1526–38.e11 [Google Scholar]
  93. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB. 92.  et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51 [Google Scholar]
  94. Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R. 93.  et al. 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–81 [Google Scholar]
  95. Gutierrez L. 94.  2009. The Arabidopsis cell division cycle. Arabidopsis Book 7:e0120 [Google Scholar]
  96. Guttinger S, Laurell E, Kutay U. 95.  2009. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10:178–91 [Google Scholar]
  97. Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S. 96.  et al. 2003. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11:853–64 [Google Scholar]
  98. Hatch E, Hetzer M. 97.  2014. Breaching the nuclear envelope in development and disease. J. Cell Biol. 205:133–41 [Google Scholar]
  99. Heitz E.98.  1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69:762–818 [Google Scholar]
  100. Higa T, Suetsugu N, Wada M. 99.  2013. Plant nuclear photorelocation movement. J. Exp. Bot. 65:2873–81 [Google Scholar]
  101. Hoelz A, Debler EW, Blobel G. 100.  2011. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80:613–43 [Google Scholar]
  102. Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL. 101.  et al. 2013. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202:1023–39 [Google Scholar]
  103. Isermann P, Lammerding J. 102.  2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23:R1113–21 [Google Scholar]
  104. Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK. 103.  1998. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–61 [Google Scholar]
  105. Iwabuchi K, Sakai T, Takagi S. 104.  2007. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells. Plant Cell Physiol 48:1291–98 [Google Scholar]
  106. Iwabuchi K, Takagi S. 105.  2010. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis. Plant Signal. Behav. 5:1010–13 [Google Scholar]
  107. Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD. 106.  2007. The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol 144:1383–90 [Google Scholar]
  108. Janski N, Herzog E, Schmit A-C. 107.  2008. Identification of a novel small Arabidopsis protein interacting with gamma-tubulin complex protein 3. Cell Biol. Int. 32:546–48 [Google Scholar]
  109. Janski N, Masoud K, Batzenschlager M, Herzog E, Evrard J-L. 108.  et al. 2012. The GCP3-interacting proteins GIP1 and GIP2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. Plant Cell 24:1171–87 [Google Scholar]
  110. Jevtić P, Edens LJ, Vuković LD, Levy DL. 109.  2014. Sizing and shaping the nucleus: mechanisms and significance. Curr. Opin. Cell Biol. 28:16–27 [Google Scholar]
  111. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM. 110.  et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. PNAS 103:359–64 [Google Scholar]
  112. Katsani KR, Karess RE, Dostatni N, Doye V. 111.  2008. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell 19:3652–66 [Google Scholar]
  113. Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NCA, Grierson CS. 112.  et al. 2002. Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–55 [Google Scholar]
  114. Kim Y, Lim J, Yeom M, Kim H, Kim J. 113.  et al. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep 3:671–77 [Google Scholar]
  115. Kimura Y, Kuroda C, Masuda K. 114.  2010. Differential nuclear envelope assembly at the end of mitosis in suspension-cultured Apium graveolens cells. Chromosoma 119:195–204 [Google Scholar]
  116. Kirik A, Ehrhardt DW, Kirik V. 115.  2012. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24:1158–70 [Google Scholar]
  117. Knockenhauer KE, Schwartz TU. 116.  2016. The nuclear pore complex as a flexible and dynamic gate. Cell 164:1162–71 [Google Scholar]
  118. Koroleva OA, Calder GM, Pendle AF, Kim SH, Lewandowska D. 117.  et al. 2009. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21:1592–606 [Google Scholar]
  119. Koszul R, Kleckner N. 118.  2009. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections?. Trends Cell Biol 19:716–24 [Google Scholar]
  120. Lachaud C, Da Silva D, Cotelle V, Thuleau P, Xiong TC. 119.  et al. 2010. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium 47:92–100 [Google Scholar]
  121. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK. 120.  2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo–cytoplasmic partitioning. Genes Dev 15:912–24 [Google Scholar]
  122. Lee JY, Lee HS, Wi SJ, Park KY, Schmit AC, Pai HS. 121.  2009. Dual functions of Nicotiana benthamiana Rae1 in interphase and mitosis. Plant J 59:278–91 [Google Scholar]
  123. Lee KK, Gruenbaum Y, Spann P, Liu J, Wilson KL. 122.  2000. C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. Mol. Biol. Cell 11:3089–99 [Google Scholar]
  124. Lenart P, Rabut G, Daigle N, Hand AR, Terasaki M, Ellenberg J. 123.  2003. Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J. Cell Biol. 160:1055–68 [Google Scholar]
  125. Lim RY, Ullman KS, Fahrenkrog B. 124.  2008. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell Mol. Biol. 267:299–342 [Google Scholar]
  126. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N. 125.  et al. 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–76 [Google Scholar]
  127. Lloyd CW, Chan J. 126.  2006. Not so divided: the common basis of plant and animal cell division. Nat. Rev. Mol. Cell Biol. 7:147–52 [Google Scholar]
  128. Lombardi ML, Lammerding J. 127.  2010. Altered mechanical properties of the nucleus in disease. Methods Cell Biol 98:121–41 [Google Scholar]
  129. Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH. 128.  2003. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–18 [Google Scholar]
  130. Lu L, Ladinsky MS, Kirchhausen T. 129.  2009. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 20:3471–80 [Google Scholar]
  131. Lu Q, Tang X, Tian G, Wang F, Liu K. 130.  et al. 2010. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J 61:259–70 [Google Scholar]
  132. MacGregor DR, Gould P, Foreman J, Griffiths J, Bird S. 131.  et al. 2013. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis. Plant Cell 25:4391–404 [Google Scholar]
  133. MacGregor DR, Penfield S. 132.  2015. Exploring the pleiotropy of hos1. J. Exp. Bot. 66:1661–71 [Google Scholar]
  134. Mans BJ, Anantharaman V, Aravind L, Koonin EV. 133.  2004. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–37 [Google Scholar]
  135. Manton I.134.  1935. Some new evidence on the physical nature of plant nuclei from intra-specific polyploids. Proc. R. Soc. Lond. B 118:522–47 [Google Scholar]
  136. Masuda K, Xu ZJ, Takahashi S, Ito A, Ono M. 135.  et al. 1997. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain. Exp. Cell Res. 232:173–81 [Google Scholar]
  137. Mathur J, Spielhofer P, Kost B, Chua N-H. 136.  1999. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–68 [Google Scholar]
  138. Matunis MJ, Coutavas E, Blobel G. 137.  1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135:1457–70 [Google Scholar]
  139. McClintock B.138.  1934. The relation of a particular chromosome element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikrosk. Anat. 21:294–326 [Google Scholar]
  140. McCue AD, Cresti M, Feijó JA, Slotkin RK. 139.  2011. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J. Exp. Bot. 62:1621–31 [Google Scholar]
  141. Meier I.140.  2000. A novel link between ran signal transduction and nuclear envelope proteins in plants. Plant Physiol 124:1507–10 [Google Scholar]
  142. Meier I, Griffis AH, Groves NR, Wagner A. 141.  2016. Regulation of nuclear shape and size in plants. Curr. Opin. Cell Biol. 40:114–23 [Google Scholar]
  143. Menges M, de Jager SM, Gruissem W, Murray JAH. 142.  2005. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41:546–66 [Google Scholar]
  144. Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC. 143.  et al. 2012. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336:1448–51 [Google Scholar]
  145. Morimoto A, Shibuya H, Zhu XQ, Kim J, Ishiguro K. 144.  et al. 2012. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198:165–72 [Google Scholar]
  146. Muhlhausser P, Kutay U. 145.  2007. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J. Cell Biol. 178:595–610 [Google Scholar]
  147. Murphy SP, Bass HW. 146.  2012. The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. J. Cell Sci. 125:3681–90 [Google Scholar]
  148. Murphy SP, Gumber HK, Mao Y, Bass HW. 147.  2014. A dynamic meiotic SUN belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.). Front. Plant Sci. 5:314 [Google Scholar]
  149. Murphy SP, Simmons CR, Bass HW. 148.  2010. Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC Plant Biol 10:269 [Google Scholar]
  150. Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G. 149.  2003. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15:2308–39 [Google Scholar]
  151. Muthuswamy S, Meier I. 150.  2011. Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Planta 233:201–8 [Google Scholar]
  152. Nakamura M, Ehrhardt DW, Hashimoto T. 151.  2010. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12:1064–70 [Google Scholar]
  153. Nakamura M, Hashimoto T. 152.  2009. A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. J. Cell Sci. 122:2208–17 [Google Scholar]
  154. Nowack MK, Harashima H, Dissmeyer N, Zhao XA, Bouyer D. 153.  et al. 2012. Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev. Cell 22:1030–40 [Google Scholar]
  155. Oda Y, Fukuda H. 154.  2011. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. Plant J 66:629–41 [Google Scholar]
  156. Ohtsu M, Shibata Y, Ojika M, Tamura K, Hara-Nishimura I. 155.  et al. 2014. Nucleoporin 75 is involved in the ethylene-mediated production of phytoalexin for the resistance of Nicotiana benthamiana to. Phytophthora infestans. Mol. Plant-Microbe Interact. 27:1318–30 [Google Scholar]
  157. Onischenko E, Stanton LH, Madrid AS, Kieselbach T, Weis K. 156.  2009. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185:475–91 [Google Scholar]
  158. Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez MD, Álvarez-Buylla ER. 157.  2015. A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLOS Comput. Biol. 11:e1004486 [Google Scholar]
  159. Parry G.158.  2014. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J. Exp. Bot. 65:6057–67 [Google Scholar]
  160. Parry G, Ward S, Cernac A, Dharmasiri S, Estelle M. 159.  2006. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 18:1590–603 [Google Scholar]
  161. Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K. 160.  et al. 2006. γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–25 [Google Scholar]
  162. Patel S, Rose A, Meulia T, Dixit R, Cyr RJ, Meier I. 161.  2004. Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. Plant Cell 16:3260–73 [Google Scholar]
  163. Pawar V, Poulet A, Détourné G, Tatout C, Vanrobays E. 162.  et al. 2016. A novel family of plant nuclear envelope-associated proteins. J. Exp. Bot. 67:5699–710 [Google Scholar]
  164. Pecinka A, Schubert V, Meister A, Kreth G, Klatte M. 163.  et al. 2004. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–69 [Google Scholar]
  165. Petrovska B, Sebela M, Dolezel J. 164.  2015. Inside a plant nucleus: discovering the proteins. J. Exp. Bot. 66:1627–40 [Google Scholar]
  166. Phair RD, Misteli T. 165.  2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604–9 [Google Scholar]
  167. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. 166.  2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38:1005–14 [Google Scholar]
  168. Pontvianne F, Carpentier MC, Durut N, Pavlistova V, Jaske K. 167.  et al. 2016. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16:1574–87 [Google Scholar]
  169. Portier N, Audhya A, Maddox PS, Green RA, Dammermann A. 168.  et al. 2007. A microtubule-independent role for centrosomes and Aurora A in nuclear envelope breakdown. Dev. Cell 12:515–29 [Google Scholar]
  170. Puhka M, Vihinen H, Joensuu M, Jokitalo E. 169.  2007. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 179:895–909 [Google Scholar]
  171. Rabl C.170.  1885. Über Zelltheilung. Morphol. Jahrb. 10:214–330 [Google Scholar]
  172. Razafsky D, Hodzic D. 171.  2009. Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J. Cell Biol. 186:461–72 [Google Scholar]
  173. Razafsky D, Wirtz D, Hodzic D. 172.  2014. Nuclear envelope in nuclear positioning and cell migration. Adv. Exp. Med. Biol 773471–90 [Google Scholar]
  174. Reddy AS, Day IS, Gohring J, Barta A. 173.  2012. Localization and dynamics of nuclear speckles in plants. Plant Physiol 158:67–77 [Google Scholar]
  175. Riely BK, Lougnon G, Ane JM, Cook DR. 174.  2006. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J 49:208–16 [Google Scholar]
  176. Robles LM, Deslauriers SD, Alvarez AA, Larsen PB. 175.  2012. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. J. Exp. Bot. 63:2231–41 [Google Scholar]
  177. Roeder GS.176.  1997. Meiotic chromosomes: It takes two to tango. Genes Dev 11:2600–21 [Google Scholar]
  178. Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N. 177.  et al. 2013. Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev 27:1845–50 [Google Scholar]
  179. Rose A.178.  2007. Open mitosis: nuclear envelope dynamics. Cell Division Control in Plants DPS Verma, Z Hong 207–30 Heidelberg, Ger.: Springer-Verlag [Google Scholar]
  180. Rose A, Manikantan S, Schraegle SJ, Maloy MA, Stahlberg EA, Meier I. 179.  2004. Genome-wide identification of Arabidopsis coiled-coil proteins and establishment of the ARABI-COIL database. Plant Physiol 134:927–39 [Google Scholar]
  181. Rosin FM, Watanabe N, Cacas JL, Kato N, Arroyo JM. 180.  et al. 2008. Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J 55:514–25 [Google Scholar]
  182. Rothballer A, Kutay U. 181.  2013. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 122:415–29 [Google Scholar]
  183. Rothballer A, Kutay U. 182.  2013. Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem. Sci. 38:292–301 [Google Scholar]
  184. Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T. 183.  et al. 2011. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–38 [Google Scholar]
  185. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H. 184.  et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–24 [Google Scholar]
  186. Sakamoto Y, Takagi S. 185.  2013. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol. 54:622–33 [Google Scholar]
  187. Saleh A, Withers J, Mohan R, Marques J, Gu Y. 186.  et al. 2015. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–82 [Google Scholar]
  188. Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B. 187.  2002. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107 [Google Scholar]
  189. Santos AP, Shaw P. 188.  2004. Interphase chromosomes and the Rabl configuration: Does genome size matter?. J. Microsc. 214:201–6 [Google Scholar]
  190. Scherthan H.189.  2001. A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2:621–27 [Google Scholar]
  191. Schrumpfová PP, Schořová S, Fajkus J. 190.  2016. Telomere- and telomerase-associated proteins and their functions in the plant cell. Front. Plant Sci. 7:851 [Google Scholar]
  192. Schubert I, Shaw P. 191.  2011. Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–81 [Google Scholar]
  193. Schubert V, Berr A, Meister A. 192.  2012. Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 121:369–87 [Google Scholar]
  194. Scofield S, Jones A, Murray JAH. 193.  2014. The plant cell cycle in context. J. Exp. Bot. 65:2557–62 [Google Scholar]
  195. Sequeira-Mendes J, Aragüez I, Peiró R, Mendez-Giraldez R, Zhang X. 194.  et al. 2014. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26:2351–66 [Google Scholar]
  196. Shaw PJ.195.  2013. The plant nucleolus. Plant Genome Diversity 2 Physical Structure, Behaviour and Evolution of Plant Genomes IJ Leitch, J Greilhuber, J Dolezel, J Wendel 65–76 Vienna: Springer [Google Scholar]
  197. Shaw PJ, Brown JW. 196.  2004. Plant nuclear bodies. Curr. Opin. Plant Biol. 7:614–20 [Google Scholar]
  198. Shaw PJ, Brown JW. 197.  2012. Nucleoli: composition, function, and dynamics. Plant Physiol 158:44–51 [Google Scholar]
  199. Shaw PJ, Jordan EG. 198.  1995. The nucleolus. Annu. Rev. Cell Dev. Biol. 11:93–121 [Google Scholar]
  200. Sheehan MJ, Pawlowski WP. 199.  2009. Live imaging of rapid chromosome movements in meiotic prophase I in maize. PNAS 106:20989–94 [Google Scholar]
  201. Sleeman JE, Trinkle-Mulcahy L. 200.  2014. Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr. Opin. Cell Biol. 28:76–83 [Google Scholar]
  202. Smith S, Galinha C, Desset S, Tolmie F, Evans D. 201.  et al. 2015. Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 6:471–78 [Google Scholar]
  203. Smoyer CJ, Jaspersen SL. 202.  2014. Breaking down the wall: the nuclear envelope during mitosis. Curr. Opin. Cell Biol. 26:1–9 [Google Scholar]
  204. Sosa BA, Rothballer A, Kutay U, Schwartz TU. 203.  2012. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149:1035–47 [Google Scholar]
  205. Starr DA.204.  2009. A nuclear envelope bridge positions nuclei and moves chromosomes. J. Cell Sci. 122:577–86 [Google Scholar]
  206. Starr DA, Fridolfsson HN. 205.  2010. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 26:421–44 [Google Scholar]
  207. Stepinski D.206.  2014. Functional ultrastructure of the plant nucleolus. Protoplasma 251:1285–306 [Google Scholar]
  208. Stewart CL, Roux KJ, Burke B. 207.  2007. Blurring the boundary: The nuclear envelope extends its reach. Science 318:1408–12 [Google Scholar]
  209. Stoppin V, Lambert AM, Vantard M. 208.  1996. Plant microtubule-associated proteins (MAPs) affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eur. J. Cell Biol. 96:11–23 [Google Scholar]
  210. Strambio-De-Castillia C, Niepel M, Rout MP. 209.  2010. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11:490–501 [Google Scholar]
  211. Suetsugu N, Higa T, Gotoh E, Wada M. 210.  2016. Light-induced movements of chloroplasts and nuclei are regulated in both Cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. PLOS ONE 11:e0157429 [Google Scholar]
  212. Takatsuka H, Umeda-Hara C, Umeda M. 211.  2015. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 82:1004–17 [Google Scholar]
  213. Takizawa T, Meaburn KJ, Misteli T. 212.  2008. The meaning of gene positioning. Cell 135:9–13 [Google Scholar]
  214. Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I. 213.  2010. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22:4084–97 [Google Scholar]
  215. Tamura K, Hara-Nishimura I. 214.  2011. Involvement of the nuclear pore complex in morphology of the plant nucleus. Nucleus 2:168–72 [Google Scholar]
  216. Tamura K, Hara-Nishimura I. 215.  2014. Functional insights of nucleocytoplasmic transport in plants. Front. Plant Sci. 5:118 [Google Scholar]
  217. Tamura K, Iwabuchi K, Fukao Y, Kondo M, Okamoto K. 216.  et al. 2013. Myosin XI-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Curr. Biol. 23:1–6 [Google Scholar]
  218. Tiang CL, He Y, Pawlowski WP. 217.  2012. Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol 158:26–34 [Google Scholar]
  219. Timmers ACJ, Auriac M-C, Truchet G. 218.  1999. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–28 [Google Scholar]
  220. Tomita K, Cooper JP. 219.  2006. The meiotic chromosomal bouquet: SUN collects flowers. Cell 125:19–21 [Google Scholar]
  221. Tran EJ, Wente SR. 220.  2006. Dynamic nuclear pore complexes: life on the edge. Cell 125:1041–53 [Google Scholar]
  222. Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D. 221.  2004. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–98 [Google Scholar]
  223. Van Damme D, Geelen D. 222.  2008. Demarcation of the cortical division zone in dividing plant cells. Cell Biol. Int. 32:178–87 [Google Scholar]
  224. van Der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ. 223.  1999. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–14 [Google Scholar]
  225. Varas J, Graumann K, Osman K, Pradillo M, Evans DE. 224.  et al. 2015. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J 81:329–46 [Google Scholar]
  226. Wada M, Kong SG. 225.  2011. Analysis of chloroplast movement and relocation in Arabidopsis. Methods Mol. Biol. 774:87–102 [Google Scholar]
  227. Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD, Mattaj IW. 226.  2001. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J 20:5703–14 [Google Scholar]
  228. Wang C, Liu C, Roqueiro D, Grimm D, Schwab R. 227.  et al. 2015. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–56 [Google Scholar]
  229. Wang H, Dittmer TA, Richards EJ. 228.  2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol 13:200 [Google Scholar]
  230. Weimer AK, Nowack MK, Bouyer D, Zhao X, Harashima H. 229.  et al. 2012. RETINOBLASTOMA RELATED1 regulates asymmetric cell divisions in Arabidopsis. Plant Cell 24:4083–95 [Google Scholar]
  231. Wente SR.230.  2000. Gatekeepers of the nucleus. Science 288:1374–77 [Google Scholar]
  232. Wente SR, Rout MP. 231.  2010. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2:a000562 [Google Scholar]
  233. Wiermer M, Palma K, Zhang Y, Li X. 232.  2007. Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cell Microbiol 9:1880–90 [Google Scholar]
  234. Wilson KL, Dawson SC. 233.  2011. Functional evolution of nuclear structure. J. Cell Biol. 195:171–81 [Google Scholar]
  235. Wu CL, Leeuw T, Leberer E, Thomas DY, Whiteway M. 234.  1998. Cell cycle- and Cln2p-Cdc28p-dependent phosphorylation of the yeast Ste20p protein kinase. J. Biol. Chem. 273:28107–15 [Google Scholar]
  236. Xu XM, Meulia T, Meier I. 235.  2007. Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr. Biol. 17:1157–63 [Google Scholar]
  237. Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S. 236.  et al. 2007. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19:1537–48 [Google Scholar]
  238. Yang L, Guan TL, Gerace L. 237.  1997. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137:1199–210 [Google Scholar]
  239. Ye Q, Callebaut I, Pezhman A, Courvalin JC, Worman HJ. 238.  1997. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272:14983–89 [Google Scholar]
  240. Zhang Y, Li X. 239.  2005. A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17:1306–16 [Google Scholar]
  241. Zhao Q, Brkljacic J, Meier I. 240.  2008. Two distinct interacting classes of nuclear envelope-associated coiled-coil proteins are required for the tissue specific nuclear envelope targeting of Arabidopsis RanGAP. Plant Cell 20:1639–51 [Google Scholar]
  242. Zhao Q, Meier I. 241.  2011. Identification and characterization of the Arabidopsis FG-repeat nucleoporin Nup62. Plant Signal. Behav. 6:330–34 [Google Scholar]
  243. Zhao W, Guan C, Feng J, Liang Y, Zhan N. 242.  et al. 2016. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein. J. Integr. Plant Biol. 58:669–78 [Google Scholar]
  244. Zhou X, Graumann K, Evans DE, Meier I. 243.  2012. Novel plant KASH-SUN bridges are involved in RanGAP anchoring and nuclear shape determination. J. Cell Biol. 196:203–11 [Google Scholar]
  245. Zhou X, Graumann K, Wirthmueller L, Jones JDG, Meier I. 244.  2014. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J. Cell Biol. 205:677–92 [Google Scholar]
  246. Zhou X, Groves NR, Meier I. 245.  2015. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus 6:144–53 [Google Scholar]
  247. Zhou X, Groves NR, Meier I. 246.  2015. SUN anchors pollen WIP–WIT complexes at the vegetative nuclear envelope and is necessary for pollen tube targeting and fertility. J. Exp. Bot. 66:7299–307 [Google Scholar]
  248. Zhou X, Meier I. 247.  2013. How plants LINC the SUN to KASH. Nucleus 4:206–15 [Google Scholar]
  249. Zhou X, Meier I. 248.  2014. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. PNAS 111:11900–5 [Google Scholar]
  250. Zhu D, Rosa S, Dean C. 249.  2015. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J. Mol. Biol. 427:659–69 [Google Scholar]
  251. Zhu L, Brangwynne CP. 250.  2015. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol. 34:23–30 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error