Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome , and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alric J. 1.  2014. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions. Biochim. Biophys. Acta 1837:825–34 [Google Scholar]
  2. Appel J, Schulz R. 2.  1998. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising?. J. Photochem. Photobiol. B 47:1–11 [Google Scholar]
  3. Armbruster U, Ruehle T, Kreller R, Strotbek C, Zuehlke J. 3.  et al. 2013. The PHOTOSYNTHESIS AFFECTED MUTANT68-LIKE protein evolved from a PSII assembly factor to mediate assembly of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell 25:3926–43 [Google Scholar]
  4. Armbruster U, Zuehlke J, Rengstl B, Kreller R, Makarenko E. 4.  et al. 2010. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell 22:3439–60 [Google Scholar]
  5. Arteni AA, Zhang P, Battchikova N, Ogawa T, Aro E-M, Boekema EJ. 5.  2006. Structural characterization of NDH-1 complexes of Thermosynechococcus elongatus by single particle electron microscopy. Biochim. Biophys. Acta 1757:1469–75 [Google Scholar]
  6. Baltz A, Dang KV, Beyly A, Auroy P, Richaud P. 6.  et al. 2014. Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol. 165:1344–52 [Google Scholar]
  7. Bandeiras TM, Salgueiroa CA, Huber H, Gomes CM, Teixeira M. 7.  2003. The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. Biochim. Biophys. Acta 155713–19
  8. Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. 8.  2013. Crystal structure of the entire respiratory complex I. Nature 494:443–48 [Google Scholar]
  9. Battchikova N, Eisenhut M, Aro E-M. 9.  2011. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim. Biophys. Acta 1807:935–44 [Google Scholar]
  10. Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, Aro E-M. 10.  2010. Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J. Proteome Res. 9:5896–912 [Google Scholar]
  11. Battchikova N, Wei L, Du L, Bersanini L, Aro E-M, Ma W. 11.  2011. Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J. Biol. Chem. 286:36992–7001 [Google Scholar]
  12. Bazil JN, Pannala VR, Dash RK, Beard DA. 12.  2014. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase. Free Radic. Biol. Med. 77:121–29 [Google Scholar]
  13. Bennoun P. 13.  1982. Evidence for a respiratory chain in the chloroplast. PNAS 79:4352–56 [Google Scholar]
  14. Bernat G, Appel J, Ogawa T, Roegner M. 14.  2011. Distinct roles of multiple NDH-1 complexes in the cyanobacterial electron transport network as revealed by kinetic analysis of P700+ reduction in various ndh-deficient mutants of Synechocystis sp. strain PCC6803. J. Bacteriol. 193:292–95 [Google Scholar]
  15. Birungi M, Folea M, Battchikova N, Xu M, Mi H. 15.  et al. 2010. Possibilities of subunit localization with fluorescent protein tags and electron microscopy exemplified by a cyanobacterial NDH-1 study. Biochim. Biophys. Acta 1797:1681–86 [Google Scholar]
  16. Blazier JC, Guisinger MM, Jansen RK. 16.  2011. Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol. Biol. 76:263–72 [Google Scholar]
  17. Bohm R, Sauter M, Bock A. 17.  1990. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol. Microbiol. 4:231–43 [Google Scholar]
  18. Braukmann TWA, Kuzmina M, Stefanovic S. 18.  2009. Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr. Genet. 55:323–37 [Google Scholar]
  19. Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ. 19.  1998. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J. 17:868–76 [Google Scholar]
  20. Casano LM, Martin M, Sabater B. 20.  2001. Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiol. 125:1450–58 [Google Scholar]
  21. Cleland RE, Bendall DS. 21.  1992. Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth. Res. 34:409–18 [Google Scholar]
  22. Corneille S, Cournac L, Guedeney G, Havaux M, Peltier G. 22.  1998. Reduction of the plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts. Characterization of a NAD(P)H-plastoquinone oxidoreductase activity. Biochim. Biophys. Acta 1363:59–69 [Google Scholar]
  23. Cournac L, Guedeney G, Peltier G, Vignais PM. 23.  2004. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J. Bacteriol. 186:1737–46 [Google Scholar]
  24. Cournac L, Mus F, Bernard L, Guedeney G, Vignais P, Peltier G. 24.  2002. Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analyzed by light-induced gas exchange transients. Int. J. Hydrogen Energy 27:1229–37 [Google Scholar]
  25. Cournac L, Redding K, Ravenel J, Rumeau D, Josse E-M. 25.  et al. 2000. Electron flow between photosystem–II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J. Biol. Chem. 275:17256–62 [Google Scholar]
  26. Courteille A, Vesa S, Sanz-Barrio R, Cazale A-C, Becuwe-Linka N. 26.  et al. 2013. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol. 161:508–20 [Google Scholar]
  27. Dai H, Zhang L, Zhang J, Mi H, Ogawa T, Ma W. 27.  2013. Identification of a cyanobacterial CRR6 protein, Slr1097, required for efficient assembly of NDH-1 complexes in Synechocystis sp. PCC 6803. Plant J. 75:858–66 [Google Scholar]
  28. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Nemann DS. 28.  et al. 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–85 [Google Scholar]
  29. Desplats C, Beyly A, Cuine S, Bernard L, Cournac L, Peltier G. 29.  2007. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase. FEBS Lett. 581:4017–22 [Google Scholar]
  30. Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G. 30.  2009. Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J. Biol. Chem. 284:4148–57 [Google Scholar]
  31. Efremov RG, Sazanov LA. 31.  2012. The coupling mechanism of respiratory complex I—a structural and evolutionary perspective. Biochim. Biophys. Acta 1817:1785–95 [Google Scholar]
  32. Endo T, Mi HL, Shikanai T, Asada K. 32.  1997. Donation of electrons to plastoquinone by NAD(P)H dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. Plant Cell Physiol. 38:1272–77 [Google Scholar]
  33. Endo T, Shikanai T, Takabayashi A, Asada K, Sato F. 33.  1999. The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett. 457:5–8 [Google Scholar]
  34. Esquivel MG, Amaro HM, Pinto TS, Fevereiro PS, Xavier Malcata F. 34.  2011. Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol. 29:595–600 [Google Scholar]
  35. Fan X, Zhang J, Li W, Peng L. 35.  2015. The NdhV subunit is required to stabilize the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant J. 82:221–31 [Google Scholar]
  36. Fang J, Beattie DS. 36.  2002. Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochemistry 41:3065–72 [Google Scholar]
  37. Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH. 37.  et al. 2015. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. Plant Cell 27:1730–41 [Google Scholar]
  38. Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M. 38.  et al. 2005. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res. 33:5991–99 [Google Scholar]
  39. Feng Y, Li WF, Li J, Wang JW, Ge JP. 39.  et al. 2012. Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491:478–82 [Google Scholar]
  40. 40.  Deleted in proof
  41. Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. 41.  2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63:1637–61 [Google Scholar]
  42. Friedrich T. 42.  2001. Complex I: a chimaera of a redox and conformation-driven proton pump?. J. Bioenerg. Biomembr. 33:169–77 [Google Scholar]
  43. Friedrich T, Scheide D. 43.  2000. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett. 479:1–5 [Google Scholar]
  44. Friedrich T, Steinmuller K, Weiss H. 44.  1995. The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett. 367:107–11 [Google Scholar]
  45. Friedrich T, Weiss H. 45.  1997. Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J. Theor. Biol. 187:529–40 [Google Scholar]
  46. Garcia-Andrade J, Ramirez V, Lopez A, Vera P. 46.  2013. Mediated plastid RNA editing in plant immunity. PLOS Pathog. 9:e1003713 [Google Scholar]
  47. Geisler DA, Broselid C, Hederstedt L, Rasmusson AG. 47.  2007. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J. Biol. Chem. 282:28455–64 [Google Scholar]
  48. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J. 48.  2014. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J. Biol. Chem. 289:1930–37 [Google Scholar]
  49. Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T. 49.  2003. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J. 36:541–49 [Google Scholar]
  50. He Z, Zheng F, Wu Y, Li Q, Lv J. 50.  et al. 2015. NDH-1L interacts with ferredoxin via the subunit NdhS in Thermosynechococcus elongatus. Photosynth. Res. 126:341–49 [Google Scholar]
  51. Heber UW, Santarius KA. 51.  1965. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim. Biophys. Acta 109:390–408 [Google Scholar]
  52. Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL. 52.  et al. 2014. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol. Microbiol. 91:950–64 [Google Scholar]
  53. Hernandez-Prieto MA, Schoen V, Georg J, Barreira L, Varela J. 53.  et al. 2012. Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 2:1475–95 [Google Scholar]
  54. Herranen M, Battchikova N, Zhang PP, Graf A, Sirpio S. 54.  et al. 2004. Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol. 134:470–81 [Google Scholar]
  55. Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M. 55.  et al. 2013. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49:511–23 [Google Scholar]
  56. Hopkinson BM, Young JN, Tansik AL, Binder BJ. 56.  2014. The minimal CO2-concentrating mechanism of Prochlorococcus spp. MED4 is effective and efficient. Plant Physiol. 166:2205–U1519 [Google Scholar]
  57. Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L. 57.  et al. 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol. 123:1337–49 [Google Scholar]
  58. Houille-Vernes L, Rappaport F, Wollman F-A, Alric J, Johnson X. 58.  2011. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. PNAS 108:20820–25 [Google Scholar]
  59. Howitt CA, Udall PK, Vermaas WF. 59.  1999. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration. J. Bacteriol. 181:3994–4003 [Google Scholar]
  60. Hu P, Lv J, Fu P, Mi H. 60.  2013. Enzymatic characterization of an active NDH complex from Thermosynechococcus elongatus. FEBS Lett. 587:2340–45 [Google Scholar]
  61. Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K. 61.  2014. Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J. Biol. Chem. 289:20150–57 [Google Scholar]
  62. Ifuku K, Endo T, Shikanai T, Aro E-M. 62.  2011. Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol. 52:1560–68 [Google Scholar]
  63. Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F. 63.  2007. Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol. 145:668–79 [Google Scholar]
  64. Ishikawa N, Takabayashi A, Ishida S, Hano Y, Endo T, Sato F. 64.  2008. NDF6: a thylakoid protein specific to terrestrial plants is essential for activity of chloroplastic NAD(P)H dehydrogenase in Arabidopsis. Plant Cell Physiol. 49:1066–73 [Google Scholar]
  65. Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B. 65.  et al. 2008. A type II NAD(P) H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. PNAS 105:20546–51 [Google Scholar]
  66. Joet T, Cournac L, Horvath EM, Medgyesy P, Peltier G. 66.  2001. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol. 125:1919–29 [Google Scholar]
  67. Johnson GN. 67.  2011. Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta 1807:384–89 [Google Scholar]
  68. Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P. 68.  et al. 2014. Proton Gradient Regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165:438–52 [Google Scholar]
  69. Klughammer B, Sultemeyer D, Badger MR, Price GD. 69.  1999. The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol. Microbiol. 32:1305–15 [Google Scholar]
  70. Kouril R, Strouhal O, Nosek L, Lenobel R, Chamrad I. 70.  et al. 2014. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77:568–76 [Google Scholar]
  71. Lascano HR, Casano LM, Martin M, Sabater B. 71.  2003. The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol. 132:256–62 [Google Scholar]
  72. Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM. 72.  2010. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–33 [Google Scholar]
  73. Livingston AK, Kanazawa A, Cruz JA, Kramer DM. 73.  2010. Regulation of cyclic electron flow in C3 plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell Environ. 33:1779–88 [Google Scholar]
  74. Maeda S, Badger MR, Price GD. 74.  2002. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol. Microbiol. 43:425–35 [Google Scholar]
  75. Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA. 75.  et al. 2008. Complex chloroplast RNA metabolism: just debugging the genetic programme?. BMC Biol. 6:36 [Google Scholar]
  76. Marreiros BC, Batista AP, Duarte AMS, Pereira MM. 76.  2013. A missing link between complex I and group 4 membrane-bound NiFe hydrogenases. Biochim. Biophys. Acta 1827:198–209 [Google Scholar]
  77. Martin M, Funk HT, Serrot PH, Poltnigg P, Sabater B. 77.  2009. Functional characterization of the thylakoid Ndh complex phosphorylation by site-directed mutations in the ndhF gene. Biochim. Biophys. Acta 1787:920–28 [Google Scholar]
  78. Mathiesen C, Hagerhall C. 78.  2002. Transmembrane topology of the NuoL, M and N subunits of NADH: quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta 1556:121–32 [Google Scholar]
  79. Mathiesen C, Hagerhall C. 79.  2003. The “antiporter module” of respiratory chain complex I includes the MrpC/NuoK subunit—a revision of the modular evolution scheme. FEBS Lett. 549:7–13 [Google Scholar]
  80. Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N. 80.  et al. 1987. Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol. Gen. Genet. 210:385–93 [Google Scholar]
  81. Melis A, Happe T. 81.  2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127:740–48 [Google Scholar]
  82. Melo AM, Bandeiras TM, Teixeira M. 82.  2004. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol. Mol. Biol. Rev. 68:603–16 [Google Scholar]
  83. Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U. 83.  et al. 2003. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol. 133:642–52 [Google Scholar]
  84. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT. 84.  2012. Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817:851–62 [Google Scholar]
  85. Moparthi VK, Kumar B, Mathiesen C, Hagerhall C. 85.  2011. Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochim. Biophys. Acta 1807:427–36 [Google Scholar]
  86. Munekage Y, Hashimoto M, Miyaka C, Tomizawa KI, Endo T. 86.  et al. 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–82 [Google Scholar]
  87. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. 87.  2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–71 [Google Scholar]
  88. Mus F, Cournac L, Cardettini V, Caruana A, Peltier G. 88.  2005. Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1708:322–32 [Google Scholar]
  89. Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Ewollman F-A. 89.  2015. The plastid terminal oxidase: Its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant Biol. 66:49–74 [Google Scholar]
  90. Neuhaus HE, Emes MJ. 90.  2000. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:111–40 [Google Scholar]
  91. Neyland R, Urbatsch LE. 91.  1996. The ndhF chloroplast gene detected in all vascular plant divisions. Planta 200:273–77 [Google Scholar]
  92. Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S. 92.  et al. 2007. ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res. 35:D863–69 [Google Scholar]
  93. Ogawa T. 93.  1991. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. PNAS 88:4275–79 [Google Scholar]
  94. Ohkawa H, Pakrasi HB, Ogawa T. 94.  2000. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J. Biol. Chem. 275:31630–34 [Google Scholar]
  95. Ohkawa H, Sonoda M, Shibata M, Ogawa T. 95.  2001. Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183:4938–39 [Google Scholar]
  96. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T. 96.  et al. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–74 [Google Scholar]
  97. Ohyama K, Kohchi T, Sano T, Yamada Y. 97.  1988. Newly identified groups of genes in chloroplasts. Trends Biochem. Sci. 13:19–22 [Google Scholar]
  98. Peltier G, Cournac L. 98.  2002. Chlororespiration. Annu. Rev. Plant Biol. 53:523–50 [Google Scholar]
  99. Peltier G, Tolleter D, Billon E, Cournac L. 99.  2010. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 106:19–31 [Google Scholar]
  100. Peng L, Cai W, Shikanai T. 100.  2010. Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis. Plant J. 63:203–11 [Google Scholar]
  101. Peng L, Fukao Y, Fujiwara M, Shikanai T. 101.  2012. Multistep assembly of chloroplast NADH dehydrogenase-like subcomplex A requires several nucleus-encoded proteins, including CRR41 and CRR42, in Arabidopsis. Plant Cell 24:202–14 [Google Scholar]
  102. Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T. 102.  2009. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–40 [Google Scholar]
  103. Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T. 103.  2011. A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLOS Biol. 9:e1001040 [Google Scholar]
  104. Peng L, Shikanai T. 104.  2011. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol. 155:1629–39 [Google Scholar]
  105. Peng L, Shimizu H, Shikanai T. 105.  2008. The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J. Biol. Chem. 283:34873–79 [Google Scholar]
  106. Peng L, Yamamoto H, Shikanai T. 106.  2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim. Biophys. Acta 1807:945–53 [Google Scholar]
  107. Peredo EL, King UM, Les DH. 107.  2013. The plastid genome of Najas flexilis: Adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. PLOS ONE 8:e68591 [Google Scholar]
  108. Piller LE, Besagni C, Ksas B, Rumeau D, Brehelin C. 108.  et al. 2011. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. PNAS 108:14354–59 [Google Scholar]
  109. Piller LE, Glauser G, Kessler F, Besagni C. 109.  2014. Role of plastoglobules in metabolite repair in the tocopherol redox cycle. Front. Plant Sci. 5:298 [Google Scholar]
  110. Price GD, Badger MR, Woodger FJ, Long BM. 110.  2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59:1441–61 [Google Scholar]
  111. Queval G, Foyer CH. 111.  2012. Redox regulation of photosynthetic gene expression. Philos. Trans. R. Soc. B 367:3475–85 [Google Scholar]
  112. Ravenel J, Peltier G, Havaux M. 112.  1994. The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta 193:251–59 [Google Scholar]
  113. Rumeau D, Becuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G. 113.  2005. New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17:219–32 [Google Scholar]
  114. Rumeau D, Peltier G, Cournac L. 114.  2007. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ. 30:1041–51 [Google Scholar]
  115. Sazanov LA, Burrows PA, Nixon PJ. 115.  1998. The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. PNAS 95:1319–24 [Google Scholar]
  116. Scherer S. 116.  1990. Do photosynthetic and respiratory electron transport chains share redox proteins. Trends Biochem. Sci. 15:458–62 [Google Scholar]
  117. Schwarz D, Schubert H, Georg J, Hess WR, Hagemann M. 117.  2013. The gene sml0013 of Synechocystis species strain PCC 6803 encodes for a novel subunit of the NAD(P)H oxidoreductase or complex I that is ubiquitously distributed among cyanobacteria. Plant Physiol. 163:1191–202 [Google Scholar]
  118. Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S. 118.  et al. 2001. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. PNAS 98:11789–94 [Google Scholar]
  119. Shikanai T. 119.  2015. RNA editing in plants: machinery and flexibility of site recognition. Biochim. Biophys. Acta 1847:779–85 [Google Scholar]
  120. Shikanai T, Aro E-M. 120.  2016. Evolution of photosynthetic NDH-1: structure and physiological function. Advances in Photosynthesis and Respiration Govindjee, TD Sharkey Dordrecht, Neth: Springer. In press [Google Scholar]
  121. Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A. 121.  1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. PNAS 95:9705–9 [Google Scholar]
  122. Shimizu H, Shikanai T. 122.  2007. Dihydrodipicolinate reductase-like protein, CRR1, is essential for chloroplast NAD(P)H dehydrogenase in Arabidopsis. Plant J. 52:539–47 [Google Scholar]
  123. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N. 123.  et al. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:2043–49 [Google Scholar]
  124. Sirpioe S, Allahverdiyeva Y, Holmstrom M, Khrouchtchova A, Haldrup A. 124.  et al. 2009. Novel nuclear-encoded subunits of the chloroplast NAD(P)H dehydrogenase complex. J. Biol. Chem. 284:905–12 [Google Scholar]
  125. Stefanovic S, Olmstead RG. 125.  2005. Down the slippery slope: plastid genome evolution in Convolvulaceae. J. Mol. Evol. 61:292–305 [Google Scholar]
  126. Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM. 126.  2015. Activation of cyclic electron flow by hydrogen peroxide in vivo. PNAS 112:5539–44 [Google Scholar]
  127. Suorsa M, Sirpio S, Paakkarinen V, Kumari N, Holmstrom M, Aro E-M. 127.  2010. Two proteins homologous to PsbQ are novel subunits of the chloroplast NAD(P)H dehydrogenase. Plant Cell Physiol. 51:877–83 [Google Scholar]
  128. Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J. 128.  et al. 2009. Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. Plant J. 57:207–19 [Google Scholar]
  129. Takabayashi A, Kishine M, Asada K, Endo T, Sato F. 129.  2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. PNAS 102:16898–903 [Google Scholar]
  130. Takenaka M, Zehrmann A, Verbitskiy D, Haertel B, Brennicke A. 130.  2013. RNA editing in plants and its evolution. Annu. Rev. Genet. 47:335–52 [Google Scholar]
  131. Terashima M, Petroutsos D, Hüdig M, Tolstygina I, Trompelt K. 131.  et al. 2012. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. PNAS 109:17717–22 [Google Scholar]
  132. Terashima M, Specht M, Naumann B, Hippler M. 132.  2010. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol. Cell. Proteom. 9:1514–32 [Google Scholar]
  133. Thomas J-C, Ughy B, Lagoutte B, Ajlani G. 133.  2006. A second isoform of the ferredoxin: NADP oxidoreductase generated by an in-frame initiation of translation. PNAS 103:18368–73 [Google Scholar]
  134. Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I. 134.  et al. 2011. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–30 [Google Scholar]
  135. Turmel M, Gagnon M-C, O'Kelly CJ, Otis C, Lemieux C. 135.  2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol. Biol. Evol. 26:631–48 [Google Scholar]
  136. Ueda M, Kuniyoshi T, Yamamoto H, Sugimoto K, Ishizaki K. 136.  et al. 2012. Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. Plant J. 72:683–93 [Google Scholar]
  137. Vogel RO, Dieteren CEJ, van den Heuvel LPWJ, Willems PHGM, Smeitink JAM. 137.  et al. 2007. Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J. Biol. Chem. 282:7582–90 [Google Scholar]
  138. Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G. 138.  2008. The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol. 146:772–88 [Google Scholar]
  139. Wang C, Yamamoto H, Shikanai T. 139.  2015. Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim. Biophys. Acta 1847:931–38 [Google Scholar]
  140. Wang HL, Postier BL, Burnap RL. 140.  2004. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279:5739–51 [Google Scholar]
  141. Wang Y, Stessman DJ, Spalding MH. 141.  2015. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J. 82:429–48 [Google Scholar]
  142. Wulfhorst H, Franken LE, Wessinghage T, Boekema EJ, Nowaczyk MM. 142.  2014. The 5 kDa protein NdhP is essential for stable NDH-1L assembly in Thermosynechococcus elongatus. PLOS ONE 9:e103584 [Google Scholar]
  143. Xu L, Law SR, Murcha MW, Whelan J, Carrie C. 143.  2013. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC Plant Biol. 13:100 [Google Scholar]
  144. Xu M, Ogawa T, Pakrasi HB, Mi H. 144.  2008. Identification and localization of the CupB protein involved in constitutive CO2 uptake in the cyanobacterium, Synechocystis sp. strain PCC 6803. Plant Cell Physiol. 49:994–97 [Google Scholar]
  145. Yabuta S, Ifuku K, Takabayashi A, Ishihara S, Ido K. 145.  et al. 2010. Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol. 51:866–76 [Google Scholar]
  146. Yamamoto H, Peng L, Fukao Y, Shikanai T. 146.  2011. An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23:1480–93 [Google Scholar]
  147. Yamamoto H, Shikanai T. 147.  2013. In planta mutagenesis of Src homology 3 domain-like fold of NdhS, a ferredoxin-binding subunit of the chloroplast NADH dehydrogenase-like complex in Arabidopsis: a conserved Arg-193 plays a critical role in ferredoxin binding. J. Biol. Chem. 288:36328–37 [Google Scholar]
  148. Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A. 148.  2011. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J. 68:966–76 [Google Scholar]
  149. Zhang PP, Battchikova N, Jansen T, Appel J, Ogawa T, Aro E-M. 149.  2004. Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 16:3326–40 [Google Scholar]
  150. Zhang PP, Battchikova N, Paakkarinen V, Katoh H, Iwai M. 150.  et al. 2005. Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem. J. 390:513–20 [Google Scholar]
  151. Zhao J, Gao F, Zhang J, Ogawa T, Ma W. 151.  2014. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J. Biol. Chem. 289:26669–76 [Google Scholar]
  152. Zhao J, Rong W, Gao F, Ogawa T, Ma W. 152.  2015. Subunit Q is required to stabilize the large complex of NADPH dehydrogenase in Synechocystis sp. strain PCC 6803. Plant Physiol. 168:443–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error