It is increasingly clear that () many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, () the damaged metabolites formed by these reactions can be harmful, and () organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acheson SA, Kirkman HN, Wolfenden R. 1.  1988. Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration. Biochemistry 27:7371–75 [Google Scholar]
  2. Andralojc PJ, Madgwick PJ, Tao Y, Keys A, Ward JL. 2.  et al. 2012. 2-Carboxy-d-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation. Biochem. J. 442:733–42 [Google Scholar]
  3. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. 3.  2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5:593–99 [Google Scholar]
  4. Bessman MJ, Frick DN, O'Handley SF. 4.  1996. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J. Biol. Chem. 271:25059–62 [Google Scholar]
  5. Bracher A, Sharma A, Starling-Windhof A, Hartl FU, Hayer-Hartl M. 5.  2015. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nat. Plants 1:14002 [Google Scholar]
  6. Bradbury LM, Ziemak MJ, El Badawi-Sidhu M, Fiehn O, Hanson AD. 6.  2014. Plant-driven repurposing of the ancient S-adenosylmethionine repair enzyme homocysteine S-methyltransferase. Biochem. J. 463:279–86 [Google Scholar]
  7. Chan CM, Danchin A, Marlière P, Sekowska A. 7.  2014. Paralogous metabolism: S-alkyl-cysteine degradation in Bacillus subtilis. Environ. Microbiol. 16:101–17 [Google Scholar]
  8. Chesters C, Wilding W, Goodall M, Micklefield J. 8.  2012. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes. Angew. Chem. 124:4420–24 [Google Scholar]
  9. Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB. 9.  2014. A pathway for repair of NAD(P)H in plants. J. Biol. Chem. 289:14692–706 [Google Scholar]
  10. Copley SD. 10.  2015. An evolutionary biochemist's perspective on promiscuity. Trends Biochem. Sci. 40:72–78 [Google Scholar]
  11. Creek DJ, Dunn WB, Fiehn O, Griffin JL, Hall RD. 11.  et al. 2014. Metabolite identification: Are you sure? And how do your peers gauge your confidence?. Metabolomics 10:350–53 [Google Scholar]
  12. Creighton TE. 12.  1968. The nonenzymatic preparation in solution of N-(5′-phosphoribosyl) anthranilic acid, an intermediate in tryptophan biosynthesis. J. Biol. Chem. 243:5605–9 [Google Scholar]
  13. D'Ari R, Casadesús J. 13.  1998. Underground metabolism. BioEssays 20:181–86 [Google Scholar]
  14. de Lorenzo V. 14.  2014. From the selfish gene to selfish metabolism: revisiting the central dogma. BioEssays 36:226–35A thoughtfully provocative article that argues that, largely because of metabolite damage reactions, metabolism governs genes rather than the other way around. [Google Scholar]
  15. de Lorenzo V, Sekowska A, Danchin A. 15.  2015. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol. Rev. 39:96–119 [Google Scholar]
  16. de Souza RF, Aravind L. 16.  2012. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol. Biosyst. 8:1661–77 [Google Scholar]
  17. Downs DM, Ernst DC. 17.  2015. From microbiology to cancer biology: The Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol. Microbiol. 96:211–19A short review on the hydrolysis of reactive nitrogen species by RidA proteins that illustrates the concept of metabolite damage preemption. [Google Scholar]
  18. Engqvist M, Drincovich MF, Flügge UI, Maurino VG. 18.  2009. Two d-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. J. Biol. Chem. 284:25026–37 [Google Scholar]
  19. Eugeni Piller L, Glauser G, Kessler F, Besagni C. 19.  2014. Role of plastoglobules in metabolite repair in the tocopherol redox cycle. Front. Plant Sci. 5:298 [Google Scholar]
  20. Everse J, Zoll EC, Kahan L, Kaplan NO. 20.  1971. Addition products of diphosphopyridine nucleotides with substrates of pyridine nucleotide-linked dehydrogenases. Bioorg. Chem. 1:207–33 [Google Scholar]
  21. Farmer EE, Mueller MJ. 21.  2013. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64:429–50 [Google Scholar]
  22. Feist AM, Palsson BO. 22.  2008. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26:659–67 [Google Scholar]
  23. Fiehn O, Barupal DK, Kind T. 23.  2011. Extending biochemical databases by metabolomic surveys. J. Biol. Chem. 286:23637–43A one-stop reference on the many unidentified compounds in metabolomics and their relationship to enzyme promiscuity, pathways, and databases. [Google Scholar]
  24. Fischer M, Römisch W, Saller S, Illarionov B, Richter G. 24.  et al. 2004. Evolution of vitamin B2 biosynthesis: structural and functional similarity between pyrimidine deaminases of eubacterial and plant origin. J. Biol. Chem. 279:36299–308 [Google Scholar]
  25. Flaks JG. 25.  1963. 5-Phosphoribosylpyrophosphate. Methods Enzymol. 6:473–79 [Google Scholar]
  26. Foyer CH, Noctor G. 26.  2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155:2–18 [Google Scholar]
  27. Frelin O, Huang L, Hasnain G, Jeffryes JG, Ziemak MJ. 27.  et al. 2015. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem. J. 466:137–45Describes a novel protein family that hydrolyzes riboflavin intermediates in plants and bacteria and provides a cross-kingdom example of directed overflow metabolism. [Google Scholar]
  28. Galperin MY, Moroz OV, Wilson KS, Murzin AG. 28.  2006. House cleaning, a part of good housekeeping. Mol. Microbiol. 59:5–19 [Google Scholar]
  29. Gibson JL, Tabita FR. 29.  1997. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. J. Bacteriol. 179:663–69 [Google Scholar]
  30. Glauser G, Veyrat N, Rochat B, Wolfender JL, Turlings TC. 30.  2013. Ultra-high pressure liquid chromatography–mass spectrometry for plant metabolomics: a systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. J. Chromatogr. A1292151–59 [Google Scholar]
  31. Golubev AG. 31.  2009. How could the Gompertz-Makeham law evolve. J. Theor. Biol. 258:1–17 [Google Scholar]
  32. Golubev AG. 32.  1996. The other side of metabolism: a review. Biochemistry 61:2018–39A must-read classic on nonenzymatic reactions, with an incisively brilliant commentary on why biochemistry has overlooked them. [Google Scholar]
  33. Goyer A, Collakova E, Díaz de la Garza R, Quinlivan EP, Williamson J. 33.  et al. 2005. 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J. Biol. Chem. 280:26137–42 [Google Scholar]
  34. Goyer A, Hasnain G, Frelin O, Ralat MA, Gregory JF III, Hanson AD. 34.  2013. A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism. Biochem. J. 454:533–42 [Google Scholar]
  35. Goyer A, Johnson TL, Olsen LJ, Collakova E, Shachar-Hill Y. 35.  et al. 2004. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem. 279:16947–53 [Google Scholar]
  36. Grimme S. 36.  2013. Towards first principles calculation of electron impact mass spectra of molecules. Angew. Chem. 52:6306–12 [Google Scholar]
  37. Hanson AD, Pribat A, Waller JC, de Crécy-Lagard V. 37.  2009. “Unknown” proteins and “orphan” enzymes: the missing half of the engineering parts list—and how to find it. Biochem. J. 425:1–11 [Google Scholar]
  38. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ. 38.  2005. Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–9 [Google Scholar]
  39. Held KD, Epp ER, Clark EP, Biaglow JE. 39.  1988. Effect of dimethyl fumarate on the radiation sensitivity of mammalian cells in vitro. Radiat. Res. 115:495–502 [Google Scholar]
  40. Henry CS, Broadbelt LJ, Hatzimanikatis V. 40.  2007. Thermodynamics-based metabolic flux analysis. Biophys. J. 92:1792–805 [Google Scholar]
  41. Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V. 41.  2006. Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J. 90:1453–61 [Google Scholar]
  42. Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N. 42.  2015. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. PNAS 112:10050–55 [Google Scholar]
  43. Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C. 43.  et al. 2008. Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol. 147:41–57 [Google Scholar]
  44. Hou BK, Ellis LB, Wackett LP. 44.  2004. Encoding microbial metabolic logic: predicting biodegradation. J. Ind. Microbiol. Biotechnol. 31:261–72 [Google Scholar]
  45. Huang L, Khusnutdinova A, Nocek B, Brown G, Xu X. 45.  et al. 2016. A diverse family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. In press [Google Scholar]
  46. Hüdig M, Maier A, Scherrers I, Seidel L, Jansen EEW. 46.  et al. 2015. Plants possess a cyclic mitochondrial metabolic pathway similar to the mammalian metabolic repair mechanism involving malate dehydrogenase and l-2-hydroxyglutarate dehydrogenase. Plant Cell Physiol. 56:1820–30 [Google Scholar]
  47. Jakubowski H, Guranowski A. 47.  2003. Metabolism of homocysteine-thiolactone in plants. J. Biol. Chem. 278:6765–70 [Google Scholar]
  48. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V. 48.  2008. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95:1487–99 [Google Scholar]
  49. Jeffryes JG, Colestani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD. 49.  et al. 2015. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J. Cheminform. 7:44 [Google Scholar]
  50. Jones ME, Lipmann F. 50.  1960. Chemical and enzymatic synthesis of carbamyl phosphate. PNAS 46:1194–205 [Google Scholar]
  51. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 51.  2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:D199–205 [Google Scholar]
  52. Keller MA, Piedrafita G, Ralser M. 52.  2015. The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34:153–61 [Google Scholar]
  53. Kelly R, Kidd R. 53.  2015. ChemSpider—a tool for natural products research. Nat. Prod. Rep. 32:1163–64 [Google Scholar]
  54. Khersonsky O, Tawfik DS. 54.  2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505A landmark review establishing enzyme promiscuity as the norm, not the exception, and explaining its mechanistic basis and evolutionary implications. [Google Scholar]
  55. Kind T, Fiehn O. 55.  2006. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinform. 7:234 [Google Scholar]
  56. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. 56.  2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10:755–58 [Google Scholar]
  57. Kind T, Okazaki Y, Saito K, Fiehn O. 57.  2014. LipidBlast templates as flexible tools for creating new in-silico tandem mass spectral libraries. Anal. Chem. 86:11024–27 [Google Scholar]
  58. Klopman G, Dimayuga M, Talafous J. 58.  1994. META. 1. A program for the evaluation of metabolic transformation of chemicals. J. Chem. Inf. Comput. Sci. 34:1320–25 [Google Scholar]
  59. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P. 59.  2012. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 70:39–50 [Google Scholar]
  60. Kummel A, Panke S, Heinemann M. 60.  2006. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2:2006.0034 [Google Scholar]
  61. Kuraishi S, Nito N. 61.  1980. The maximum leaf surface temperatures of the higher plants observed in the inland sea area. Bot. Mag. 93:209–20 [Google Scholar]
  62. Lambrecht JA, Schmitz GE, Downs DM. 62.  2013. RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. mBio 4:e00033–13 [Google Scholar]
  63. Le DT, Tarrago L, Watanabe Y, Kaya A, Lee BC. 63.  et al. 2013. Diversity of plant methionine sulfoxide reductases B and evolution of a form specific for free methionine sulfoxide. PLOS ONE 8:e65637 [Google Scholar]
  64. Linster CL, Van Schaftingen E, Hanson AD. 64.  2013. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9:72–80 [Google Scholar]
  65. Lutz S, Lichter J, Liu L. 65.  2007. Exploiting temperature-dependent substrate promiscuity for nucleoside analog activation by thymidine kinase from Thermotoga maritima. J. Am. Chem. Soc. 129:8714–15 [Google Scholar]
  66. Magalhães ML, Argyrou A, Cahill SM, Blanchard JS. 66.  2008. Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis. Biochemistry 47:6499–507 [Google Scholar]
  67. Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL. 67.  2011. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286:41246–52A foundational paper in metabolite repair that combines biochemistry and comparative genomics to identify the repair enzymes for NAD(P)H hydrates. [Google Scholar]
  68. Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M. 68.  et al. 2012. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol. 53:1106–16 [Google Scholar]
  69. Meinhart JO, Chaykin S, Krebs EG. 69.  1956. Enzymatic conversion of a reduced diphosphopyridine nucleotide derivative to reduced diphosphopyridine nucleotide. J. Biol. Chem. 220:821–29 [Google Scholar]
  70. Negelein E. 70.  1957. Synthesis, determination, analysis, and properties of 1,3-diphosphoglyceric acid. Methods Enzymol. 3:216–20 [Google Scholar]
  71. Niehaus TD, Gerdes S, Hodge-Hanson K, Zhukov A, Cooper AJ. 71.  et al. 2015. Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genom. 16:382 [Google Scholar]
  72. Niehaus TD, Nguyen TN, Gidda SK, ElBadawi-Sidhu M, Lambrecht JA. 72.  et al. 2014. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. Plant Cell 26:3010–22 [Google Scholar]
  73. Niehaus TD, Richardson LG, Gidda SK, ElBadawi-Sidhu M, Meissen JK. 73.  et al. 2014. Plants utilize a highly conserved system for repair of NADH and NADPH hydrates. Plant Physiol. 165:52–61 [Google Scholar]
  74. Niehaus TD, Thamm AM, de Crécy-Lagard V, Hanson AD. 74.  2015. Proteins of unknown biochemical function: a persistent problem and a roadmap to help overcome it. Plant Physiol. 1691436–42 [Google Scholar]
  75. Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei Á. 75.  et al. 2014. Network-level architecture and the evolutionary potential of underground metabolism. PNAS 111:11762–67 [Google Scholar]
  76. Nowicki S, Gottlieb E. 76.  2015. Oncometabolites: tailoring our genes. FEBS J. 282:2796–805 [Google Scholar]
  77. O'Brien PJ, Herschlag D. 77.  1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6:R91–105 [Google Scholar]
  78. Ogawa T, Ueda Y, Yoshimura K, Shigeoka S. 78.  2005. Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana. J. Biol. Chem. 280:25277–83 [Google Scholar]
  79. Oh M, Yamada T, Hattori M, Goto S, Kanehisa M. 79.  2007. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J. Chem. Inf. Model. 47:1702–12 [Google Scholar]
  80. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ. 80.  et al. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42:D206–14 [Google Scholar]
  81. Parks LW, Schlenk F. 81.  1958. The stability and hydrolysis of S-adenosylmethionine; isolation of S-ribosylmethionine. J. Biol. Chem. 230:295–305 [Google Scholar]
  82. Pearce FG. 82.  2006. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399:525–34 [Google Scholar]
  83. Pedruzzi I, Rivoire C, Auchincloss AH, Coudert E, Keller G. 83.  et al. 2015. HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res. 43:D1064–70 [Google Scholar]
  84. Poux S, Magrane M, Arighi CN, Bridge A, O'Donovan C. 84.  et al. 2014. Expert curation in UniProtKB: a case study on dealing with conflicting and erroneous data. Database 2014:bau016 [Google Scholar]
  85. Reaves ML, Young BD, Hosios AM, Xu YF, Rabinowitz JD. 85.  2013. Pyrimidine homeostasis is accomplished by directed overflow metabolism. Nature 500:237–41The foundational paper for the concept of directed overflow metabolism, which it introduces in relation to bacterial pyrimidine biosynthesis. [Google Scholar]
  86. Richard JP. 86.  1991. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance. Biochemistry 30:4581–85 [Google Scholar]
  87. Ridder L, van der Hooft JJ, Verhoeven S. 87.  2014. Automatic compound annotation from mass spectrometry data using MAGMa. Mass Spectrom. 3:S0033 [Google Scholar]
  88. Roje S, Janave MT, Ziemak MJ, Hanson AD. 88.  2002. Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants. J. Biol. Chem. 277:42748–54 [Google Scholar]
  89. Rudd KE. 89.  1998. Linkage map of Escherichia coli K-12, edition 10: the physical map. Microbiol. Mol. Biol. Rev. 62:985–1019 [Google Scholar]
  90. Sandoval FJ, Roje S. 90.  2005. An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J. Biol. Chem. 280:38337–45 [Google Scholar]
  91. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. 91.  2009. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLOS Comput. Biol. 5:e1000605 [Google Scholar]
  92. Seaver SM, Gerdes S, Frelin O, Lerma-Ortiz C, Bradbury LM. 92.  et al. 2014. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. PNAS 111:9645–50 [Google Scholar]
  93. Semchyshyn HM. 93.  2014. Reactive carbonyl species in vivo: generation and dual biological effects. Sci. World J. 2014:417842 [Google Scholar]
  94. Singla-Pareek SL, Reddy MK, Sopory SK. 94.  2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. PNAS 100:14672–77 [Google Scholar]
  95. Suhre K. 95.  2007. Inference of gene function based on gene fusion events: the Rosetta-stone method. Methods Mol. Biol. 396:31–41 [Google Scholar]
  96. Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E. 96.  et al. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51:236–48 [Google Scholar]
  97. Sun CX, Li MQ, Gao XX, Liu LN, Wu XF, Zhou JH. 97.  2016. Metabolic response of maize plants to multi-factorial abiotic stresses. Plant. Biol. 18Suppl. S1120–29 [Google Scholar]
  98. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B. 98.  et al. 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12:523–26 [Google Scholar]
  99. 99. UniProt Consort 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42:D191–98 [Google Scholar]
  100. Van Schaftingen E, Rzem R, Marbaix A, Collard F, Veiga-da-Cunha M, Linster CL. 100.  2013. Metabolite proofreading, a neglected aspect of intermediary metabolism. J. Inherit. Metab. Dis. 36:427–34 [Google Scholar]
  101. Van Schaftingen E, Rzem R, Veiga-da-Cunha M. 101.  2009. l-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J. Inherit. Metab. Dis. 32:135–42 [Google Scholar]
  102. Van Schaftingen E, Veiga-da-Cunha M, Linster CL. 102.  2015. Enzyme complexity in intermediary metabolism. J. Inherit. Metab. Dis. 38:721–27 [Google Scholar]
  103. Vinci CR, Clarke SG. 103.  2010. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 285:20526–31 [Google Scholar]
  104. Vinci CR, Clarke SG. 104.  2010. Yeast, plants, worms, and flies use a methyltransferase to metabolize age-damaged (R,S)-AdoMet, but what do mammals do?. Rejuvenation Res. 13:362–64 [Google Scholar]
  105. Wang Q, Xia J, Guallar V, Krilov G, Kantrowitz ER. 105.  2008. Mechanism of thermal decomposition of carbamoyl phosphate and its stabilization by aspartate and ornithine transcarbamoylases. PNAS 105:16918–23 [Google Scholar]
  106. Wang T, Mori H, Zhang C, Kurokawa K, Xing XH, Yamada T. 106.  2015. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe. BMC Bioinform. 16:96 [Google Scholar]
  107. Wang Y, Kora G, Bowen BP, Pan C. 107.  2014. MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Anal. Chem. 86:9496–503 [Google Scholar]
  108. Webb ME, Smith AG. 108.  2011. Pantothenate biosynthesis in higher plants. Adv. Bot. Res. 58:203–55 [Google Scholar]
  109. Winterbourn CC, Hampton MB. 109.  2008. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45:549–61 [Google Scholar]
  110. Witt S, Galicia L, Lisec J, Cairns J, Tiessen A. 110.  et al. 2012. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol. Plant 5:401–17 [Google Scholar]
  111. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. 111.  2010. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 11:148 [Google Scholar]
  112. Wu L, Serpersu EH. 112.  2009. Deciphering interactions of the aminoglycoside phosphotransferase(3′)-IIIa with its ligands. Biopolymers 91:801–9 [Google Scholar]
  113. Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK. 113.  2005. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337:61–67 [Google Scholar]
  114. Yoshimura K, Ogawa T, Ueda Y, Shigeoka S. 114.  2007. AtNUDX1, an 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis. Plant Cell Physiol. 48:1438–49 [Google Scholar]
  115. Zhang P, Dreher K, Karthikeyan A, Chi A, Pujar A. 115.  et al. 2010. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol. 153:1479–91 [Google Scholar]
  116. Zhang P, Foerster H, Tissier CP, Mueller L, Paley S. 116.  et al. 2005. MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol. 138:27–37 [Google Scholar]
  117. Zheng L, Cardaci S, Jerby L, MacKenzie ED, Sciacovelli M. 117.  et al. 2015. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6:6001 [Google Scholar]
  118. Zhou J, Rudd KE. 118.  2013. EcoGene 3.0. Nucleic Acids Res. 41:D613–24 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error