Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. 1.  2012. scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012:980250 [Google Scholar]
  2. Ahmadzadeh V, Farajnia S, Feizi MA, Nejad RA. 2.  2014. Antibody humanization methods for development of therapeutic applications. Monoclon. Antib. Immunodiagn. Immunother. 33:67–73 [Google Scholar]
  3. Almquist KC, McLean MD, Niu Y, Byrne G, Olea-Popelka FC. 3.  et al. 2006. Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine 24:2079–86 [Google Scholar]
  4. 4. Area Dev. News Desk 2014. Kentucky Bioprocessing in Owensboro, Kentucky, producing delivery of breakthrough Ebola vaccine. Area Development Oct. 16. http://www.areadevelopment.com/newsItems/10-16-2014/kentucky-bioprocessing-breakthrough-ebola-therapy-owensboro-kentucky178233.shtml
  5. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG. 5.  et al. 2001. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–70 [Google Scholar]
  6. Bakker H, Rouwendal GJ, Karnoup AS, Florack DE, Stoopen GM. 6.  et al. 2006. An antibody produced in tobacco expressing a hybrid β-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. PNAS 103:7577–82 [Google Scholar]
  7. Balali-Mood M, Moshiri M, Etemad L. 7.  2013. Medical aspects of bio-terrorism. Toxicon 69:131–42 [Google Scholar]
  8. Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandez-Lafuente R. 8.  2015. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33:435–56 [Google Scholar]
  9. Barrera DJ, Rosenberg JN, Chiu JG, Chang YN, Debatis M. 9.  et al. 2015. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol. J. 13:117–24 [Google Scholar]
  10. Basaran P, Rodriguez-Cerezo E. 10.  2008. Plant molecular farming: opportunities and challenges. Crit. Rev. Biotechnol. 28:153–72 [Google Scholar]
  11. Bendandi M. 11.  2008. Aiming at a curative strategy for follicular lymphoma. CA Cancer J. Clin. 58:305–17 [Google Scholar]
  12. Bendandi M. 12.  2009. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat. Rev. Cancer 9:675–81 [Google Scholar]
  13. Bendandi M, Gocke CD, Kobrin CB, Benko FA, Sternas LA. 13.  et al. 1999. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat. Med. 5:1171–77 [Google Scholar]
  14. Bendandi M, Marillonnet S, Kandzia R, Thieme F, Nickstadt A. 14.  et al. 2010. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin's lymphoma. Ann. Oncol. 21:2420–27 [Google Scholar]
  15. Benvenuto E, Ordas RJ, Tavazza R, Ancora G, Biocca S. 15.  et al. 1991. “Phytoantibodies”: a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol. Biol. 17:865–74 [Google Scholar]
  16. Berman D, Korman A, Peck R, Feltquate D, Lonberg N, Canetta R. 16.  2015. The development of immunomodulatory monoclonal antibodies as a new therapeutic modality for cancer: the Bristol-Myers Squibb experience. Pharmacol. Ther. 148:132–53 [Google Scholar]
  17. Biolex Ther. 17.  2012. Biolex sells LEX System to Synthon and initiates sale of Locteron® Press Release, May 7, Biolex Ther., Pittsboro, NC. http://www.marketwired.com/press-release/biolex-sells-lex-system-to-synthon-and-initiates-sale-of-locteron-1653466.htm
  18. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM. 18.  et al. 2002. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287:2391–405 [Google Scholar]
  19. Bosch D, Castilho A, Loos A, Schots A, Steinkellner H. 19.  2013. N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19:5503–12 [Google Scholar]
  20. Brachman PS, Kaufmann A. 20.  1998. Anthrax. Bacterial Infections of Humans P Brachman, AS Evans 95–111 New York: Plenum [Google Scholar]
  21. Brachman PS, Plotkin SA, Bumford FH, Atchison MM. 21.  1960. An epidemic of inhalation anthrax: the first in the twentieth century. II. Epidemiology. Am. J. Hyg. 72:6–23 [Google Scholar]
  22. Breiman A, Fawcett TW, Ghirardi ML, Mattoo AK. 22.  1992. Plant organelles contain distinct peptidylprolyl cis,trans-isomerases. J. Biol. Chem. 267:21293–96 [Google Scholar]
  23. Bronte G, Sortino G, Passiglia F, Rizzo S, Lo Vullo F. 23.  et al. 2015. Monoclonal antibodies for the treatment of non-haematological tumours: update of an expanding scenario. Expert Opin. Biol. Ther. 15:45–59 [Google Scholar]
  24. Burnouf T, Radosevich M. 24.  2001. Affinity chromatography in the industrial purification of plasma proteins for therapeutic use. J. Biochem. Biophys. Methods 49:575–86 [Google Scholar]
  25. Castilho A, Gattinger P, Grass J, Jez J, Pabst M. 25.  et al. 2011. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–23 [Google Scholar]
  26. Castilho A, Neumann L, Daskalova S, Mason HS, Steinkellner H. 26.  et al. 2012. Engineering of sialylated mucin-type O-glycosylation in plants. J. Biol. Chem. 287:36518–26 [Google Scholar]
  27. Castilho A, Strasser R, Stadlmann J, Grass J, Jez J. 27.  et al. 2010. In planta protein sialylation through overexpression of the respective mammalian pathway. J. Biol. Chem. 285:15923–30 [Google Scholar]
  28. Celik E, Calik P. 28.  2012. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 30:1108–18 [Google Scholar]
  29. 29. Cent. Dis. Control Prev 2013. Facts about ricin. http://www.bt.cdc.gov/agent/ricin/facts.asp
  30. 30. Cent. Dis. Control Prev 2015. Ebola (Ebola virus disease). http://www.cdc.gov/vhf/ebola [Google Scholar]
  31. 31. Cent. Dis. Control Prev 2015. General questions about West Nile virus. http://www.cdc.gov/westnile/faq/genquestions.html
  32. 32. Cent. Dis. Control Prev 2015. Outbreaks chronology: Ebola virus disease. http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
  33. Chargelegue D, Drake PM, Obregon P, Prada A, Fairweather N, Ma JK. 33.  2005. Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect. Immun. 73:5915–22 [Google Scholar]
  34. Chen R. 34.  2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30:1102–7 [Google Scholar]
  35. 35. ClinicalTrials.gov 2011. A safety study of a single vaginal administration of P2G12 antibody in healthy female subjects Stud. Rec. NCT01403792, Natl. Inst. Health, Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT01403792
  36. 36. ClinicalTrials.gov 2015. Putative investigational therapeutics in the treatment of patients with known Ebola infection Stud. Rec. NCT02363322, Natl. Inst. Health, Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02363322
  37. 37. ClinicalTrials.gov 2015. Safety and pharmacokinetics of a single ZMappTM administration in healthy adult volunteers Stud. Rec. NCT02389192, Natl. Inst. Health, Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02389192
  38. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK. 38.  et al. 2006. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 24:1591–97 [Google Scholar]
  39. Daniell H, Singh ND, Mason H, Streatfield SJ. 39.  2009. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 14:669–79 [Google Scholar]
  40. Danielli R, Patuzzo R, Ruffini PA, Maurichi A, Giovannoni L. 40.  et al. 2015. Armed antibodies for cancer treatment: a promising tool in a changing era. Cancer Immunol. Immunother. 64:113–21 [Google Scholar]
  41. Danon A, Mayfield SP. 41.  1994. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266:1717–19 [Google Scholar]
  42. Daskalova SM, Radder JE, Cichacz ZA, Olsen SH, Tsaprailis G. 42.  et al. 2010. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins—towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnol. 10:62 [Google Scholar]
  43. Davies JC. 43.  1982. A major epidemic of anthrax in Zimbabwe. Cent. Afr. J. Med. 28:291–98 [Google Scholar]
  44. De Muynck B, Navarre C, Boutry M. 44.  2010. Production of antibodies in plants: status after twenty years. Plant Biotechnol. J. 8:529–63 [Google Scholar]
  45. De Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B. 45.  et al. 1993. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res. 2:227–37 [Google Scholar]
  46. 46. Defyrus 2015. Ebola - ZMAb http://www.defyrus.com/products_ebola-zmab.html
  47. Dolk E, van Vliet C, Perez JM, Vriend G, Darbon H. 47.  et al. 2005. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen. Proteins 59:555–64 [Google Scholar]
  48. Drugmand JC, Schneider YJ, Agathos SN. 48.  2012. Insect cells as factories for biomanufacturing. Biotechnol. Adv. 30:1140–57 [Google Scholar]
  49. Ecker DM, Jones SD, Levine HL. 49.  2015. The therapeutic monoclonal antibody market. mAbs 7:9–14 [Google Scholar]
  50. Ellis RW, Gerety RJ. 50.  1990. Key issues in the selection of an expression system for vaccine antigens. J. Med. Virol. 31:54–58 [Google Scholar]
  51. Engelman A, Cherepanov P. 51.  2012. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat. Rev. Microbiol. 10:279–90 [Google Scholar]
  52. Falsey AR, Walsh EE. 52.  2000. Respiratory syncytial virus infection in adults. Clin. Microbiol. Rev. 13:371–84 [Google Scholar]
  53. Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. 53.  2014. Development trends for generation of single-chain antibody fragments. Immunopharmacol. Immunotoxicol. 36:297–308 [Google Scholar]
  54. Fowler K, McBride BW, Turnbull PC, Baillie LW. 54.  1999. Immune correlates of protection against anthrax. J. Appl. Microbiol. 87:305 [Google Scholar]
  55. Frieden TR, Damon I, Bell BP, Kenyon T, Nichol S. 55.  2014. Ebola 2014—new challenges, new global response and responsibility. N. Engl. J. Med. 371:1177–80 [Google Scholar]
  56. Gallie DR, Kado CI. 56.  1989. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. PNAS 86:129–32 [Google Scholar]
  57. Gasdaska JR, Sherwood S, Regan JT, Dickey LF. 57.  2012. An afucosylated anti-CD20 monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell depletion and lower complement-dependent cytotoxicity than rituximab. Mol. Immunol. 50:134–41 [Google Scholar]
  58. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J. 58.  et al. 2006. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. PNAS 103:14701–6 [Google Scholar]
  59. Gleba Y, Klimyuk V, Marillonnet S. 59.  2005. Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–48 [Google Scholar]
  60. Glennie MJ, French RR, Cragg MS, Taylor RP. 60.  2007. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44:3823–37 [Google Scholar]
  61. Gomord V, Faye L. 61.  2004. Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7:171–81 [Google Scholar]
  62. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C. 62.  et al. 2010. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol. J. 8:564–87 [Google Scholar]
  63. Grogan TM, Jaramillo M. 63.  2002. Pathology of non-Hodgkin's lymphoma. Malignant Lymphomas M Grossbard 1–30 Madrid: BC Decker [Google Scholar]
  64. He J, Lai H, Engle M, Gorlatov S, Gruber C. 64.  et al. 2014. Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLOS ONE 9:e93541 [Google Scholar]
  65. Hein MB, Tang Y, McLeod DA, Janda KD, Hiatt A. 65.  1991. Evaluation of immunoglobulins from plant cells. Biotechnol. Prog. 7:455–61 [Google Scholar]
  66. Hervas-Stubbs S, Rueda P, Lopez L, Leclerc C. 66.  2007. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. J. Immunol. 178:2361–69 [Google Scholar]
  67. Hiatt A, Bohorova N, Bohorov O, Goodman C, Kim D. 67.  et al. 2014. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. PNAS 111:5992–97 [Google Scholar]
  68. Hiatt A, Cafferkey R, Bowdish K. 68.  1989. Production of antibodies in transgenic plants. Nature 342:76–78 [Google Scholar]
  69. Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G. 69.  et al. 2010. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol. Bioeng. 106:9–17 [Google Scholar]
  70. Hull AK, Criscuolo CJ, Mett V, Groen H, Steeman W. 70.  et al. 2005. Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine 23:2082–86 [Google Scholar]
  71. 71. IMpact-RSV Stud. Group 1998. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102:531–37 [Google Scholar]
  72. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E. 72.  et al. 1999. Anthrax as a biological weapon: medical and public health management. JAMA 281:1735–45 [Google Scholar]
  73. Jacobs PP, Callewaert N. 73.  2009. N-glycosylation engineering of biopharmaceutical expression systems. Curr. Mol. Med. 9:774–800 [Google Scholar]
  74. Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S. 74.  et al. 2012. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLOS ONE 7:e44482 [Google Scholar]
  75. Jefferis R. 75.  2005. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21:11–16 [Google Scholar]
  76. Jefferis R. 76.  2012. Isotype and glycoform selection for antibody therapeutics. Arch. Biochem. Biophys. 526:159–66 [Google Scholar]
  77. Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS. 77.  et al. 2001. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg. Infect. Dis. 7:933–44 [Google Scholar]
  78. Joffe S, Ray GT, Escobar GJ, Black SB, Lieu TA. 78.  1999. Cost-effectiveness of respiratory syncytial virus prophylaxis among preterm infants. Pediatrics 104:419–27 [Google Scholar]
  79. Kishore U, Reid KB. 79.  2000. C1q: structure, function, and receptors. Immunopharmacology 49:159–70 [Google Scholar]
  80. Koch R. 80.  1877. The aetiology of anthrax based on the ontogeny of the anthrax bacillus. Beitr. Biol. Pflanz. 2:277–82 [Google Scholar]
  81. Kohler G, Milstein C. 81.  1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97 [Google Scholar]
  82. Kramer K, Hock B. 82.  2003. Recombinant antibodies for environmental analysis. Anal. Bioanal. Chem. 377:417–26 [Google Scholar]
  83. Kuroki M, Shirasu N. 83.  2014. Novel treatment strategies for cancer and their tumor-targeting approaches using antibodies against tumor-associated antigens. Anticancer Res. 34:4481–88 [Google Scholar]
  84. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R. 84.  1992. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med. 327:1209–15 [Google Scholar]
  85. Lai H, Engle M, Fuchs A, Keller T, Johnson S. 85.  et al. 2010. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. PNAS 107:2419–24 [Google Scholar]
  86. Lai H, He J, Engle M, Diamond MS, Chen Q. 86.  2012. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 10:95–104 [Google Scholar]
  87. Lai H, He J, Hurtado J, Stahnke J, Fuchs A. 87.  et al. 2014. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol. J. 12:1098–107 [Google Scholar]
  88. Lameris R, de Bruin RC, Schneiders FL, van Bergen en Henegouwen PM, Verheul HM. 88.  et al. 2014. Bispecific antibody platforms for cancer immunotherapy. Crit. Rev. Oncol. Hematol. 92:153–65 [Google Scholar]
  89. Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M. 89.  et al. 2010. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLOS ONE 5:e15559 [Google Scholar]
  90. Larrick JW, Yu L, Naftzger C, Jaiswal S, Wycoff K. 90.  2001. Production of secretory IgA antibodies in plants. Biomol. Eng. 18:87–94 [Google Scholar]
  91. Leader S, Kohlhase K. 91.  2003. Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J. Pediatr. 143:S127–32 [Google Scholar]
  92. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. 92.  2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–82 [Google Scholar]
  93. Levs J, Wilson J. 93.  2014. ‘Miraculous day’ as American Ebola patients released. CNN Aug. 22. http://edition.cnn.com/2014/08/21/health/ebola-patient-release
  94. Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. 94.  2012. The use of plants for the production of therapeutic human peptides. Plant Cell Rep. 31:439–51 [Google Scholar]
  95. Little SF, Ivins BE, Fellows PF, Friedlander AM. 95.  1997. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 65:5171–75 [Google Scholar]
  96. Little SF, Ivins BE, Fellows PF, Pitt ML, Norris SL, Andrews GP. 96.  2004. Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine 22:422–30 [Google Scholar]
  97. Loos A, Gruber C, Altmann F, Mehofer U, Hensel F. 97.  et al. 2014. Expression and glycoengineering of functionally active heteromultimeric IgM in plants. PNAS 111:6263–68 [Google Scholar]
  98. Loos A, Steinkellner H. 98.  2012. IgG-Fc glycoengineering in non-mammalian expression hosts. Arch. Biochem. Biophys. 526:167–73 [Google Scholar]
  99. Lyon GM, Mehta AK, Varkey JB, Brantly K, Plyler L. 99.  et al. 2014. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371:2402–9 [Google Scholar]
  100. Ma JK, Drossard J, Lewis D, Altmann F, Boyle J. 100.  et al. 2015. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol. J. 13:1106–20 [Google Scholar]
  101. Ma JK, Hiatt A, Hein M, Vine ND, Wang F. 101.  et al. 1995. Generation and assembly of secretory antibodies in plants. Science 268:716–19 [Google Scholar]
  102. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D. 102.  et al. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med. 4:601–6 [Google Scholar]
  103. Ma JK, Lehner T, Stabila P, Fux CI, Hiatt A. 103.  1994. Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur. J. Immunol. 24:131–38 [Google Scholar]
  104. Mamedov T, Ghosh A, Jones RM, Mett V, Farrance CE. 104.  et al. 2012. Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F. Plant Biotechnol. J. 10:773–82 [Google Scholar]
  105. 105. Mapp Biopharm 2015. Product development: our product pipeline http://www.mappbio.com/product-development
  106. 106. Mapp Biopharm 2015. ZMapp http://mappbio.com/z-mapp [Google Scholar]
  107. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y. 107.  2004. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. PNAS 101:6852–57 [Google Scholar]
  108. Marsden CJ, Eckersley S, Hebditch M, Kvist AJ, Milner R. 108.  et al. 2014. The use of antibodies in small-molecule drug discovery. J. Biomol. Screen. 19:829–38 [Google Scholar]
  109. Marusic C, Novelli F, Salzano AM, Scaloni A, Benvenuto E. 109.  et al. 2016. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. Plant Biotechnol. J. 14:240–51 [Google Scholar]
  110. Matzke MA, Mette MF, Matzke AJ. 110.  2000. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 43:401–15 [Google Scholar]
  111. Mayfield SP, Franklin SE, Lerner RA. 111.  2003. Expression and assembly of a fully active antibody in algae. PNAS 100:438–42 [Google Scholar]
  112. McCarthy M. 112.  2014. US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ 349:g5488 [Google Scholar]
  113. McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I. 113.  et al. 1999. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. PNAS 96:703–8 [Google Scholar]
  114. McCormick AA, Reddy S, Reinl SJ, Cameron TI, Czerwinkski DK. 114.  et al. 2008. Plant-produced idiotype vaccines for the treatment of non-Hodgkin's lymphoma: safety and immunogenicity in a phase I clinical study. PNAS 105:10131–36 [Google Scholar]
  115. McCormick AA, Reinl SJ, Cameron TI, Vojdani F, Fronefield M. 115.  et al. 2003. Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig. J. Immunol. Methods 278:95–104 [Google Scholar]
  116. 116. Medicago 2015. Medicago awarded a contract by the U.S. Department of Health and Human Services to explore alternate production methods for Ebola antibodies. Press Release, Feb. 24, Medicago, Quebec, Can. http://www.medicago.com/files/documents_news/2015/Ebola-PR_USA_-English-Final_v001_j1v036.pdf
  117. Mett V, Chichester JA, Stewart ML, Musiychuk K, Bi H. 117.  et al. 2011. A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Hum. Vaccines 7:Suppl.183–90 [Google Scholar]
  118. Modjtahedi H, Ali S, Essapen S. 118.  2012. Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br. Med. Bull. 104:41–59 [Google Scholar]
  119. Montecucco C, Molgo J. 119.  2005. Botulinal neurotoxins: revival of an old killer. Curr. Opin. Pharmacol. 5:274–79 [Google Scholar]
  120. Moore C. 120.  2014. Texas biotech firm affirms readiness to produce commercial quantities of anti-Ebola vaccines and biotherapeutics quickly and cost-effectively if asked. BioNews Texas Aug. 8. http://bionews-tx.com/news/2014/08/08/texas-biotech-firm-affirms-readiness-produce-commercial-quantities-anti-ebola-vaccines-biotherapeutics-quickly-cost-effectively-asked
  121. Morris GC, Wiggins RC, Woodhall SC, Bland JM, Taylor CR. 121.  et al. 2014. MABGEL 1: first phase 1 trial of the anti-HIV-1 monoclonal antibodies 2F5, 4E10 and 2G12 as a vaginal microbicide. PLOS ONE 9:e116153 [Google Scholar]
  122. Naidoo J, Page DB, Wolchok JD. 122.  2014. Immune modulation for cancer therapy. Br. J. Cancer 111:2214–19 [Google Scholar]
  123. Nicolas E, Beggs JM, Haltiwanger BM, Taraschi TF. 123.  1997. Direct evidence for the deoxyribonuclease activity of the plant ribosome inactivating protein gelonin. FEBS Lett. 406:162–64 [Google Scholar]
  124. O'Hara JM, Whaley K, Pauly M, Zeitlin L, Mantis NJ. 124.  2012. Plant-based expression of a partially humanized neutralizing monoclonal IgG directed against an immunodominant epitope on the ricin toxin A subunit. Vaccine 30:1239–43 [Google Scholar]
  125. Olinger GG Jr, Pettitt J, Kim D, Working C, Bohorov O. 125.  et al. 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. PNAS 109:18030–35 [Google Scholar]
  126. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S. 126.  et al. 2005. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11:522–30 [Google Scholar]
  127. Owen M, Gandecha A, Cockburn B, Whitelam G. 127.  1992. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology 10:790–94 [Google Scholar]
  128. Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K. 128.  et al. 1999. Stable expression of human β1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. PNAS 96:4692–97 [Google Scholar]
  129. Paul M, Reljic R, Klein K, Drake PM, van Dolleweerd C. 129.  et al. 2014. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. mAbs 6:1585–97 [Google Scholar]
  130. Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC. 130.  et al. 2013. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 5:199ra13 [Google Scholar]
  131. Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ. 131.  et al. 2011. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol. J. 9:807–16 [Google Scholar]
  132. Phoolcharoen W, Dye JM, Kilbourne J, Piensook K, Pratt WD. 132.  et al. 2011. A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. PNAS 108:20695–700 [Google Scholar]
  133. Pirie CM, Hackel BJ, Rosenblum MG, Wittrup KD. 133.  2011. Convergent potency of internalized gelonin immunotoxins across varied cell lines, antigens, and targeting moieties. J. Biol. Chem. 286:4165–72 [Google Scholar]
  134. Pitt ML, Little SF, Ivins BE, Fellows P, Barth J. 134.  et al. 2001. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19:4768–73 [Google Scholar]
  135. Plosker GL, Figgitt DP. 135.  2003. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 63:803–43 [Google Scholar]
  136. Prigent J, Panigai L, Lamourette P, Sauvaire D, Devilliers K. 136.  et al. 2011. Neutralising antibodies against ricin toxin. PLOS ONE 6:e20166 [Google Scholar]
  137. Pujol M, Ramirez NI, Ayala M, Gavilondo JV, Valdes R. 137.  et al. 2005. An integral approach towards a practical application for a plant-made monoclonal antibody in vaccine purification. Vaccine 23:1833–37 [Google Scholar]
  138. Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A. 138.  et al. 2000. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 19:142–53 [Google Scholar]
  139. Qiu X, Alimonti JB, Melito PL, Fernando L, Stroher U, Jones SM. 139.  2011. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. Immunol. 141:218–27 [Google Scholar]
  140. Qiu X, Audet J, Wong G, Pillet S, Bello A. 140.  et al. 2012. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4:138ra81 [Google Scholar]
  141. Qiu X, Wong G, Audet J, Bello A, Fernando L. 141.  et al. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53 [Google Scholar]
  142. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S. 142.  et al. 2008. Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol. J. 6:189–201 [Google Scholar]
  143. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D. 143.  et al. 2008. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. PNAS 105:3727–32 [Google Scholar]
  144. Rasala BA, Mayfield SP. 144.  2015. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth. Res. 123:227–39 [Google Scholar]
  145. Redfern CH, Guthrie TH, Bessudo A, Densmore JJ, Holman PR. 145.  et al. 2006. Phase II trial of idiotype vaccination in previously treated patients with indolent non-Hodgkin's lymphoma resulting in durable clinical responses. J. Clin. Oncol. 24:3107–12 [Google Scholar]
  146. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE. 146.  et al. 1994. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–45 [Google Scholar]
  147. Reichert JM. 147.  2015. Antibodies to watch in 2015. mAbs 7:1–8 [Google Scholar]
  148. Robinette RA, Oli MW, McArthur WP, Brady LJ. 148.  2011. A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine 29:6292–300 [Google Scholar]
  149. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 149.  2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19:430–36 [Google Scholar]
  150. Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L. 150.  et al. 2013. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLOS ONE 8:e58724 [Google Scholar]
  151. Rouwendal GJ, Wuhrer M, Florack DE, Koeleman CA, Deelder AM. 151.  et al. 2007. Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology 17:334–44 [Google Scholar]
  152. Roy CJ, Brey RN, Mantis NJ, Mapes K, Pop IV. 152.  et al. 2015. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: epitope-specific neutralizing antibodies correlate with protection. PNAS 112:3782–87 [Google Scholar]
  153. Rybicki EP. 153.  2010. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 8:620–37 [Google Scholar]
  154. Rybicki EP. 154.  2014. Plant-based vaccines against viruses. Virol. J. 11:205 [Google Scholar]
  155. Saerens D, Ghassabeh GH, Muyldermans S. 155.  2008. Single-domain antibodies as building blocks for novel therapeutics. Curr. Opin. Pharmacol. 8:600–8 [Google Scholar]
  156. Sainsbury F, Cañizares MC, Lomonossoff GP. 156.  2010. Cowpea mosaic virus: the plant virus–based biotechnology workhorse. Annu. Rev. Phytopathol. 48:437–55 [Google Scholar]
  157. Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP. 157.  2010. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLOS ONE 5:e13976 [Google Scholar]
  158. Sapra P, Shor B. 158.  2013. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther. 138:452–69 [Google Scholar]
  159. Schahs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H. 159.  2007. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol. J. 5:657–63 [Google Scholar]
  160. Schouten A, Roosien J, van Engelen FA, de Jong GA, Borst-Vrenssen AW. 160.  et al. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30:781–93 [Google Scholar]
  161. Schroda M. 161.  2004. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth. Res. 82:221–40 [Google Scholar]
  162. Senyuva HZ, Gilbert J. 162.  2010. Immunoaffinity column clean-up techniques in food analysis: a review. J. Chromatogr. B 878:115–32 [Google Scholar]
  163. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E. 163.  et al. 2007. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnol. J. 5:579–90 [Google Scholar]
  164. Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P. 164.  2002. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J. Virol. 76:2518–28 [Google Scholar]
  165. Smallshaw JE, Richardson JA, Vitetta ES. 165.  2007. RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine 25:7459–69 [Google Scholar]
  166. Smith R, Lehner T. 166.  1989. Characterisation of monoclonal antibodies to common protein epitopes on the cell surface of Streptococcus mutans and Streptococcus sobrinus. Oral Microbiol. Immunol. 4:153–58 [Google Scholar]
  167. Stoger E, Fischer R, Moloney M, Ma JK. 167.  2014. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu. Rev. Plant Biol. 65:743–68 [Google Scholar]
  168. Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H. 168.  2004. Generation of Arabidopsis thaliana plants with complex N-glycans lacking β1,2-linked xylose and core α1,3-linked fucose. FEBS Lett. 561:132–36 [Google Scholar]
  169. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H. 169.  et al. 2009. Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J. Biol. Chem. 284:20479–85 [Google Scholar]
  170. Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H. 170.  et al. 2008. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol. J. 6:392–402 [Google Scholar]
  171. Thakur MS, Ragavan KV. 171.  2013. Biosensors in food processing. J. Food Sci. Technol. 50:625–41 [Google Scholar]
  172. Tiwari S, Verma PC, Singh PK, Tuli R. 172.  2009. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 27:449–67 [Google Scholar]
  173. Tran M, Henry RE, Siefker D, Van C, Newkirk G. 173.  et al. 2013. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol. Bioeng. 110:2826–35 [Google Scholar]
  174. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD. 174.  et al. 2013. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. PNAS 110:E15–22 [Google Scholar]
  175. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. 175.  2009. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol. Bioeng. 104:663–73 [Google Scholar]
  176. Traynor K. 176.  2012. Taliglucerase alfa approved for Gaucher disease. Am. J. Health Syst. Pharm. 69:1009 [Google Scholar]
  177. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A. 177.  et al. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:1100–8 [Google Scholar]
  178. Tsirigotis P, Economopoulos T. 178.  2008. Monoclonal antibodies in the treatment of lymphoid malignancies. J. Steroid Biochem. Mol. Biol. 108:267–71 [Google Scholar]
  179. Tusé D, Ku N, Bendandi M, Becerra C, Collins R Jr. 179.  2015. Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma. BioMed. Res. Int. 2015:648143 [Google Scholar]
  180. Ugwu CU, Aoyagi H, Uchiyama H. 180.  2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99:4021–28 [Google Scholar]
  181. 181. US Food Drug Admin 2013. FDA approves first Botulism Antitoxin for use in neutralizing all seven known botulinum nerve toxin serotypes News Release, Mar. 22, US Food Drug Admin., Washington, DC. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm345128.htm
  182. Valdes R, Reyes B, Alvarez T, Garcia J, Montero JA. 182.  et al. 2003. Hepatitis B surface antigen immunopurification using a plant-derived specific antibody produced in large scale. Biochem. Biophys. Res. Commun. 310:742–47 [Google Scholar]
  183. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC. 183.  et al. 1999. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta 1431:37–46 [Google Scholar]
  184. Van Ness GB. 184.  1971. Ecology of anthrax. Science 172:1303–7 [Google Scholar]
  185. Verma D, Daniell H. 185.  2007. Chloroplast vector systems for biotechnology applications. Plant Physiol. 145:1129–43 [Google Scholar]
  186. Ward BJ, Landry N, Trepanier S, Mercier G, Dargis M. 186.  et al. 2014. Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32:6098–106 [Google Scholar]
  187. Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I. 187.  2014. Immunotoxins for leukemia. Blood 123:2470–77 [Google Scholar]
  188. Weber DJ, Rutala WA. 188.  2001. Risks and prevention of nosocomial transmission of rare zoonotic diseases. Clin. Infect. Dis. 32:446–56 [Google Scholar]
  189. Webster DE, Thomas MC. 189.  2012. Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol. Adv. 30:410–18 [Google Scholar]
  190. Weintraub JA, Hilton JF, White JM, Hoover CI, Wycoff KL. 190.  et al. 2005. Clinical trial of a plant-derived antibody on recolonization of mutans streptococci. Caries Res. 39:241–50 [Google Scholar]
  191. Weiss S, Kobiler D, Levy H, Marcus H, Pass A. 191.  et al. 2006. Immunological correlates for protection against intranasal challenge of Bacillus anthracis spores conferred by a protective antigen-based vaccine in rabbits. Infect. Immun. 74:394–98 [Google Scholar]
  192. Whaley KJ, Morton J, Hume S, Hiatt E, Bratcher B. 192.  et al. 2014. Emerging antibody-based products. Curr. Top. Microbiol. Immunol. 375:107–26 [Google Scholar]
  193. 193. WHO (World Health Organ.) 2013. Botulism Fact Sheet 270, WHO, Geneva, Switz. http://www.who.int/mediacentre/factsheets/fs270
  194. 194. WHO (World Health Organ.) 2014. Ebola response roadmap situation report Rep., WHO, Geneva, Switz. http://apps.who.int/iris/bitstream/10665/146763/1/roadmapsitrep_31Dec14_eng.pdf
  195. 195. WHO (World Health Organ.) 2015. Ebola data and statistics WHO, Geneva, Switz. http://apps.who.int/gho/data/view.ebola-sitrep.ebola-summary-20150112
  196. 196. WHO (World Health Organ.) 2015. HIV/AIDS Fact Sheet 360, WHO, Geneva, Switz. http://www.who.int/mediacentre/factsheets/fs360
  197. 197. WHO Ebola Response Team 2014. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371:1481–95 [Google Scholar]
  198. Wilson JA, Hevey M, Bakken R, Guest S, Bray M. 198.  et al. 2000. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287:1664–66 [Google Scholar]
  199. Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ. 199.  2012. Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol. Adv. 30:1171–84 [Google Scholar]
  200. Yang Z, Drew DP, Jorgensen B, Mandel U, Bach SS. 200.  et al. 2012. Engineering mammalian mucin-type O-glycosylation in plants. J. Biol. Chem. 287:11911–23 [Google Scholar]
  201. Young JA, Collier RJ. 201.  2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76:243–65 [Google Scholar]
  202. Yusibov V, Kushnir N, Streatfield SJ. 202.  2015. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev. Vaccines 14:519–35 [Google Scholar]
  203. Yusibov V, Streatfield SJ, Kushnir N. 203.  2011. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum. Vaccines 7:313–21 [Google Scholar]
  204. Yusibov V, Streatfield SJ, Kushnir N, Roy G, Padmanaban A. 204.  2013. Hybrid viral vectors for vaccine and antibody production in plants. Curr. Pharm. Des. 19:5574–86 [Google Scholar]
  205. Zeitlin L, Bohorov O, Bohorova N, Hiatt A, Kim DH. 205.  et al. 2013. Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. mAbs 5:263–69 [Google Scholar]
  206. Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D. 206.  et al. 2011. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. PNAS 108:20690–94 [Google Scholar]
  207. Zhang X, Soori G, Dobleman TJ, Xiao GG. 207.  2014. The application of monoclonal antibodies in cancer diagnosis. Expert Rev. Mol. Diagn. 14:97–106 [Google Scholar]
  208. Zhu J. 208.  2012. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 30:1158–70 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error