1932

Abstract

Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-111840
2016-04-29
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-111840.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111840&mimeType=html&fmt=ahah

Literature Cited

  1. Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GS, Bassereau P. 1.  2014. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28:212–18 [Google Scholar]
  2. Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L. 2.  et al. 2010. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLOS Pathog. 6:e1001119 [Google Scholar]
  3. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP. 3.  1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. PNAS 92:9353–57 [Google Scholar]
  4. Andrawis A, Solomon M, Delmer DP. 4.  1993. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J. 3:763–72 [Google Scholar]
  5. Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ. 5.  2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. PNAS 99:16342–47 [Google Scholar]
  6. Baluska F, Samaj J, Napier R, Volkmann D. 6.  1999. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J. 19:481–88 [Google Scholar]
  7. Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A. 7.  2013. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26:136–47 [Google Scholar]
  8. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ. 8.  2010. Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant-Microbe Interact. 23:1403–12 [Google Scholar]
  9. Benkovics AH, Timmermans MCP. 9.  2014. Developmental patterning by gradients of mobile small RNAs. Curr. Opin. Genet. Dev. 27:83–91 [Google Scholar]
  10. Bigay J, Antonny B. 10.  2012. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886–95 [Google Scholar]
  11. Bilska A, Sowinski P. 11.  2010. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann. Bot. 106:675–86 [Google Scholar]
  12. Blackman L, Overall R. 12.  1998. Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J. 14:733–41 [Google Scholar]
  13. Boutté Y, Moreau P. 13.  2014. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. Curr. Opin. Plant Biol. 22:22–29 [Google Scholar]
  14. Burch-Smith TM, Zambryski PC. 14.  2010. Loss of increased size exclusion limit (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr. Biol. 20:989–93 [Google Scholar]
  15. Burgoyne T, Patel S, Eden ER. 15.  2015. Calcium signaling at ER membrane contact sites. Biochim. Biophys. Acta 1853:2012–17 [Google Scholar]
  16. Caillaud M-C, Wirthmueller L, Sklenar J, Findlay K, Piquerez SJM. 16.  et al. 2014. The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. PLOS Pathog. 10:e1004496 [Google Scholar]
  17. Carella P, Isaacs M, Cameron RK. 17.  2015. Plasmodesmata-located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long-distance movement of Defective in Induced Resistance1 in Arabidopsis. Plant Biol. 17:395–401 [Google Scholar]
  18. Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S. 18.  et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–21 [Google Scholar]
  19. Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB. 19.  et al. 2013. Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5:813–25 [Google Scholar]
  20. Chitwood DH, Nogueira FTS, Howell MD, Montgomery TA, Carrington JC, Timmermans MCP. 20.  2009. Pattern formation via small RNA mobility. Mol. Cell. Biol. 23:549–54 [Google Scholar]
  21. Christensen A, Svensson K, Persson S, Jung J, Michalak M. 21.  et al. 2008. Functional characterization of Arabidopsis calreticulin1a: a key alleviator of endoplasmic reticulum stress. Plant Cell Physiol. 49:912–24 [Google Scholar]
  22. Cosgrove DJ. 22.  2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–61 [Google Scholar]
  23. Crawford KM, Zambryski PC. 23.  2001. Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol. 125:1802–12 [Google Scholar]
  24. De Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B. 24.  et al. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195:965–78 [Google Scholar]
  25. De Storme N, Geelen D. 25.  2014. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front. Plant Sci. 5:138 [Google Scholar]
  26. Deeks MJ, Calcutt JR, Ingle EKS, Hawkins TJ, Chapman S. 26.  et al. 2012. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 22:1595–600 [Google Scholar]
  27. Ding B, Kwon M, Warnberg L. 27.  1996. Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J. 10:157–64 [Google Scholar]
  28. Ding B, Turgeon R, Parthasarathy MV. 28.  1992. Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41 [Google Scholar]
  29. Drin G, Casella J-F, Gautier R, Boehmer T, Schwartz TU, Antonny B. 29.  2007. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14:138–46 [Google Scholar]
  30. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A. 30.  et al. 2010. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–16 [Google Scholar]
  31. Ellinger D, Voigt CA. 31.  2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114:1349–58 [Google Scholar]
  32. Faulkner C. 32.  2013. Receptor-mediated signaling at plasmodesmata. Front. Plant Sci. 4:521 [Google Scholar]
  33. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K. 33.  2008. Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–18 [Google Scholar]
  34. Faulkner C, Blackman LM, Collings DA, Cordwell SJ, Overall RL. 34.  2009. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur. J. Cell Biol. 88:357–69 [Google Scholar]
  35. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S. 35.  et al. 2013. Lym2-dependent chitin perception limits molecular flux via plasmodesmata. PNAS 110:9166–70Demonstrated that the chitin receptor LYM2 localizes to PDs, regulates their SEL, and links the channels to antifungal defense. [Google Scholar]
  36. Fernández-Busnadiego R, Saheki Y, De Camilli P. 36.  2015. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. PNAS 112:E2004–13Showed by cryo-electron tomography the three-dimensional architecture of MCSs and structural signature of E-Syt, and demonstrated that E-Syts regulate the ER-PM gap. [Google Scholar]
  37. Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E. 37.  et al. 2011. Arabidopsis plasmodesmal proteome. PLOS ONE 6:e18880 [Google Scholar]
  38. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H. 38.  et al. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–46 [Google Scholar]
  39. Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB. 39.  2009. Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21:2118–32 [Google Scholar]
  40. Gallagher KL, Sozzani R, Lee C-M. 40.  2014. Intercellular protein movement: deciphering the language of development. Annu. Rev. Cell Dev. Biol. 30:207–33 [Google Scholar]
  41. Gaudioso-Pedraza R, Benitez-Alfonso Y. 41.  2014. A phylogenetic approach to study the origin and evolution of plasmodesmata-localized glycosyl hydrolases family 17. Front. Plant Sci. 5:212 [Google Scholar]
  42. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M. 42.  et al. 2013. PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–509Showed that E-Syts function as ER-PM tethers that contact the PM via their C2 domain in a PI(4,5)P2- and Ca2+-dependent manner. [Google Scholar]
  43. Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R. 43.  et al. 2008. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–97 [Google Scholar]
  44. Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V. 44.  et al. 2015. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27:1228–50Provided the first analysis of the PD lipidome, supporting the occurrence of raft-like microdomains and a functional role for sterols. [Google Scholar]
  45. Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL. 45.  2008. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol. Plant-Microbe Interact. 21:335–45 [Google Scholar]
  46. Gui J, Liu C, Shen J, Li L. 46.  2014. Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance. Plant Physiol. 166:1463–78 [Google Scholar]
  47. Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE. 47.  et al. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137:1731–41 [Google Scholar]
  48. Han X, Hyun T, Zhang M, Kumar R, Koh EJ. 48.  et al. 2014. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev. Cell 28:132–46Demonstrated that callose synthesis is regulated by auxin and in turn influences the formation of developmental hormone gradients. [Google Scholar]
  49. Haraguchi T, Tominaga M, Matsumoto R, Sato K, Nakano A. 49.  et al. 2014. Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1. J. Biol. Chem. 289:12343–55 [Google Scholar]
  50. Harries P, Ding B. 50.  2011. Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology 411:237–43 [Google Scholar]
  51. Heilmann M, Heilmann I. 51.  2015. Plant phosphoinositides—complex networks controlling growth and adaptation. Biochim. Biophys. Acta 1851:759–69 [Google Scholar]
  52. Helle SCJ, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. 52.  2013. Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833:2526–41 [Google Scholar]
  53. Henne WM, Liou J, Emr SD. 53.  2015. Molecular mechanisms of inter-organelle ER-PM contact sites. Curr. Opin. Cell Biol. 35:123–30 [Google Scholar]
  54. Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL. 54.  2000. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–35 [Google Scholar]
  55. Hong Z, Zhang Z, Olson JM, Verma DP. 55.  2001. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13:769–79 [Google Scholar]
  56. Kagiwada S, Hashimoto M. 56.  2007. The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity. Biochem. Biophys. Res. Commun. 364:870–76 [Google Scholar]
  57. Kankanala P, Czymmek K, Valent B. 57.  2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–24 [Google Scholar]
  58. Kawade K, Horiguchi G, Usami T, Hirai MY, Tsukaya H. 58.  2013. ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves. Curr. Biol. 23:788–92 [Google Scholar]
  59. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y. 59.  et al. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–403 [Google Scholar]
  60. Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC. 60.  2005. Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. PNAS 102:2227–31 [Google Scholar]
  61. Kim I, Kobayashi K, Cho E, Zambryski PC. 61.  2005. Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. PNAS 102:11945–50 [Google Scholar]
  62. Kim J-Y, Rim Y, Wang J, Jackson D. 62.  2005. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev. 19:788–93 [Google Scholar]
  63. Kim J-Y, Yuan Z, Jackson D. 63.  2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–62 [Google Scholar]
  64. Knight A, Jones J. 64.  1993. A myosin like protein for higher plants. J. Mol. Biol. 231:148–54 [Google Scholar]
  65. Knox JP, Benitez-Alfonso Y. 65.  2014. Roles and regulation of plant cell walls surrounding plasmodesmata. Curr. Opin. Plant Biol. 22:93–100 [Google Scholar]
  66. Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L. 66.  et al. 2015. Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation. Plant Physiol. 44:1563–72 [Google Scholar]
  67. Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P. 67.  2007. INCREASED SIZE EXCLUSION LIMIT2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–97 [Google Scholar]
  68. Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL. 68.  2011. An essential protein that interacts with endosomes and promotes movement of the short-root transcription factor. Curr. Biol. 21:1559–64 [Google Scholar]
  69. Koldsø H, Shorthouse D, Helie J, Sansom MSP. 69.  2014. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLOS Comput. Biol. 10:e1003911 [Google Scholar]
  70. Lahiri S, Toulmay A, Prinz WA. 70.  2015. Membrane contact sites, gateways for lipid homeostasis. Curr. Opin. Cell Biol. 33:82–87 [Google Scholar]
  71. Larsen JB, Jensen MB, Bhatia VK, Pedersen SL, Bjørnholm T. 71.  et al. 2015. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11:192–94 [Google Scholar]
  72. Lee J-Y. 72.  2014. New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci. 221–222:13–20 [Google Scholar]
  73. Lee J-Y, Wang X, Cui W, Sager R, Modla S. 73.  et al. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23:3353–73 [Google Scholar]
  74. Lemmon MA, Ferguson KM. 74.  2001. Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem. Soc. Trans. 29:377–84 [Google Scholar]
  75. Lev S. 75.  2010. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat. Rev. Mol. Cell Biol. 11:739–50 [Google Scholar]
  76. Levy A, Erlanger M, Rosenthal M, Epel BL. 76.  2007. A plasmodesmata-associated β-1,3-glucanase in Arabidopsis. Plant J. 49:669–82 [Google Scholar]
  77. Levy A, Zheng JY, Lazarowitz SG. 77.  2015. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25:1–8Showed that SYT1 relocates to PDs and is required for viral propagation in Arabidopsis, suggesting a remodeling of PD MCSs during trafficking. [Google Scholar]
  78. Lingwood D, Simons K. 78.  2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50 [Google Scholar]
  79. Loewen CJR, Roy A, Levine TP. 79.  2003. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22:2025–35 [Google Scholar]
  80. Ma P, Morvan O, Quentin M, Jauneau A, Mareck A, Morvan C. 80.  1998. Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl. Protoplasma 202:175–84 [Google Scholar]
  81. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. 81.  2012. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129–40 [Google Scholar]
  82. Martens S, Kozlov MM, McMahon HT. 82.  2007. How synaptotagmin promotes membrane fusion. Science 316:1205–8 [Google Scholar]
  83. McMahon HT, Boucrot E. 83.  2015. Membrane curvature at a glance. J. Cell Sci. 128:1065–70 [Google Scholar]
  84. Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB. 84.  2010. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. PNAS 107:3900–5 [Google Scholar]
  85. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. 85.  2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–43 [Google Scholar]
  86. Milovanovic D, Honigmann A, Koike S, Göttfert F, Pähler G. 86.  et al. 2015. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nat. Commun. 6:5984 [Google Scholar]
  87. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 87.  2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–75 [Google Scholar]
  88. Moser von Filseck J, Alenka Č, Delfosse V, Vanni S, Jackson CL. 88.  et al. 2015. Phosphatidylserine transport by ORP/OSH proteins is driven by phosphatidylinositol 4-phosphate. Science 349:4322015 [Google Scholar]
  89. Moser von Filseck J, Vanni S, Mesmin B, Antonny B, Drin G. 89.  2015. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat. Commun. 6:6671Demonstrated that Osh4p exchanges sterol for PI(4)P, creating a lipid gradient at the ER–trans-Golgi MCSs. [Google Scholar]
  90. Musetti R, Buxa SV, De Marco F, Loschi A, Polizzotto R. 90.  et al. 2013. Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Mol. Plant-Microbe Interact. 26:379–86 [Google Scholar]
  91. Nakajima K, Sena G, Nawy T, Benfey PN. 91.  2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–11 [Google Scholar]
  92. Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. 92.  2013. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytol. 200:1187–99 [Google Scholar]
  93. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I. 93.  et al. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–54 [Google Scholar]
  94. Orfila C, Knox JP. 94.  2000. Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol. 122:775–81 [Google Scholar]
  95. Overall RL, Blackman LM. 95.  1996. A model of the macromolecular structure of plasmodesmata. Trends Plant Sci. 1:307–11 [Google Scholar]
  96. Pérez-Sancho J, Vanneste S, Lee E, McFarlane H, Esteban del Valle A. 96.  et al. 2015. The Arabidopsis SYT1 is enriched in ER-PM contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 168:132–43Demonstrated for the first time that SYT1 acts as an ER-PM tether in plants, conferring mechanical stability to cells. [Google Scholar]
  97. Perraki A, Binaghi M, Mecchia MA, Gronnier J, German-Retana S. 97.  et al. 2014. StRemorin1.3 hampers Potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity. FEBS Lett. 588:1699–705 [Google Scholar]
  98. Prinz WA. 98.  2014. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205:759–69 [Google Scholar]
  99. Radford JE, White RG. 99.  1998. Localization of a myosin-like protein to plasmodesmata. Plant J. 14:743–50 [Google Scholar]
  100. Radford JE, White RG. 100.  2011. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248:205–16 [Google Scholar]
  101. Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S. 101.  et al. 2009. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21:1541–55 [Google Scholar]
  102. Rodriguez A, Angel CA, Lutz L, Leisner SM, Nelson RS, Schoelz JE. 102.  2014. Association of the P6 protein of Cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiol. 166:1345–58 [Google Scholar]
  103. Roy S, Watada AE, Wergin WP. 103.  1997. Characterization of the cell wall microdomain surrounding plasmodesmata in apple fruit. Plant Physiol. 114:539–47 [Google Scholar]
  104. Rubinstein E. 104.  2011. The complexity of tetraspanins. Biochem. Soc. Trans. 39:501–5 [Google Scholar]
  105. Ryu Y-S, Lee I-H, Suh J-H, Park SC, Oh S. 105.  et al. 2014. Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nat. Commun. 5:4507 [Google Scholar]
  106. Sager R, Lee J-Y. 106.  2014. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J. Exp. Bot. 65:6337–58 [Google Scholar]
  107. Schapire AL, Valpuesta V, Botella MA. 107.  2009. Plasma membrane repair in plants. Trends Plant Sci. 14:645–52 [Google Scholar]
  108. Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R. 108.  et al. 2008. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–88 [Google Scholar]
  109. Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F. 109.  et al. 2014. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510:552–55 [Google Scholar]
  110. Schulz TA, Creutz CE. 110.  2004. The tricalbin C2 domains: lipid-binding properties of a novel, synaptotagmin-like yeast protein family. Biochemistry 43:3987–95 [Google Scholar]
  111. Simon MLA, Platre MP, Assil S, van Wijk R, Chen WY. 111.  et al. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77:322–37 [Google Scholar]
  112. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ. 112.  2009. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–94 [Google Scholar]
  113. Smith RS, Bayer EM. 113.  2009. Auxin transport-feedback models of patterning in plants. Plant Cell Environ. 32:1258–71 [Google Scholar]
  114. Soboloff J, Spassova MA, Dziadek MA, Gill DL. 114.  2006. Calcium signals mediated by STIM and Orai proteins—a new paradigm in inter-organelle communication. Biochim. Biophys. Acta 1763:1161–68 [Google Scholar]
  115. Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S. 115.  et al. 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23:362–71 [Google Scholar]
  116. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD. 116.  2011. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:389–401 [Google Scholar]
  117. Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P. 117.  2012. Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol. 158:190–99 [Google Scholar]
  118. Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P. 118.  2009. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. PNAS 106:17229–34 [Google Scholar]
  119. Su S, Liu Z, Chen C, Zhang Y, Wang X. 119.  et al. 2010. Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–87 [Google Scholar]
  120. Szittya G, Burgyan J. 120.  2013. RNA interference-mediated intrinsic antiviral immunity in plants. Curr. Top. Microbiol. Immunol. 371:123–51 [Google Scholar]
  121. Takeshima H, Hoshijima M, Song L-S. 121.  2015. Ca2+ microdomains organized by junctophilins. Cell Calcium 58:349–56 [Google Scholar]
  122. Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ. 122.  2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLOS Biol. 6:e7 [Google Scholar]
  123. Tian Q, Olsen L, Sun B, Lid SE, Brown RC. 123.  et al. 2007. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19:3127–45 [Google Scholar]
  124. Tilsner J, Amari K, Torrance L. 124.  2011. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60 [Google Scholar]
  125. Tilsner J, Taliansky M, Torrance L. 125.  2014. Plant virus movement. eLS doi: 10.1002/9780470015902.a0020711.pub2 [Google Scholar]
  126. Toulmay A, Prinz WA. 126.  2012. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125:49–58 [Google Scholar]
  127. Tucker EB. 127.  1988. Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174:358–63 [Google Scholar]
  128. Tucker EB, Boss WF. 128.  1996. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol. 111:459–67 [Google Scholar]
  129. Ueki S, Spektor R, Natale DM, Citovsky V. 129.  2010. ANK, a host cytoplasmic receptor for the tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. PLOS Pathog. 6:e1001201 [Google Scholar]
  130. Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S. 130.  et al. 2014. The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141:4139–48Showed that a complex of the receptor kinase STRUBBELIG and the putative calcium-dependent lipid-binding protein QUIRKY mediates non-cell-autonomous signaling at PDs. [Google Scholar]
  131. Van Gestel K, Slegers H, Von Witsch M, Samaj J, Baluska F, Verbelen J-P. 131.  2003. Immunological evidence for the presence of plant homologues of the actin-related protein Arp3 in tobacco and maize: subcellular localization to actin-enriched pit fields and emerging root hairs. Protoplasma 222:45–52 [Google Scholar]
  132. Vanni S, Hirose H, Barelli H, Antonny B, Gautier R. 132.  2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5:4916 [Google Scholar]
  133. Vatén A, Dettmer J, Wu S, Stierhof Y-D, Miyashima S. 133.  et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21:1144–55 [Google Scholar]
  134. Verma DPS, Hong Z. 134.  2001. Plant callose synthase complexes. Plant Mol. Biol. 47:693–701 [Google Scholar]
  135. Vogler H, Kwon M-O, Dang V, Sambade A, Fasler M. 135.  et al. 2008. Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLOS Pathog. 4:e1000038 [Google Scholar]
  136. Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA. 136.  2012. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125:4791–99 [Google Scholar]
  137. Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ. 137.  et al. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24:1397–405 [Google Scholar]
  138. Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ. 137a.  2016. Plant VAP27 proteins: domain characterization, intercellular localization and role in plant development. New Phytol. In press. doi: 10.1111/nph.13857 [Google Scholar]
  139. Wang X, Sager R, Cui W, Zhang C, Lu H, Lee J-Y. 138.  2013. Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25:2315–29Showed that salicylic acid mediates PD closure during antibacterial defense, requiring the PD-localized receptor-like protein PDLP5 to induce callose deposition. [Google Scholar]
  140. Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ. 139.  2005. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17:1704–22 [Google Scholar]
  141. West M, Zurek N, Hoenger A, Voeltz GK. 140.  2011. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193:333–46 [Google Scholar]
  142. White R, Barton D. 141.  2011. The cytoskeleton in plasmodesmata: a role in intercellular transport?. J. Exp. Bot. 62:5249–66 [Google Scholar]
  143. Winter CM, Austin RS, Blanvillain-Baufumé S, Reback MA, Monniaux M. 142.  et al. 2011. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev. Cell 20:430–43 [Google Scholar]
  144. Wu S, Gallagher KL. 143.  2014. The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on endomembrane system. Plant J. 80:396–409 [Google Scholar]
  145. Xie B, Wang X, Zhu M, Zhang Z, Hong Z. 144.  2011. Cals7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 65:1–14 [Google Scholar]
  146. Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PGM. 145.  et al. 2011. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–44 [Google Scholar]
  147. Yamazaki T, Kawamura Y, Minami A, Uemura M. 146.  2008. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–404 [Google Scholar]
  148. Yamazaki T, Takata N, Uemura M, Kawamura Y. 147.  2010. Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J. Biol. Chem. 285:23165–76 [Google Scholar]
  149. Yao X, Wang H, Li H, Yuan Z, Li F. 148.  et al. 2009. Two types of cis-acting elements control the abaxial epidermis-specific transcription of the MIR165a and MIR166a genes. FEBS Lett. 583:3711–17 [Google Scholar]
  150. Yu CH, Guo GQ, Nie XW, Zheng GC. 149.  2004. Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophase and its relation to the formation of secondary plasmodesmata and cytoplasmic channels. Acta Bot. Sin. 46:1443–53 [Google Scholar]
  151. Zavaliev R, Levy A, Gera A, Epel BL. 150.  2013. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses. Mol. Plant-Microbe Interact. 26:1016–30 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-111840
Loading
/content/journals/10.1146/annurev-arplant-043015-111840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error