1932

Abstract

Because the genome stores all genetic information required for growth and development, it is of pivotal importance to maintain DNA integrity, especially during cell division, when the genome is prone to replication errors and damage. Although over the last two decades it has become evident that the basic cell cycle toolbox of plants shares several similarities with those of fungi and mammals, plants appear to have evolved a set of distinct checkpoint regulators in response to different types of DNA stress. This might be a consequence of plants' sessile lifestyle, which exposes them to a set of unique DNA damage–inducing conditions. In this review, we highlight the types of DNA stress that plants typically experience and describe the plant-specific molecular mechanisms that control cell division in response to these stresses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-111902
2016-04-29
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-111902.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111902&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham RT. 1.  2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–96 [Google Scholar]
  2. Adachi S, Minamisawa K, Okushima Y, Inagaki S, Yoshiyama K. 2.  et al. 2011. Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. PNAS 108:10004–9Describes SOG1-dependent activation of endoreplication as a response to DNA stress. [Google Scholar]
  3. Aichinger E, Kornet N, Friedrich T, Laux T. 3.  2012. Plant stem cell niches. Annu. Rev. Plant Biol. 63:615–36 [Google Scholar]
  4. Aklilu BB, Soderquist RS, Culligan KM. 4.  2014. Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res. 42:3104–18 [Google Scholar]
  5. Allen C, Ashley AK, Hromas R, Nickoloff JA. 5.  2011. More forks on the road to replication stress recovery. J. Mol. Cell Biol. 3:4–12 [Google Scholar]
  6. Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME. 6.  2010. Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. Plant Cell 22:3020–33 [Google Scholar]
  7. Amiard S, Da Ines O, Gallego ME, White CI. 7.  2014. Responses to telomere erosion in plants. PLOS ONE 9:e86220 [Google Scholar]
  8. Amiard S, Depeiges A, Allain E, White CI, Gallego ME. 8.  2011. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. Plant Cell 23:4254–65 [Google Scholar]
  9. Amor Y, Babiychuk E, Inzé D, Levine A. 9.  1998. The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett. 440:1–7 [Google Scholar]
  10. Aquea F, Federici F, Moscoso C, Vega A, Jullian P. 10.  et al. 2012. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ. 35:719–34 [Google Scholar]
  11. Bartek J, Lukas J. 11.  2001. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 13:738–47 [Google Scholar]
  12. Bleuyard J-Y, Gallego ME, White CI. 12.  2004. Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113:197–203 [Google Scholar]
  13. Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE. 13.  2012. ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol. Biol. Cell 23:1558–68 [Google Scholar]
  14. Borges HL, Linden R, Wang JYJ. 14.  2008. DNA damage-induced cell death: lessons from the central nervous system. Cell Res. 18:17–26 [Google Scholar]
  15. Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H. 15.  et al. 2009. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol. 150:1482–93 [Google Scholar]
  16. Boudolf V, Vlieghe K, Beemster GTS, Magyar Z, Torres Acosta JA. 16.  et al. 2004. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16:2683–92 [Google Scholar]
  17. Bray CM, West CE. 17.  2005. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol. 168:511–28 [Google Scholar]
  18. Britt AB. 18.  2004. Repair of DNA damage induced by solar UV. Photosynth. Res. 81:105–12 [Google Scholar]
  19. Bundock P, Hooykaas P. 19.  2002. Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14:2451–62 [Google Scholar]
  20. Camacho-Cristóbal JJ, Rexach J, González-Fontes A. 20.  2008. Boron in plants: deficiency and toxicity. J. Integr. Plant Biol. 50:1247–55 [Google Scholar]
  21. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 21.  1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63 [Google Scholar]
  22. Cheng Q, Chen J. 22.  2010. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9:472–78 [Google Scholar]
  23. Churchman ML, Brown ML, Kato N, Kirik V, Hülskamp M. 23.  et al. 2006. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18:3145–57 [Google Scholar]
  24. Ciccia A, Elledge SJ. 24.  2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204 [Google Scholar]
  25. Clowes FAL. 25.  1959. Reorganization of root apices after irradiation. Ann. Bot. 23:205–10 [Google Scholar]
  26. Cools T, De Veylder L. 26.  2009. DNA stress checkpoint control and plant development. Curr. Opin. Plant Biol. 12:23–28 [Google Scholar]
  27. Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N. 27.  et al. 2011. The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. Plant Cell 23:1435–48Reports that, in addition to controlling cell cycle arrest, the plant WEE1 kinase has an indirect developmental function that is important for meristem maintenance during replication stress. [Google Scholar]
  28. Cruz-Ramírez A, Díaz-Triviño S, Wachsman G, Du Y, Arteága-Vázquez M. 28.  et al. 2013. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLOS Biol. 11:e1001724 [Google Scholar]
  29. Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB. 29.  2006. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 48:947–61 [Google Scholar]
  30. Culligan KM, Tissier A, Britt A. 30.  2004. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–104 [Google Scholar]
  31. Curtis MJ, Hays JB. 31.  2007. Tolerance of dividing cells to replication stress in UVB-irradiated Arabidopsis roots: requirements for DNA translesion polymerases η and ζ. DNA Repair 6:1341–58 [Google Scholar]
  32. Curtis MJ, Hays JB. 32.  2011. Cooperative responses of DNA-damage-activated protein kinases ATR and ATM and DNA translesion polymerases to replication-blocking DNA damage in a stem-cell niche. DNA Repair 10:1272–81 [Google Scholar]
  33. De Schutter K, Joubès J, Cools T, Verkest A, Corellou F. 33.  et al. 2007. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–25Demonstrates that transcriptional activation of the WEE1 kinase gene is essential for plants to adapt to replication-inhibiting conditions. [Google Scholar]
  34. De Veylder L, Larkin JC, Schnittger A. 34.  2011. Molecular control and function of endoreplication in development and physiology. Trends Plant Sci. 16:624–34 [Google Scholar]
  35. Delacroix S, Wagner JM, Kobayashi M, Yamamoto K-I, Karnitz LM. 35.  2007. The Rad9–Hus1–Rad1 (9–1–1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21:1472–77 [Google Scholar]
  36. Dhankher OP, Rosen BP, McKinney EC, Meagher RB. 36.  2006. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). PNAS 103:5413–18 [Google Scholar]
  37. Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. 37.  2009. H2AX: functional roles and potential applications. Chromosoma 118:683–92 [Google Scholar]
  38. Dinneny JR, Benfey PN. 38.  2008. Plant stem cell niches: standing the test of time. Cell 132:553–57 [Google Scholar]
  39. Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL. 39.  et al. 2009. Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21:3641–54 [Google Scholar]
  40. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. 40.  2002. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32:1102–15 [Google Scholar]
  41. Donjerkovic D, Scott DW. 41.  2000. Regulation of the G1 phase of the mammalian cell cycle. Cell Res. 10:1–16 [Google Scholar]
  42. Durrant WE, Wang S, Dong X. 42.  2007. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. PNAS 104:4223–27 [Google Scholar]
  43. Enserink JM, Kolodner RD. 43.  2010. An overview of Cdk1-controlled targets and processes. Cell Div. 5:11 [Google Scholar]
  44. Eschbach V, Kobbe D. 44.  2014. Different replication protein A complexes of Arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition. Plant Cell Physiol. 55:1460–72 [Google Scholar]
  45. Favory J-J, Stec A, Gruber H, Rizzini L, Oravecz A. 45.  et al. 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28:591–601 [Google Scholar]
  46. Friesner JD, Liu B, Culligan K, Britt AB. 46.  2005. Ionizing radiation-dependent γ-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol. Biol. Cell 16:2566–76 [Google Scholar]
  47. Frohnmeyer H, Staiger D. 47.  2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 133:1420–28 [Google Scholar]
  48. Fulcher N, Sablowski R. 48.  2009. Hypersensitivity to DNA damage in plant stem cell niches. PNAS 106:20984–88Demonstrates that stem cells undergo cell death in response to DSBs in an ATM- and ATR-dependent manner, which likely represents a mechanism to safeguard genome integrity. [Google Scholar]
  49. Furukawa T, Curtis MJ, Tominey CM, Duong YH, Wilcox BWL. 49.  et al. 2010. A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation. DNA Repair 9:940–48 [Google Scholar]
  50. Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI. 50.  2001. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J. 25:31–41 [Google Scholar]
  51. Gallego ME, White CI. 51.  2001. RAD50 function is essential for telomere maintenance in Arabidopsis. PNAS 98:1711–16 [Google Scholar]
  52. Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A. 52.  2003. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–32 [Google Scholar]
  53. Gherbi H, Gallego ME, Jalut N, Lucht JM, Hohn B, White CI. 53.  2001. Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep. 2:287–91 [Google Scholar]
  54. González Besteiro MA, Bartels S, Albert A, Ulm R. 54.  2011. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J. 68:727–37 [Google Scholar]
  55. González Besteiro MA, Ulm R. 55.  2013. ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis. Plant J. 73:1034–43 [Google Scholar]
  56. Harper JW, Elledge SJ. 56.  2007. The DNA damage response: ten years after. Mol. Cell 28:739–45 [Google Scholar]
  57. Hartung F, Suer S, Bergmann T, Puchta H. 57.  2006. The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A. Nucleic Acids Res. 34:4438–48 [Google Scholar]
  58. Hartung F, Suer S, Puchta H. 58.  2007. Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana. PNAS 104:18836–41 [Google Scholar]
  59. Hashimura Y, Ueguchi C. 59.  2011. The Arabidopsis MERISTEM DISORGANIZATION 1 gene is required for the maintenance of stem cells through the reduction of DNA damage. Plant J. 68:657–69 [Google Scholar]
  60. Heitzeberg F, Chen I-P, Hartung F, Orel N, Angelis KJ, Puchta H. 60.  2004. The Rad17 homologue of Arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant J. 38:954–68 [Google Scholar]
  61. Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J. 61.  et al. 2013. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342:860–63Characterizes a rate-limiting factor of QC cell division, controlling stem cell replenishment upon loss of stem cells by DNA damage. [Google Scholar]
  62. Heyman J, Kumpf RP, De Veylder L. 62.  2014. A quiescent path to plant longevity. Trends Cell Biol. 24:443–48 [Google Scholar]
  63. Hirano T. 63.  2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26:1659–78 [Google Scholar]
  64. Hisanaga T, Ferjani A, Horiguchi G, Ishikawa N, Fujikura U. 64.  et al. 2013. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. Plant Physiol. 162:831–41 [Google Scholar]
  65. Hochegger H, Takeda S, Hunt T. 65.  2008. Cyclin-dependent kinases and cell-cycle transitions: Does one fit all?. Nat. Rev. Mol. Cell Biol. 9:910–16 [Google Scholar]
  66. Hu Z, Cools T, Kalhorzadeh P, Heyman J, De Veylder L. 66.  2015. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links. Plant Cell 27:149–61Identifies a SOG1-dependent checkpoint in response to DNA cross-links that avoids the need for WEE1, demonstrating the existence of a WEE1-independent replication checkpoint. [Google Scholar]
  67. Huang D, Moffat J, Wilson WA, Moore L, Cheng C. 67.  et al. 1998. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol. Cell. Biol. 18:3289–99 [Google Scholar]
  68. Hudik E, Yoshioka Y, Domenichini S, Bourge M, Soubigout-Taconnat L. 68.  et al. 2014. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. Plant Physiol 166:152–67 [Google Scholar]
  69. Ide S, Miyazaki T, Maki H, Kobayashi T. 69.  2010. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–96 [Google Scholar]
  70. Inagaki S, Umeda M. 70.  2011. Cell-cycle control and plant development. Int. Rev. Cell Mol. Biol. 291:227–61 [Google Scholar]
  71. Ivanov R, Tiedemann J, Czihal A, Schallau A, Diep LH. 71.  et al. 2008. EFFECTOR OF TRANSCRIPTION2 is involved in xylem differentiation and includes a functional DNA single strand cutting domain. Dev. Biol. 313:93–106 [Google Scholar]
  72. Johnson DG, Walker CL. 72.  1999. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39:295–312 [Google Scholar]
  73. Kalhorzadeh P, Hu Z, Cools T, Amiard S, Willing E-M. 73.  et al. 2014. Arabidopsis thaliana RNase H2 deficiency counteracts the needs for the WEE1 checkpoint kinase but triggers genome instability. Plant Cell 26:3680–92 [Google Scholar]
  74. Kaya H, Shibahara K-I, Taoka K-I, Iwabuchi M, Stillman B, Araki T. 74.  2001. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–42 [Google Scholar]
  75. Kirik V, Schrader A, Uhrig JF, Hulskamp M. 75.  2007. MIDGET unravels functions of the Arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing. Plant Cell 19:3100–10 [Google Scholar]
  76. Lamarche BJ, Orazio NI, Weitzman MD. 76.  2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 584:3682–95 [Google Scholar]
  77. Lammens T, Li J, Leone G, De Veylder L. 77.  2009. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19:111–18 [Google Scholar]
  78. Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K. 78.  et al. 2004. A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. PNAS 101:13380–85 [Google Scholar]
  79. Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD. 79.  2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 41:353–63 [Google Scholar]
  80. Leehy KA, Lee JR, Song X, Renfrew KB, Shippen DE. 80.  2013. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. Plant Cell 25:1343–54 [Google Scholar]
  81. Li X, Zhang Y, Clarke JD, Li Y, Dong X. 81.  1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98:329–39 [Google Scholar]
  82. Lindqvist A, Rodríguez-Bravo V, Medema RH. 82.  2009. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185:193–202 [Google Scholar]
  83. Loog M, Morgan DO. 83.  2005. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434:104–8 [Google Scholar]
  84. Lumsden P. 84.  1997. Plants and UV-B: Responses to Environmental Change. Soc. Exp. Biol. Semin. Ser. 64 Cambridge, UK: Cambridge Univ. Press
  85. Malumbres M. 85.  2014. Cyclin-dependent kinases. Genome Biol. 15:122 [Google Scholar]
  86. Malumbres M, Barbacid M. 86.  2005. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30:630–41 [Google Scholar]
  87. Mao Z, Bozzella M, Seluanov A, Gorbunova V. 87.  2008. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7:1765–71 [Google Scholar]
  88. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 88.  2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–98 [Google Scholar]
  89. Mourelatou M, Doonan JH, McCann MC. 89.  2004. Transition of G1 to early S phase may be required for zinnia mesophyll cells to trans-differentiate to tracheary elements. Planta 220:172–76 [Google Scholar]
  90. Nawkar GM, Maibam P, Park JH, Sahi VP, Lee SY, Kang CH. 90.  2013. UV-induced cell death in plants. Int. J. Mol. Sci. 14:1608–28 [Google Scholar]
  91. Nezames CD, Sjogren CA, Barajas JF, Larsen PB. 91.  2012. The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–21 [Google Scholar]
  92. O'Brien JA, Daudi A, Butt VS, Bolwell GP. 92.  2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–79 [Google Scholar]
  93. Ohtani N, Zebedee Z, Huot TJG, Stinson JA, Sugimoto M. 93.  et al. 2001. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–70 [Google Scholar]
  94. Peres A, Churchman ML, Hariharan S, Himanen K, Verkest A. 94.  et al. 2007. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J. Biol. Chem. 282:25588–96 [Google Scholar]
  95. Perry JA, Kornbluth S. 95.  2007. Cdc25 and Wee1: analogous opposites?. Cell Div. 2:12 [Google Scholar]
  96. Potts PR. 96.  2009. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. DNA Repair 8:499–506 [Google Scholar]
  97. Preuss SB, Britt AB. 97.  2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics 164:323–34 [Google Scholar]
  98. Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. 98.  2004. Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–78 [Google Scholar]
  99. Radziejwoski A, Vlieghe K, Lammens T, Berckmans B, Maes S. 99.  et al. 2011. Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO J. 30:355–63 [Google Scholar]
  100. Ramirez-Parra E, Gutierrez C. 100.  2007. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol. 144:105–20 [Google Scholar]
  101. Recker J, Knoll A, Puchta H. 101.  2014. The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability. Plant Cell 26:4889–902 [Google Scholar]
  102. Ricaud L, Proux C, Renou J-P, Pichon O, Fochesato S. 102.  et al. 2007. ATM-mediated transcriptional and developmental responses to γ-rays in Arabidopsis. PLOS ONE 2:e430 [Google Scholar]
  103. Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A. 103.  et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–6 [Google Scholar]
  104. Roldán-Arjona T, Ariza RR. 104.  2009. Repair and tolerance of oxidative DNA damage in plants. Mutat. Res. 681:169–79 [Google Scholar]
  105. Rounds MA, Larsen PB. 105.  2008. Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr. Biol 18:1495–500 [Google Scholar]
  106. Sakamoto AN, Lan VTT, Puripunyavanich V, Hase Y, Yokota Y. 106.  et al. 2009. A UVB-hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response. Plant J. 60:509–17 [Google Scholar]
  107. Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S. 107.  et al. 2011. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23:3533–46 [Google Scholar]
  108. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. 108.  2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73:39–85 [Google Scholar]
  109. Schärer OD. 109.  2003. Chemistry and biology of DNA repair. Angew. Chem. Int. Ed. 42:2946–74 [Google Scholar]
  110. Schrader A, Welter B, Hulskamp M, Hoecker U, Uhrig JF. 110.  2013. MIDGET connects COP1-dependent development with endoreduplication in Arabidopsis thaliana. Plant J. 75:67–79 [Google Scholar]
  111. Shimotohno A, Umeda-Hara C, Bisova K, Uchimiya H, Umeda M. 111.  2004. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Cell 16:2954–66 [Google Scholar]
  112. Sjogren CA, Bolaris SC, Larsen PB. 112.  2015. Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. Plant Cell 27:2501–15 [Google Scholar]
  113. Smith J, Tho LM, Xu N, Gillespie DA. 113.  2010. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 108:73–112 [Google Scholar]
  114. Song J, Bent AF. 114.  2014. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLOS Pathog. 10:e1004030 [Google Scholar]
  115. Song J, Durrant WE, Wang S, Yan S, Tan EH, Dong X. 115.  2011. DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe 9:115–24 [Google Scholar]
  116. Suram A, Rao JKS, Latha KS, Viswamitra MA. 116.  2002. First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer's brain. Neuromol. Med. 2:289–97 [Google Scholar]
  117. Surova O, Zhivotovsky B. 117.  2013. Various modes of cell death induced by DNA damage. Oncogene 32:3789–97 [Google Scholar]
  118. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC. 118.  et al. 2009. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36:207–18 [Google Scholar]
  119. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. 119.  2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14:691–99 [Google Scholar]
  120. Sweeney PR, Britt AB, Culligan KM. 120.  2009. The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors. Plant J. 60:518–26 [Google Scholar]
  121. Takahashi N, Lammens T, Boudolf V, Maes S, Yoshizumi T. 121.  et al. 2008. The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J. 27:1840–51Characterizes ETG1-deficient plants and reveals that the ATR-WEE1 signaling cascade plays an important role in plant development in the presence of DNA damage. [Google Scholar]
  122. Takahashi N, Quimbaya M, Schubert V, Lammens T, Vandepoele K. 122.  et al. 2010. The MCM-binding protein ETG1 aids sister chromatid cohesion required for postreplicative homologous recombination repair. PLOS Genet. 6:e1000817 [Google Scholar]
  123. Torres MA, Dangl JL, Jones JDG. 123.  2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. PNAS 99:517–22 [Google Scholar]
  124. Tsang CK, Li H, Zheng XFS. 124.  2007. Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J. 26:448–58 [Google Scholar]
  125. Tsang CK, Wei Y, Zheng XFS. 125.  2007. Compacting DNA during the interphase: Condensin maintains rDNA integrity. Cell Cycle 6:2213–18 [Google Scholar]
  126. Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T. 126.  et al. 2002. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 21:6483–93 [Google Scholar]
  127. Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J. 127.  2001. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev. 15:699–709 [Google Scholar]
  128. Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E. 128.  et al. 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6:397 [Google Scholar]
  129. Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S. 129.  et al. 2011. Extranuclear protection of chromosomal DNA from oxidative stress. PNAS 108:1711–16 [Google Scholar]
  130. Vannier J-B, Depeiges A, White C, Gallego ME. 130.  2006. Two roles for Rad50 in telomere maintenance. EMBO J. 25:4577–85 [Google Scholar]
  131. Vousden KH, Lu X. 131.  2002. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2:594–604 [Google Scholar]
  132. Wang C, Liu Z. 132.  2006. Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–65 [Google Scholar]
  133. Wang S, Durrant WE, Song J, Spivey NW, Dong X. 133.  2010. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. PNAS 107:22716–21 [Google Scholar]
  134. Wimmer MA, Lochnit G, Bassil E, Mühling KH, Goldbach HE. 134.  2009. Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant Cell Physiol. 50:1292–304 [Google Scholar]
  135. Wood JL, Liang Y, Li K, Chen J. 135.  2008. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J. Biol. Chem. 283:29586–92 [Google Scholar]
  136. Xiao Y, Weaver DT. 136.  1997. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25:2985–91 [Google Scholar]
  137. Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T. 137.  et al. 1999. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18:6619–29 [Google Scholar]
  138. Yan S, Wang W, Marqués J, Mohan R, Saleh A. 138.  et al. 2013. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52:602–10 [Google Scholar]
  139. Yi D, Alvim Kamei CL, Cools T, Vanderauwera S, Takahashi N. 139.  et al. 2014. The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species. Plant Cell 26:296–309 [Google Scholar]
  140. Yoshiyama KO, Conklin PA, Huefner ND, Britt AB. 140.  2009. Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. PNAS 106:12843–48Identifies SOG1 as a central transcription factor in the plant DNA damage response. [Google Scholar]
  141. Yoshiyama KO, Kimura S, Maki H, Britt AB, Umeda M. 141.  2014. The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response. Plant Signal. Behav. 9:e28889 [Google Scholar]
  142. Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S. 142.  et al. 2013. ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep. 14:817–22Reports that SOG1 activity is controlled through phosphorylation by ATM. [Google Scholar]
  143. Zhu J, Petersen S, Tessarollo L, Nussenzweig A. 143.  2001. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11:105–9 [Google Scholar]
  144. Zou L, Elledge SJ. 144.  2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–48 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-111902
Loading
/content/journals/10.1146/annurev-arplant-043015-111902
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error