Cutin, a polyester composed mostly of oxygenated fatty acids, serves as the framework of the plant cuticle. The same types of cutin monomers occur across most plant lineages, although some evolutionary trends are evident. Additionally, cutins from some species have monomer profiles that are characteristic of the related polymer suberin. Compositional differences likely have profound structural consequences, but little is known about cutin's molecular organization and architectural heterogeneity. Its biological importance is suggested by the wide variety of associated mutants and gene-silencing lines that show a disruption of cuticular integrity, giving rise to numerous physiological and developmental abnormalities. Mapping and characterization of these mutants, along with suppression of gene paralogs through RNA interference, have revealed much of the biosynthetic pathway and several regulatory factors; however, the mechanisms of cutin polymerization and its interactions with other cuticle and cell wall components are only now beginning to be resolved.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agulló C, Collar C, Seoane E. 1.  1984. Free and bound hydroxyl and carboxyl groups in the cutin of Quercus suber leaves. Phytochemistry 23:2059–60 [Google Scholar]
  2. Badenes SM, Lemos F, Cabral JMS. 2.  2011. Performance of a cutinase membrane reactor for the production of biodiesel in organic media. Biotechnol. Bioeng. 108:1279–89 [Google Scholar]
  3. Bargel H, Neinhuis C. 3.  2005. Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot. 56:1049–60 [Google Scholar]
  4. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP. 4.  et al. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu. Rev. Ecol. Syst. 29:263–92 [Google Scholar]
  5. 5. BCC Research 2014. Global markets for enzymes in industrial applications Rep. BIO030H, BCC Res., Wellesley, MA. http://www.bccresearch.com/market-research/biotechnology/enzymes-industrial-applications-bio030h.html [Google Scholar]
  6. Beisson F, Li-Beisson Y, Pollard M. 6.  2012. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr. Opin. Plant Biol. 15:329–37 [Google Scholar]
  7. Benavente J, Ramos-Barrado J, Heredia A. 7.  1998. A study of the electrical behaviour of isolated tomato cuticular membranes and cutin by impedance spectroscopy measurements. Colloid Surf. A 140:333–38 [Google Scholar]
  8. Bessire M, Borel S, Fabre G, Carraca L, Efremova N. 8.  et al. 2011. A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–70 [Google Scholar]
  9. Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S. 9.  et al. 2007. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158–68 [Google Scholar]
  10. Bird D, Beisson F, Brigham A, Shin J, Greer S. 10.  et al. 2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J. 52:485–98 [Google Scholar]
  11. Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F. 11.  et al. 2014. The genome of the highly stress tolerant wild tomato species Solanum pennellii. Nat. Genet. 46:1034–38 [Google Scholar]
  12. Brissos V, Eggert T, Cabral JMS, Jaeger KE. 12.  2008. Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Eng. Des. Sel. 21:387–93 [Google Scholar]
  13. Buda GJ, Barnes WJ, Fich EA, Park S, Yeats TH. 13.  et al. 2013. An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. Plant Cell 25:4000–13 [Google Scholar]
  14. Buda GJ, Isaacson T, Matas AJ, Paolillo DJ, Rose JKC. 14.  2009. Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy. Plant J. 60:378–85 [Google Scholar]
  15. Caldicott AB, Eglinton G. 15.  1976. Cutin acids from bryophytes: an ω-l hydroxy alkanoic acid in two liverwort species. Phytochemistry 15:1139–43 [Google Scholar]
  16. Caldicott AB, Simoneit BRT, Eglinton G. 16.  1975. Alkanetriols in Psilophyte cutins. Phytochemistry 14:2223–28 [Google Scholar]
  17. Chamel A, Pineri M, Escoubes M. 17.  1991. Quantitative determination of water sorption by plant cuticles. Plant Cell Environ. 14:87–95 [Google Scholar]
  18. Chassot C, Nawrath C, Metraux JP. 18.  2007. Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–80 [Google Scholar]
  19. Chen S, Su L, Chen J, Wu J. 19.  2013. Cutinase: characteristics, preparation, and application. Biotechnol. Adv. 31:1754–67 [Google Scholar]
  20. Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. 20.  2008. Identification and characterization of bacterial cutinase. J. Biol. Chem. 283:25854–62 [Google Scholar]
  21. Cock ME, Graham LE. 21.  1998. Structural similarities between surface layers of selected charophycean algae and bryophytes and the cuticles of vascular plants. Int. J. Plant Sci. 159:780–87 [Google Scholar]
  22. Deas AHB, Holloway PJ. 22.  1977. The intermolecular structure of some plant cutins. Lipids and Lipid Polymers in Higher Plants M Tevini, HK Lichtenthaler 293–99 Berlin: Springer [Google Scholar]
  23. DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R. 23.  et al. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–38 [Google Scholar]
  24. Deshmukh AP, Simpson AJ, Hadad CM, Hatcher PG. 24.  2005. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org. Geochem. 36:1072–85 [Google Scholar]
  25. Deshmukh AP, Simpson AJ, Hatcher PG. 25.  2003. Evidence for crosslinking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry 64:1163–70 [Google Scholar]
  26. Dickman MB, Patil SS, Kolattukudy PE. 26.  1982. Purification, characterization and role in infection of an extracellular cutinolytic enzyme from Colletotrichum gloeosporioides Penz. on Carica papaya L. Physiol. Plant Pathol. 20:333–47 [Google Scholar]
  27. Domínguez E, Cuartero J, Heredia A. 27.  2011. An overview on plant cuticle biomechanics. Plant Sci. 181:77–84 [Google Scholar]
  28. Domínguez E, Heredia-Guerrero JA, Benítez JJ, Heredia A. 28.  2010. Self-assembly of supramolecular lipid nanoparticles in the formation of plant biopolyester cutin. Mol. Biosyst. 6:948–50 [Google Scholar]
  29. Duan H, Schuler MA. 29.  2005. Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiol. 137:1067–81 [Google Scholar]
  30. Edwards D, Abbott GD, Raven JA. 30.  1996. Cuticles of early land plants: a palaeoecophysiological evaluation. Plant Cuticles: An Integrated Functional Approach G Kerstiens 1–32 Oxford, UK: BIOS [Google Scholar]
  31. Fang X, Qiu F, Yan B, Wang H, Mort AJ, Stark RE. 31.  2001. NMR studies of molecular structure in fruit cuticle polyesters. Phytochemistry 57:1035–42 [Google Scholar]
  32. Flipsen JAC, Appel ACM, van der Hijden HTWM, Verrips CT. 32.  1998. Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzyme Microb. Technol. 23:274–80 [Google Scholar]
  33. Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A. 33.  et al. 2005. Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643–58 [Google Scholar]
  34. Garbow JR, Stark RE. 34.  1990. Nuclear magnetic relaxation studies of plant polyester dynamics. 1. Cutin from limes. Macromolecules 23:2814–19 [Google Scholar]
  35. Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V. 35.  et al. 2015. Transcriptional activity of the MADS box ARLEQUIN/ TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol. 168:1036–48 [Google Scholar]
  36. Girard A-L, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K. 36.  et al. 2012. Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–34 [Google Scholar]
  37. Goñi MA, Hedges JI. 37.  1990. Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments. Geochim. Cosmochim. Acta 54:3073–81 [Google Scholar]
  38. Graça J, Lamosa P. 38.  2010. Linear and branched poly(ω-hydroxyacid) esters in plant cutins. J. Agric. Food Chem. 58:9666–74 [Google Scholar]
  39. Graça J, Schreiber L, Rodrigues J, Pereira H. 39.  2002. Glycerol and glyceryl esters of ω-hydroxyacids in cutins. Phytochemistry 61:205–15 [Google Scholar]
  40. Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P. 40.  et al. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268:12843–47 [Google Scholar]
  41. Gupta NS. 41.  2014. Molecular decay of plant biopolymers. Biopolymers: A Molecular Paleontology Approach N Landman, PJ Harries 1–16 Top. Geobiol 38 Dordrecht, Neth.: Springer [Google Scholar]
  42. Guzmán P, Fernández V, García ML, Khayet M, Fernández A, Gil L. 42.  2014. Localization of polysaccharides in isolated and intact cuticles of eucalypt, poplar and pear leaves by enzyme-gold labelling. Plant Physiol. Biochem. 76:1–6 [Google Scholar]
  43. Guzmán P, Fernández V, Graça J, Cabral V, Kayali N. 43.  et al. 2014. Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region. Front. Plant Sci. 5:481 [Google Scholar]
  44. Han JX, Clement JM, Li J, King A, Ng S, Jaworski JG. 44.  2010. The cytochrome P450 CYP86A22 is a fatty acyl-CoA ω-hydroxylase essential for estolide synthesis in the stigma of Petunia hybrida. J. Biol. Chem. 285:3986–96 [Google Scholar]
  45. Hen-Avivi S, Lashbrooke J, Costa F, Aharoni A. 45.  2014. Scratching the surface: genetic regulation of cuticle assembly in fleshy fruit. J. Exp. Bot. 65:4653–64 [Google Scholar]
  46. Holloway PJ. 46.  1973. Cutins of Malus pumila fruits and leaves. Phytochemistry 12:2913–20 [Google Scholar]
  47. Holloway PJ. 47.  1982. The chemical constitution of plant cutins. The Plant Cuticle DF Cutler, KL Alvin, CE Price 45–85 London: Academic [Google Scholar]
  48. Hunneman DH, Eglinton G. 48.  1972. The constituent acids of gymnosperm cutins. Phytochemistry 11:1989–2001 [Google Scholar]
  49. Hwang BY. 49.  2012. Directed evolution of cutinase using in vitro compartmentalization. Biotechnol. Bioprocess Eng. 17:500–505 [Google Scholar]
  50. Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y. 50.  et al. 2009. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J. 60:363–77 [Google Scholar]
  51. Javelle M, Vernoud V, Depège-Fargeix N, Arnould C, Oursel D. 51.  et al. 2010. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor OUTER CELL LAYER1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol. 154:273–86 [Google Scholar]
  52. Jeffree CE. 52.  2006. The fine structure of the plant cuticle. Biology of the Plant Cuticle M Riederer, C Müller 11–125 Annu. Plant Rev. 23 Oxford, UK: Blackwell [Google Scholar]
  53. Jelsch C, Longhi S, Cambillau C. 53.  1998. Packing forces in nine crystal forms of cutinase. Proteins 31:320–33 [Google Scholar]
  54. Kannangara R, Branigan C, Liu Y, Penfield T, Rao V. 54.  et al. 2007. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–94 [Google Scholar]
  55. Kenrick P, Crane PR. 55.  1997. The origin and early evolution of plants on land. Nature 389:33–39 [Google Scholar]
  56. Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC. 56.  2012. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–403 [Google Scholar]
  57. Kissinger M, Tuvia-Alkalai S, Shalom Y, Fallik E, Elkind Y. 57.  et al. 2005. Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. J. Am. Soc. Hortic. Sci. 130:735–41 [Google Scholar]
  58. Kolattukudy PE. 58.  1977. Lipid polymers and associated phenols, their chemistry, biosynthesis, and role in pathogenesis. Recent Adv. Phytochem. 77:185–246 [Google Scholar]
  59. Kolattukudy PE. 59.  1980. Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000 [Google Scholar]
  60. Kosma DK, Bourdenx B, Bernard A, Parsons EP, S. 60.  et al. 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151:1918–29 [Google Scholar]
  61. Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R. 61.  et al. 2014. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 80:216–29 [Google Scholar]
  62. Krolikowski KA, Victor JL, Wagler TN, Lolle SJ, Pruitt RE. 62.  2003. Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. Plant J. 35:501–11 [Google Scholar]
  63. Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D. 63.  et al. 2006. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–39 [Google Scholar]
  64. Kurdyukov S, Faust A, Trenkamp S, Bär S, Franke R. 64.  et al. 2006. Genetic and biochemical evidence for involvement of HOTHEAD in the synthesis of long-chain α-,ω-dicarboxylic acids in the formation of extracellular matrix. Planta 224:315–29 [Google Scholar]
  65. Kutschera U, Bergfeld R, Schopfer P. 65.  1987. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta 170:168–80 [Google Scholar]
  66. Kutschera U, Niklas KJ. 66.  2007. The epidermal-growth-control theory of stem elongation: an old and new perspective. J. Plant Physiol. 164:1395–409 [Google Scholar]
  67. Lee SB, Go YS, Bae HJ, Park JH, Cho SH. 67.  et al. 2009. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 150:42–54 [Google Scholar]
  68. Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G. 68.  2007. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a β-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol. 144:1667–79 [Google Scholar]
  69. Lendzian KJ, Nakajima A, Ziegler H. 69.  1986. Isolation of cuticular membranes from various conifer needles. Trees 1:47–53 [Google Scholar]
  70. Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J. 70.  2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. PNAS 104:18339–44 [Google Scholar]
  71. Li Y, Beisson F, Ohlrogge J, Pollard M. 71.  2007. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol. 144:1267–77 [Google Scholar]
  72. Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F. 72.  2009. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. PNAS 106:22008–13 [Google Scholar]
  73. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V. 73.  et al. 2013. Acyl-lipid metabolism. Arabidopsis Book 8:e0133 [Google Scholar]
  74. Lisso J, Schröder F, Schippers JHM, Müssig C. 74.  2012. NFXL2 modifies cuticle properties in Arabidopsis. Plant Signal. Behav. 7:551–55 [Google Scholar]
  75. Longhi S, Czjzek M, Lamzin V, Nicolas A, Cambillau C. 75.  1997. Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J. Mol. Biol. 268:779–99 [Google Scholar]
  76. Longhi S, Mannesse M, Verheij HM, De Haas GH, Egmond M. 76.  et al. 1997. Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Protein Sci. 6:275–86 [Google Scholar]
  77. López-Casado G, Matas AJ, Domínguez E, Cuartero J, Heredia A. 77.  2007. Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides. J. Exp. Bot. 58:3875–83 [Google Scholar]
  78. Lu S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA. 78.  2009. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J. 59:553–64 [Google Scholar]
  79. Luque P, Bruque S, Heredia A. 79.  1995. Water permeability of isolated cuticular membranes—a structural analysis. Arch. Biochem. Biophys. 317:417–22 [Google Scholar]
  80. Martin LBB, Rose JKC. 80.  2014. There's more than one way to skin a fruit: formation and functions of fruit cuticles. J. Exp. Bot. 65:4639–51 [Google Scholar]
  81. Martinez C, Nicolas A, van Tilbeurgh H, Egloff MP, Cudrey C. 81.  et al. 1994. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33:83–89 [Google Scholar]
  82. Matas AJ, Cobb ED, Bartsch JA, Paolillo DJ, Niklas KJ. 82.  2004. Biomechanics and anatomy of Lycopersicon esculentum fruit peels and enzyme-treated samples. Am. J. Bot. 91:352–60 [Google Scholar]
  83. Matas AJ, Heredia A. 83.  1999. Molecular dynamics modellization and simulation of water diffusion through plant cutin. Z. Naturforsch. 54:896–902 [Google Scholar]
  84. McCoy M. 84.  2001. Novozymes emerges. Chem. Eng. News 79:23–25 [Google Scholar]
  85. Molina I, Ohlrogge JB, Pollard M. 85.  2008. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J. 53:437–49 [Google Scholar]
  86. Müller K, Levesque-Tremblay G, Fernandes A, Wormit A, Bartels S. 86.  et al. 2013. Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation. Plant Signal. Behav. 8:e26464 [Google Scholar]
  87. Murphy CA, Cameron JA, Huang SJ, Vinopal RT. 87.  1996. Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 62:456–60 [Google Scholar]
  88. Nadakuduti SS, Pollard M, Kosma DK, Allen C, Ohlrogge JB, Barry CS. 88.  2012. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol. 159:945–60 [Google Scholar]
  89. Niklas KJ. 89.  1976. Chemical examinations of some non-vascular paleozoic plants. Brittonia 28:113–37 [Google Scholar]
  90. Nip M, Tegelaar EW, de Leeuw JW, Schenck PA, Holloway PJ. 90.  1986. A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73:579–85 [Google Scholar]
  91. Norris RF, Bukovac MJ. 91.  1968. Structure of the pear leaf cuticle with special reference to cuticular penetration. Am. J. Bot. 55:975–83 [Google Scholar]
  92. Orgell WH. 92.  1955. The isolation of plant cuticle with pectic enzymes. Plant Physiol. 30:78–80 [Google Scholar]
  93. Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. 93.  2013. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–24 [Google Scholar]
  94. Panikashvili D, Shi JX, Schreiber L, Aharoni A. 94.  2009. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol. 151:1773–89 [Google Scholar]
  95. Panikashvili D, Shi JX, Schreiber L, Aharoni A. 95.  2011. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol. 190:113–24 [Google Scholar]
  96. Pollard M, Beisson F, Li Y, Ohlrogge JB. 96.  2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–46 [Google Scholar]
  97. Pulsifer IP, Kluge S, Rowland O. 97.  2012. Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast. Plant Physiol. Biochem. 51:31–39 [Google Scholar]
  98. Rani SH, Krishna THA, Saha S, Negi AS, Rajasekharan R. 98.  2010. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J. Biol. Chem. 285:38337–47 [Google Scholar]
  99. Rautengarten C, Ebert B, Ouellet M, Nafisi M, Baidoo EEK. 99.  et al. 2012. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiol. 158:654–65 [Google Scholar]
  100. Roussel A, Amara S, Nyyssölä A, Mateos-Diaz E, Blangy S. 100.  et al. 2014. A cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases. J. Mol. Biol. 22:3757–72 [Google Scholar]
  101. Rupasinghe SG, Duan H, Schuler MA. 101.  2007. Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins 68:279–93 [Google Scholar]
  102. Saladié M, Matas AJ, Isaacson T, Jenks MA, Goodwin M. 102.  et al. 2007. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 144:1012–28 [Google Scholar]
  103. Samuels L, Kunst L, Jetter R. 103.  2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59:683–707 [Google Scholar]
  104. Samuels L, McFarlane HE. 104.  2012. Plant cell wall secretion and lipid traffic at membrane contact sites of the cell cortex. Protoplasma 249:Suppl. 1S19–23 [Google Scholar]
  105. Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V. 105.  2012. Up-to-date insight on industrial enzymes applications and global market. J. Bioprocess. Biotech. S4:002 [Google Scholar]
  106. Sauveplane V, Kandel S, Kastner PE, Ehlting J, Compagnon V. 106.  et al. 2009. Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J 276:719–35 [Google Scholar]
  107. Savaldi-Goldstein S, Peto C, Chory J. 107.  2007. The epidermis both drives and restricts plant shoot growth. Nature 446:199–202 [Google Scholar]
  108. Schnurr J, Shockey J, Browse J. 108.  2004. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–42 [Google Scholar]
  109. Schönherr J, Bukovac MJ. 109.  1973. Ion exchange properties of isolated tomato fruit cuticular membranes: exchange capacity, nature of fixed charges and cation selectivity. Planta 109:73–93 [Google Scholar]
  110. Schreiber L. 110.  2010. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 15:546–53 [Google Scholar]
  111. Schweizer P, Jeanguénat A, Métraux JP, Mösinger E. 111.  1994. Plant protection by free cutin monomers in two cereal pathosystems. Advances in Molecular Genetics of Plant-Microbe Interactions MJ Daniels, JA Downie, AE Osbourn 371–74 Curr. Plant Sci. Biotechnol. Agric 21 Dordrecht, Neth.: Springer [Google Scholar]
  112. Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM. 112.  2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–52 [Google Scholar]
  113. Serra O, Chatterjee S, Huang W, Stark RE. 113.  2012. Mini-review: what nuclear magnetic resonance can tell us about protective tissues. Plant Sci. 195:120–24 [Google Scholar]
  114. Shi JX, Adato A, Alkan N, He Y, Lashbrooke J. 114.  et al. 2013. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol. 197:468–80 [Google Scholar]
  115. Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB. 115.  et al. 2011. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLOS Genet. 7:e1001388 [Google Scholar]
  116. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P. 116.  et al. 2000. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–38 [Google Scholar]
  117. Skamnioti P, Gurr SJ. 117.  2007. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–89 [Google Scholar]
  118. Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M. 118.  et al. 2005. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol. 139:1649–65 [Google Scholar]
  119. Takahashi K, Shimada T, Kondo M, Tamai A, Mori M. 119.  et al. 2010. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol. 51:123–31 [Google Scholar]
  120. Takahashi Y, Tsubaki S, Sakamoto M, Watanabe S, Azuma J. 120.  2012. Growth-dependent chemical and mechanical properties of cuticular membranes from leaves of Sonneratia alba. Plant Cell Environ. 35:1201–10 [Google Scholar]
  121. Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y. 121.  2004. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 37:139–46 [Google Scholar]
  122. Tang DZ, Simonich MT, Innes RW. 122.  2007. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol. 144:1093–103 [Google Scholar]
  123. Taylor TN, Taylor EL, Krings M. 123.  2009. Paleobotany: The Biology and Evolution of Fossil Plants New York: Elsevier 2nd ed. [Google Scholar]
  124. Tegelaar EW, de Leeuw JW, Largeau C, Derenne S, Schulten H-R. 124.  et al. 1989. Scope and limitation of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. J. Anal. Appl. Pyrol. 15:29–54 [Google Scholar]
  125. Tian S, Fang X, Wang W, Yu B, Cheng X. 125.  et al. 2008. Isolation and identification of oligomers from partial degradation of lime fruit cutin. J. Agric. Food Chem. 56:10318–25 [Google Scholar]
  126. Tsubaki S, Ozaki Y, Yonemori K, Azuma J. 126.  2012. Mechanical properties of fruit-cuticular membranes isolated from 27 cultivars of Diospyros kaki Thunb. Food Chem. 132:2135–39 [Google Scholar]
  127. Van Kan JAL, van't Klooster JW, Wagemakers CAM, Dees DCT, van der Vlugt-Bergmans CJB. 127.  1997. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol. Plant-Microbe Interact. 10:30–38 [Google Scholar]
  128. Villena JF, Domínguez E, Heredia A. 128.  2000. Monitoring biopolymers present in plant cuticles by FT-IR spectroscopy. J. Plant Physiol. 156:419–22 [Google Scholar]
  129. Villena JF, Domínguez E, Stewart D, Heredia A. 129.  1999. Characterization and biosynthesis of non-degradable polymers in plant cuticles. Planta 208:181–87 [Google Scholar]
  130. Vishwanath SJ, Delude C, Domergue F, Rowland O. 130.  2015. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 34:573–86 [Google Scholar]
  131. Voisin D, Nawrath C, Kurdyukov S, Franke RB, Reina-Pinto JJ. 131.  et al. 2009. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLOS Genet. 5:e1000703 [Google Scholar]
  132. Wang Y, Wan L, Zhang L, Zhang Z, Zhang H. 132.  et al. 2012. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol. Biol. 78:275–88 [Google Scholar]
  133. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K. 133.  et al. 2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. PNAS 98:9694–99 [Google Scholar]
  134. Weng H, Molina I, Shockey J, Browse J. 134.  2010. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta 231:1089–100 [Google Scholar]
  135. Wu R, Li S, He S, Wassmann F, Yu C. 135.  et al. 2011. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–411 [Google Scholar]
  136. Xiao FM, Goodwin SM, Xiao YM, Sun ZY, Baker D. 136.  et al. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 23:2903–13 [Google Scholar]
  137. Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. 137.  2010. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. PNAS 107:12040–45 [Google Scholar]
  138. Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB. 138.  2012. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol. 160:638–652 [Google Scholar]
  139. Yeats TH, Huang W, Chatterjee S, Viart HMF, Clausen MH. 139.  et al. 2014. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J. 77:667–75 [Google Scholar]
  140. Yeats TH, Martin LBB, Viart HMF, Isaacson T, He Y. 140.  et al. 2012. The identification of cutin synthase: formation of the plant polyester cutin. Nat. Chem. Biol. 8:609–11 [Google Scholar]
  141. Yeats TH, Rose JKC. 142.  2013. The formation and function of plant cuticles. Plant Physiol. 163:5–20 [Google Scholar]
  142. Zhang Y, Chen S, He M, Wu J, Chen J, Wang Q. 143.  2011. Effects of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins on cotton bioscouring. Biotechnol. Bioprocess Eng. 16:645–53 [Google Scholar]
  143. Zhou X, Jenks MA, Liu J, Liu A, Zhang X. 144.  2014. Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit. Plant Mol. Biol. Rep. 32:719–31 [Google Scholar]
  144. Zlotnik-Mazori T, Stark RE. 145.  1988. Nuclear magnetic-resonance studies of cutin, an insoluble plant polyester. Macromolecules 21:2412–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error