1932

Abstract

After a brief discussion of my graduate work at Duke University, I describe a series of investigations on redox proteins at the University of California, Berkeley. Starting with ferredoxin from fermentative bacteria, the Berkeley research fostered experiments that uncovered a pathway for fixing CO in bacterial photosynthesis. The carbon work, in turn, opened new vistas, including the discovery that thioredoxin functions universally in regulating the Calvin-Benson cycle in oxygenic photosynthesis. These experiments, which took place over a 50-year period, led to the formulation of a set of biological principles and set the stage for research demonstrating a role for redox in the regulation of previously unrecognized processes extending far beyond photosynthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-111949
2016-04-29
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-111949.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111949&mimeType=html&fmt=ahah

Literature Cited

  1. Allison MJ, Robinson IM. 1.  1970. Biosynthesis of α-ketoglutarate by the reductive carboxylation of succinate in Bacterioides rumincola. J. Bacteriol. 104:50–56 [Google Scholar]
  2. Andrew IG, Morris JG. 2.  1965. The biosynthesis of alanine by Clostridium kluyveri. Biochim. Biophys. Acta 97:176–79 [Google Scholar]
  3. Arnér ES, Holmgren A. 3.  2006. The thioredoxin system in cancer. Semin. Cancer Biol. 16:420–26 [Google Scholar]
  4. Arnon DI. 4.  1988. The discovery of ferredoxin: the photosynthetic path. Trends Biochem. Sci. 13:30–33 [Google Scholar]
  5. Arnon DI, Allen MB, Whatley FR. 5.  1954. Photosynthesis by isolated chloroplasts. Nature 174:394–96 [Google Scholar]
  6. Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S. 6.  et al. 2010. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–515 [Google Scholar]
  7. Bachofen R, Buchanan BB, Arnon DI. 7.  1964. Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. PNAS 51:690–94Demonstration that ferredoxin can supply electrons directly for CO2 fixation. [Google Scholar]
  8. Ballicora MA, Frueauf JB, Fu Y, Schürmann P, Preiss J. 8.  2000. Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J. Biol. Chem. 275:1315–20 [Google Scholar]
  9. Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB. 9.  2003. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. PNAS 100:370–75 [Google Scholar]
  10. Balmer Y, Vensel WH, Cai N, Manieri W, Schürmann P. 10.  et al. 2006. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. PNAS 103:2988–93 [Google Scholar]
  11. Balsera M, Goetze TA, Kovács-Bogdán E, Schürmann P, Wagner R. 11.  et al. 2009. Characterization of Tic 110, a channel-forming protein at the inner envelope of chloroplasts, unveils a response to Ca++ and a stromal regulatory disulfide bridge. J. Biol. Chem. 284:2603–16 [Google Scholar]
  12. Balsera M, Uberegui E, Schürmann P, Buchanan BB. 12.  2014. Evolutionary development of redox regulation in chloroplasts. Antioxid. Redox Signal. 21:1327–55 [Google Scholar]
  13. Balsera M, Uberegui E, Susanti D, Schmitz R, Mukhopadhyay B. 13.  et al. 2012. Ferredoxin:thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria. Planta 237:619–35Illustration of how genome analysis can provide insight into the evolution of redox regulation in photosynthesis; evolution is one of my long-term interests. [Google Scholar]
  14. Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M. 14.  1954. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc. 76:1760–70 [Google Scholar]
  15. Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A. 15.  et al. 2009. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. PNAS 106:3615–20 [Google Scholar]
  16. Berg I. 16.  2011. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77:1925–36 [Google Scholar]
  17. Blackman FF. 17.  1905. Optima and limiting factors. Ann. Bot. 19:281–95 [Google Scholar]
  18. Bohrer A, Massot V, Innocenti G, Reichheld J, Issakidis-Bourguet E, Vanacker H. 18.  2012. New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis. J. Exp. Bot. 63:6315–23 [Google Scholar]
  19. Breazeale VD, Buchanan BB, Wolosiuk RA. 19.  1978. Chloroplast sedoheptulose 1,7-bisphosphatase: evidence for regulation by the ferredoxin/thioredoxin system Z. Naturforschung 33c:521–28 [Google Scholar]
  20. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS. 20.  1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59:20–31 [Google Scholar]
  21. Buchanan BB. 21.  1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant. Physiol. 31:341–74Review summarizing evidence for the newly discovered ferredoxin/thioredoxin system in the regulation of chloroplast enzymes and evidence that put to rest the century-old concept of separating photosynthesis into “light” and “dark” reactions. [Google Scholar]
  22. Buchanan BB. 22.  1991. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status and future development. Arch. Biochem. Biophys. 288:1–9 [Google Scholar]
  23. Buchanan BB. 23.  2012. A conversation with Andrew Benson: reflections on the discovery of the Calvin-Benson cycle Interview, Coll. Nat. Resour., Univ. Calif., Berkeley. http://www.youtube.com/watch?v=GfQQJ2vR_xE [Google Scholar]
  24. Buchanan BB. 24.  2013. The birth of redox regulation. Mol. Plant 7:1–3 [Google Scholar]
  25. Buchanan BB. 24a.  2016. The carbon (formerly dark) reactions of photosynthesis. Photosynth. Res In press. doi: 10.1007/s11120-015-0212-z [Google Scholar]
  26. Buchanan BB, Arnon DI. 25.  1970. Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism. Adv. Enzymol. 33:119–76 [Google Scholar]
  27. Buchanan BB, Arnon DI. 26.  1990. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth. Res. 24:47–53Review giving highlights of the dogma and controversy that delayed acceptance of the reverse citric acid cycle for 25 years. [Google Scholar]
  28. Buchanan BB, Bachofen R, Arnon DI. 27.  1964. Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium Chromatium. PNAS 52:839–47 [Google Scholar]
  29. Buchanan BB, Balmer Y. 28.  2005. Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56:187–220 [Google Scholar]
  30. Buchanan BB, Evans MCW. 29.  1965. The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. PNAS 54:1212–18 [Google Scholar]
  31. Buchanan BB, Evans MCW. 30.  1969. Photoreduction of ferredoxin and its use in NAD(P)+ reduction by a subcellular preparation from the photosynthetic bacterium Chlorobium thiosulfatophilum. Biochim. Biophys. Acta 180:123–29 [Google Scholar]
  32. Buchanan BB, Evans MCW, Arnon DI. 31.  1967. Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch. Microbiol. 59:32–40 [Google Scholar]
  33. Buchanan BB, Gruissem W, Jones RL. 32.  2000. Biochemistry and Molecular Biology of Plants Rockville, MD: Am. Soc. Plant Biol. [Google Scholar]
  34. Buchanan BB, Holmgren A, Jacquot J-P, Scheibe R. 33.  2012. Fifty years in the thioredoxin field and a bountiful harvest. Biochim. Biophys. Acta 1820:1822–29 [Google Scholar]
  35. Buchanan BB, Kalberer PP, Arnon DI. 34.  1967. Ferredoxin-activated fructose diphosphatase in isolated chloroplasts. Biochem. Biophys. Res. Commun. 29:74–79Description of the activation of chloroplast FBPase by reduced Fdx—the first report of redox regulation. [Google Scholar]
  36. Buchanan BB, Lovenberg W, Rabinowitz JC. 35.  1963. A comparison of clostridial ferredoxins. PNAS 49:345–53 [Google Scholar]
  37. Buchanan BB, Matsubara H, Evans MCW. 36.  1969. Ferredoxin from the photosynthetic bacterium, Chlorobium thiosulfatophilum. A link to ferredoxins from nonphotosynthetic bacteria. Biochim. Biophys. Acta 189:46–53 [Google Scholar]
  38. Buchanan BB, Pine L. 37.  1962. Characterization of a propionic acid producing actinomycete, Actinomyces propionicus, sp. nov. J. Gen. Microbiol. 28:305–23 [Google Scholar]
  39. Buchanan BB, Pine L. 38.  1963. Factors influencing the fermentation and growth of an atypical strain of Actinomyces naeslundii. Sabouraudia 3:26–39 [Google Scholar]
  40. Buchanan BB, Pine L. 39.  1965. Relationship of carbon dioxide to aspartic acid and glutamic acid in Actinomyces naeslundii. J. Bacteriol. 89:729–33 [Google Scholar]
  41. Buchanan BB, Rabinowitz JC. 40.  1964. Some properties of Methanobacterium omelianskii ferredoxin. J. Bacteriol. 88:806–7 [Google Scholar]
  42. Buchanan BB, Schürmann P, Decottignies P, Lozano RM. 41.  1994. Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch. Biochem. Biophys. 314:257–60 [Google Scholar]
  43. Buchanan BB, Schürmann P, Kalberer PP. 42.  1971. Ferredoxin-activated fructose diphosphatase of spinach chloroplasts: resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J. Biol. Chem. 246:5952–59Presentation of evidence that Fdx required an unknown “protein factor” to activate chloroplast FBPase. [Google Scholar]
  44. Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot J-P. 43.  2002. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth. Res. 73:215–22 [Google Scholar]
  45. Buchanan BB, Sirevåg R. 44.  1976. Ribulose 1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum. Arch. Microbiol. 109:15–19 [Google Scholar]
  46. Buchanan BB, Wolosiuk RA. 45.  1976. Photosynthetic regulatory protein found in animal and bacterial cells. Nature 264:669–70 [Google Scholar]
  47. Buchanan BB, Wolosiuk RA. 46.  2002. Photosynthesis: carbon reactions. Plant Physiology and Development L Taiz, E Zeiger 145–70 Sunderland, MA: Sinauer, 2nd ed.. [Google Scholar]
  48. Buchanan BB, Wolosiuk RA, Crawford NA, Yee BC. 47.  1978. Evidence for three thioredoxins in leaves. Plant Physiol. 61:38S [Google Scholar]
  49. Bucke C, Walker DA, Baldry CW. 48.  1966. Some effects of sugars and sugar phosphates on carbon dioxide fixation by isolated chloroplasts. Biochem. J. 101:636–41 [Google Scholar]
  50. Charfreitag O, Collins MD, Stackebrandt E. 49.  1988. Reclassification of Arachnia propionica as Propionibacterium propionicus comb. nov. Int. J. Syst. Bacteriol. 38:354–57 [Google Scholar]
  51. Charfreitag O, Stackebrandt E. 50.  1989. Inter- and introgeneric relationships of the genus Proponibacterium as determined by 16S rRNA sequences. J. Gen. Microbiol. 135:2065–70 [Google Scholar]
  52. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin J. 51.  et al. 2003. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J. Biol. Chem. 278:23747–52 [Google Scholar]
  53. Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff D. 52.  et al. 2004. Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 136:4088–95 [Google Scholar]
  54. Crawford NA, Droux M, Kosower NS, Buchanan BB. 53.  1989. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Arch. Biochem. Biophys. 271:223–39 [Google Scholar]
  55. Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W. 54.  et al. 2007. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature 448:92–96 [Google Scholar]
  56. Droux M, Jacquot J-P, Miginiac-Maslow M, Gadal P, Huet JC. 55.  et al. 1987. Ferredoxin-thioredoxin reductase: an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis. Purification and properties of the enzyme from C3, C4 and cyanobacterial species. Arch. Biochem. Biophys. 252:426–39 [Google Scholar]
  57. Droux M, Miginiac-Maslow M, Jacquot J-P, Gadal P, Crawford NA. 56.  et al. 1987. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation. Arch. Biochem. Biophys. 256:372–80 [Google Scholar]
  58. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M. 57.  et al. 2002. The complete genome sequence of Chlorobium tepidum LS, a photosynthetic, anaerobic, green-sulfur bacterium. PNAS 99:9509–14 [Google Scholar]
  59. Evans MCW, Buchanan BB. 58.  1965. Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. PNAS 53:1420–25 [Google Scholar]
  60. Evans MCW, Buchanan BB, Arnon DI. 59.  1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. PNAS 55:928–34Identification of a cycle for CO2 fixation in photosynthetic bacteria that is independent of the Calvin-Benson cycle. [Google Scholar]
  61. Feng X, Tang KH, Blankenship RE, Tang YU. 60.  2010. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. J. Biol. Chem. 285:39544–50 [Google Scholar]
  62. Fermani S, Sparla F, Falini G, Martelli PL, Casadio R. 61.  et al. 2007. Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. PNAS 104:11109–14 [Google Scholar]
  63. Fuchs G. 62.  2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58 [Google Scholar]
  64. Geigenberger P, Fernie A. 63.  2014. Metabolic control of redox and redox control of metabolism in plants. Antioxid. Redox Signal. 21:1389–421 [Google Scholar]
  65. Gopalan G, He Z, Balmer Y, Romano P, Gupta R. 64.  et al. 2004. Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. PNAS 101:13945–50 [Google Scholar]
  66. Guy AB. 65.  2013. Berkeley, my half-century: Bob B. Buchanan.. Breakthroughs Fall. http://nature.berkeley.edu/breakthroughs/fa13/qa-berkeley-my-half-century [Google Scholar]
  67. Hagen KD, Meeks JC. 66.  2001. The unique cyanobacterial protein OpcA is an allosteric effector of glucose-6-phosphate dehydrogenase in Nostoc punctiforme ATCC 29133. J. Biol. Chem. 276:11477–86 [Google Scholar]
  68. Hammel KE, Cornwell KL, Buchanan BB. 67.  1983. Ferredoxin/flavoprotein-linked pathway for the reduction of thioredoxin. PNAS 80:3681–85 [Google Scholar]
  69. Hanson TE, Tabita FR. 68.  2001. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. PNAS 98:4397–402 [Google Scholar]
  70. Hartman H, Syvanen M, Buchanan BB. 69.  1990. Contrasting evolutionary histories of chloroplast thioredoxins f and m. Mol. Biol. Evol. 7:247–54 [Google Scholar]
  71. Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ. 70.  et al. 1988. Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim. Biophys. Acta 935:1–8 [Google Scholar]
  72. Holmgren A, Buchanan BB, Wolosiuk RA. 71.  1977. Photosynthetic regulatory protein from rabbit liver is identical with thioredoxin. FEBS Lett. 82:351–54 [Google Scholar]
  73. Hosoya-Matsuda N, Inoue K, Hisabori T. 72.  2009. Roles of thioredoxin in the obligate anaerobic green sulfur bacterium Chlorobaculum tepidum. Mol. Plant 2:336–43 [Google Scholar]
  74. Hügler M, Sievert S. 73.  2011. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3:261–89 [Google Scholar]
  75. Huppe HC, de Lamotte-Guéry F, Jacquot J-P, Buchanan BB. 74.  1990. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii. Identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Planta 180:341–51 [Google Scholar]
  76. Hutcheson SW, Buchanan BB. 75.  1983. Enzyme regulation in Crassulacean acid metabolism photosynthesis. Studies on the ferredoxin/thioredoxin system of Kalanchoe daigremontiana. Plant Physiol. 72:870–76 [Google Scholar]
  77. Jacquot J-P, Buchanan BB, Martin F, Vidal J. 76.  1981. Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked NADP-malate dehydrogenase from corn leaves. Plant Physiol. 68:300–4 [Google Scholar]
  78. Jacquot J-P, Vidal J, Gadal P, Schürmann P. 77.  1978. Evidence for the existence of several enzyme specific thioredoxins in plants. FEBS Lett. 96:243–46 [Google Scholar]
  79. Jensen RG, Bassham JA. 78.  1966. Photosynthesis by isolated chloroplasts. PNAS 56:1095–101 [Google Scholar]
  80. Johnson TC, Yee BC, Carlson DE, Buchanan BB, Johnson RS. 79.  et al. 1988. Thioredoxin from Rhodospirillum rubrum: primary structure and relation to thioredoxins from other photosynthetic bacteria. J. Bacteriol. 170:2406–8 [Google Scholar]
  81. Kaiser W. 80.  1976. The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim. Biophys. Acta 440:476–82 [Google Scholar]
  82. Kalberer PP, Buchanan BB, Arnon DI. 81.  1967. Rates of photosynthesis by isolated chloroplasts. PNAS 57:1542–49 [Google Scholar]
  83. Karamoko M, Gabilly ST, Hamel PP. 82.  2013. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Front. Plant Sci. 4:476 [Google Scholar]
  84. Kobayashi D, Tamoi M, Iwaki T, Shigeoka S, Wadano A. 83.  2003. Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol. 44:269–76 [Google Scholar]
  85. Laurent TC, Moore EC, Reicharc P. 84.  1964. Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor, from Escherichia coli B. J. Biol. Chem 239:3436–44 [Google Scholar]
  86. Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M. 85.  2003. Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett. 543:87–92 [Google Scholar]
  87. Lemaire SD, Guillon B, Le Maréchal P, Keryer E, Miginiac-Maslow M, Decottignies P. 86.  2004. New thioredoxin targets in the unicellular photosynthetic eukaryote, Chlamydomonas reinhardtii. PNAS 101:7475–80 [Google Scholar]
  88. Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E. 87.  2007. Thioredoxins in chloroplasts. Curr. Genet. 51:343–65 [Google Scholar]
  89. Lendzian K, Ziegler H. 88.  1970. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by light. Planta 94:27–36 [Google Scholar]
  90. Lima A, Lima S, Phillips RS, Wong JH, Buchanan BB, Luan S. 89.  2006. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. PNAS 103:12631–36 [Google Scholar]
  91. Lindahl M, Florencio F. 90.  2003. Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. PNAS 100:16107–12 [Google Scholar]
  92. Lindahl M, Kieselbach T. 91.  2009. Disulfide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J. Proteom. 72:416–38 [Google Scholar]
  93. Lockau W, Nitschke W. 92.  1993. Photosystem I and its bacterial counterparts. Physiol. Plant. 88:372–81 [Google Scholar]
  94. Lovenberg W, Buchanan BB, Rabinowitz J. 93.  1963. Studies on the chemical nature of clostridial ferredoxin. J. Biol. Chem. 238:3899–913 [Google Scholar]
  95. Mai X, Adams M. 94.  1996. Characterization of a fourth type of 2-keto acid oxidizing enzyme from a hyperthermophiloc archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol. 178:5890–96 [Google Scholar]
  96. Marchand C, Vanacker H, Collin V, Issakidis-Bourguet E, Le Maréchal P, Decottignies P. 95.  2010. Thioredoxin targets in Arabidopsis roots. Proteomics 10:2418–28 [Google Scholar]
  97. Mathews WR, Johnson RS, Cornwell KL, Johnson TC, Buchanan BB, Biemann K. 96.  1987. Mass spectrometrically derived amino acid sequence of thioredoxin from Chlorobium, an evolutionarily prominent photosynthetic bacterium. J. Biol. Chem. 262:7537–45 [Google Scholar]
  98. McBean GJ, Aslan M, Griffiths HR, Torrão RC. 97.  2015. Thiol redox homeostasis in neurodegenerative disease. Redox Biol. 5:186–94 [Google Scholar]
  99. McKinney DW, Buchanan BB, Wolosiuk RA. 98.  1978. Activation of chloroplast ATPase by reduced thioredoxin. Phytochemistry 17:794–95 [Google Scholar]
  100. Menon S, Ragsdale SW. 99.  1997. Mechanism of the Clostridium thermoaceticum pyruvate-ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyrophosphate radical. Biochemistry 36:8484–94 [Google Scholar]
  101. Mestres-Ortega D, Meyer Y. 100.  1999. The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240:307–16 [Google Scholar]
  102. Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P. 101.  2009. NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. PNAS 106:9908–13 [Google Scholar]
  103. Mohring F, Pretzel J, Jortzik E, Becker K. 102.  2014. The redox systems of Plasmodium falciparum and Plasmodium vivax: comparison, in silico analyses and inhibitor studies. Curr. Med. Chem. 21:1728–56 [Google Scholar]
  104. Montrichard F, Alkhalfioui F, Yano H, Vensel W, Hurkman W, Buchanan BB. 103.  2009. Thioredoxin targets in plants: the first 30 years. J. Proteom. 72:452–74 [Google Scholar]
  105. Morisse S, Michelet L, Bedhomme M, Marchand CH, Calvaresi M. 104.  et al. 2014. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii. J. Biol. Chem. 289:30012–24 [Google Scholar]
  106. Mortenson LE, Valentine RC, Carnahan JE. 105.  1962. An electron transport factor in Clostridium pasteruianun. Biochem. Biophys. Res. Commun. 7:448–52 [Google Scholar]
  107. Mortlock RP, Wolfe RS. 106.  1959. Reversibility of pyruvate breakdown using hydrosulfite. J. Biol. Chem. 234:1657–58 [Google Scholar]
  108. Motohashi K, Hisabori T. 107.  2010. CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid. Redox Signal. 13:1169–76 [Google Scholar]
  109. Motohashi K, Kondoh A, Stumpp M, Hisabori T. 108.  2001. Comprehensive survey of proteins targeted by chloroplast thioredoxin. PNAS 98:11224–29 [Google Scholar]
  110. Muller EGD, Buchanan BB. 109.  1989. Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. J. Biol. Chem. 264:4008–14 [Google Scholar]
  111. Née G, Aumont-Nicaise M, Zaffagnini M, Nessler S, Valerio-Lepiniec M, Issakidis-Bourguet E. 110.  2014. Redox regulation of chloroplastic G6PDH activity occurs through structural changes modifying a substrate accessibility and cofactor binding. Biochem. J. 457:117–25 [Google Scholar]
  112. Nelson DL, Cox MM. 111.  2008. Lehninger Principles of Biochemistry New York: Freeman, 5th ed.. [Google Scholar]
  113. Nishizawa AN, Buchanan BB. 112.  1981. Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves. J. Biol. Chem. 256:6119–26 [Google Scholar]
  114. Nishizawa AN, Wolosiuk RA, Buchanan BB. 113.  1979. Chloroplast phenylalanine ammonia-lyase from spinach leaves. Planta 145:7–12 [Google Scholar]
  115. Ormerod J. 114.  2003. “Every dogma has its day”: a personal look at carbon metabolism in photosynthetic bacteria. Photosynth. Res. 76:135–43 [Google Scholar]
  116. Raeburn S, Rabinowitz JC. 115.  1965. Pyruvate synthesis by a partially purified enzyme from Clostridium acidi-urici. Biochem. Biophys. Res. Commun. 18:303–7 [Google Scholar]
  117. Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O. 116.  et al. 2005. Identification of plant glutaredoxin targets. Antioxid. Redox Signal. 7:919–29 [Google Scholar]
  118. Sahrawy M, Hecht V, Lopez-Jaramillo J, Chueca A, Chartier Y, Meyer Y. 117.  1996. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J. Mol. Evol. 42:422–31 [Google Scholar]
  119. Scheibe R, Anderson LE. 118.  1981. Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim. Biophys. Acta 636:58–64 [Google Scholar]
  120. Schürmann P, Buchanan BB. 119.  1975. Role of ferredoxin in the activation of sedoheptulose diphosphatase in isolated chloroplasts. Biochim. Biophys. Acta 376:189–92 [Google Scholar]
  121. Schürmann P, Buchanan BB. 120.  2008. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal. 10:1235–74Update of my 1980 review on the role of Trx in regulating CO2 fixation in photosynthesis. [Google Scholar]
  122. Schürmann P, Jacquot J-P. 121.  2000. Plant thioredoxin systems revisited. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:371–400 [Google Scholar]
  123. Schürmann P, Wolosiuk RA, Breazeale VD, Buchanan BB. 122.  1976. Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts. Nature 263:257–58Demonstration that the “protein factor” required for FBPase activation by light consists of two components, only one of which is needed for activation with DTT. [Google Scholar]
  124. Schürmann P, Wolosiuk RA, Buchanan BB, Breazeale VD, McKinney DW. 123.  1977. Chloroplast thioredoxin: properties and function in light-induced enzyme regulation in chloroplasts. Abstracts of the 4th International Conference on Photosynthesis, 4–9 September 1977, Reading, UK J Coombs 338 London: UK Sci. Comm. [Google Scholar]
  125. Seo D, Okabe S, Yanase M, Kataoka K, Sakurai T. 124.  2009. Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes. Biochim. Biophys. Acta 1794:594–601 [Google Scholar]
  126. Seo D, Sakurai T. 125.  2002. Purification of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum. Biochim. Biophys. Acta 1597:123–32 [Google Scholar]
  127. Serrato AJ, Fernández-Trijueque J, Barajas-López J, Chueca A, Sahrawy M. 126.  2013. Plastid thioredoxins: a “one-for-all” redox-signaling system in plants. Front. Plant Sci. 4:463 [Google Scholar]
  128. Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ. 127.  2004. A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 279:43821–27 [Google Scholar]
  129. Shieh JS, Whitman WB. 128.  1987. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J. Bacteriol. 169:5327–29 [Google Scholar]
  130. Simionato D, Basso S, Zaffagnini M, Lana T, Marzotto F. 129.  et al. 2015. Protein redox regulation in the thylakoid lumen: the importance of disulfide bond for violaxanthin de-epoxidase. FEBS Lett. 589:919–23 [Google Scholar]
  131. Sirevåg R, Buchanan BB, Berry JA, Troughton JM. 130.  1977. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112:35–38 [Google Scholar]
  132. Smillie RM, Rigopoulos N, Kelly H. 131.  1962. Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulfur bacteria. Biochim. Biophys. Acta 56:612–14 [Google Scholar]
  133. Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P. 132.  2012. Redox of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol. 158:190–99 [Google Scholar]
  134. Szekeres M, Droux M, Buchanan BB. 133.  1991. The ferredoxin/thioredoxin reductase variable subunit gene from Anacystis nidulans. J. Bacteriol. 173:1821–23 [Google Scholar]
  135. Tagawa K, Arnon DI. 134.  1962. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195:537–43 [Google Scholar]
  136. Thauer R. 135.  2007. A fifth pathway of carbon fixation. Science 318:1732–33 [Google Scholar]
  137. Tsukamoto Y, Fukushima Y, Hara S, Hisabori T. 136.  2013. Redox control of the activity of phosphoglycerate kinase in Synechocystis sp. PCC6803. Plant Cell Physiol. 54:484–91 [Google Scholar]
  138. Wang P, Liu J, Liu B, Da Q, Feng D. 137.  et al. 2014. Ferredoxin:thioredoxin reductase is required for proper chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis thaliana. Mol. Plant 7:1586–90 [Google Scholar]
  139. Wedel N, Soll J. 138.  1998. Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. PNAS 95:9699–704 [Google Scholar]
  140. Wolosiuk RA, Buchanan BB. 139.  1977. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266:565–67Identification of the two components of the “protein factor” needed for Fdx-dependent FBPase activation as Trx and FTR. [Google Scholar]
  141. Wolosiuk RA, Buchanan BB. 140.  1978. Activation of chloroplast NADP-linked glyceraldehyde 3-phosphate dehydrogenase by the ferredoxin/thioredoxin system. Plant Physiol. 61:669–71 [Google Scholar]
  142. Wolosiuk RA, Buchanan BB. 141.  1978. Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system. Arch. Biochem. Biophys. 189:97–101 [Google Scholar]
  143. Wolosiuk RA, Buchanan BB, Crawford NA. 142.  1977. Regulation of NADP-malate dehydrogenase by the light-actuated ferredoxin/thioredoxin system of chloroplasts. FEBS Lett. 81:253–58 [Google Scholar]
  144. Yano H, Wong JH, Lee YM, Cho M-J, Buchanan BB. 143.  2001. A strategy for the identification of proteins targeted by thioredoxin. PNAS 98:4794–99 [Google Scholar]
  145. Yoshida K, Hara S, Hisabori T. 144.  2015. Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J. Biol. Chem. 290:14278–88 [Google Scholar]
  146. Yoshida K, Matsuoka Y, Hara S, Konno H, Hisabori T. 145.  2014. Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Plant Cell Physiol. 55:1415–25 [Google Scholar]
  147. Zhang N, Portis ARJ. 146.  1999. Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. PNAS 96:9438–43 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-111949
Loading
/content/journals/10.1146/annurev-arplant-043015-111949
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error