In plants, systems biology approaches have led to the generation of a variety of large data sets. Many of these data are created to elucidate gene expression profiles and their corresponding transcriptional regulatory mechanisms across a range of tissue types, organs, and environmental conditions. In an effort to map the complexity of this transcriptional regulatory control, several types of experimental assays have been used to map transcriptional regulatory networks. In this review, we discuss how these methods can be best used to identify novel biological mechanisms by focusing on the appropriate biological context. Translating network biology back to gene function in the plant, however, remains a challenge. We emphasize the need for validation and insight into the underlying biological processes to successfully exploit systems approaches in an effort to determine the emergent properties revealed by network analyses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M. 1.  et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–80 [Google Scholar]
  2. 2. Arabidopsis Interactome Mapp. Consort 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–7 [Google Scholar]
  3. Awad S, Chen J. 3.  2014. Inferring transcription factor collaborations in gene regulatory networks. BMC Syst. Biol. 8:Suppl. 1S1 [Google Scholar]
  4. Bargmann BO, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD. 4.  et al. 2013. TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol. Plant 6:978–80 [Google Scholar]
  5. Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I. 5.  2012. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 24:3859–75 [Google Scholar]
  6. Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA. 6.  1993. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70 [Google Scholar]
  7. Benschop JJ, Millenaar FF, Smeets ME, van Zanten M, Voesenek LA, Peeters AJ. 7.  2007. Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol. 143:1013–23 [Google Scholar]
  8. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM. 8.  et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956–60 [Google Scholar]
  9. Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J. 9.  et al. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–6 [Google Scholar]
  10. Brady SM, Sarkar SF, Bonetta D, McCourt P. 10.  2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34:67–75 [Google Scholar]
  11. Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN. 11.  2007. Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143:172–87 [Google Scholar]
  12. Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E. 12.  et al. 2011. A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7:459 [Google Scholar]
  13. Burdo B, Gray J, Goetting-Minesky MP, Wittler B, Hunt M. 13.  et al. 2014. The maize TFome—development of a transcription factor open reading frame collection for functional genomics. Plant J. 80:356–66 [Google Scholar]
  14. Busch W, Miotk A, Ariel FD, Zhao Z, Forner J. 14.  et al. 2010. Transcriptional control of a plant stem cell niche. Dev. Cell 18:849–61 [Google Scholar]
  15. Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S. 15.  et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–21 [Google Scholar]
  16. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M. 16.  et al. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675 [Google Scholar]
  17. Chitwood DH, Topp CN. 17.  2015. Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits. Curr. Opin. Plant Biol. 24:54–60 [Google Scholar]
  18. Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ. 18.  et al. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–25 [Google Scholar]
  19. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D. 19.  et al. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–45 [Google Scholar]
  20. Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ. 20.  et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–68 [Google Scholar]
  21. Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. 21.  2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. PNAS 111:2367–72 [Google Scholar]
  22. Franco-Zorrilla JM, Solano R. 22.  2014. High-throughput analysis of protein-DNA binding affinity. Methods Mol. Biol. 1062:697–709 [Google Scholar]
  23. Gaudinier A, Zhang L, Reece-Hoyes JS, Taylor-Teeples M, Pu L. 23.  et al. 2011. Enhanced Y1H assays for Arabidopsis. Nat. Methods 8:1053–55 [Google Scholar]
  24. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD. 24.  2008. Cell-specific nitrogen responses mediate developmental plasticity. PNAS 105:803–8 [Google Scholar]
  25. Goentoro L, Shoval O, Kirschner MW, Alon U. 25.  2009. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell 36:894–99 [Google Scholar]
  26. Guzman P, Ecker JR. 26.  1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–23 [Google Scholar]
  27. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF. 27.  et al. 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93 [Google Scholar]
  28. Hansen BO, Vaid N, Musialak-Lange M, Janowski M, Mutwil M. 28.  2014. Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front. Plant Sci. 5:394 [Google Scholar]
  29. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J. 29.  et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–67 [Google Scholar]
  30. Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. 30.  2011. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 21:126–33 [Google Scholar]
  31. Ideker T, Galitski T, Hood L. 31.  2001. A new approach to decoding life: systems biology. Annu. Rev. Genom. Hum. Genet. 2:343–72 [Google Scholar]
  32. Immink RG, Pose D, Ferrario S, Ott F, Kaufmann K. 32.  et al. 2012. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol. 160:433–49 [Google Scholar]
  33. Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W. 33.  et al. 2011. Cell identity regulators link development and stress responses in the Arabidopsis root. Dev. Cell 21:770–82 [Google Scholar]
  34. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. 34.  2001. Lethality and centrality in protein networks. Nature 411:41–42 [Google Scholar]
  35. Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T. 35.  et al. 2009. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat. Genet. 41:258–63 [Google Scholar]
  36. Jones AM, Xuan Y, Xu M, Wang RS, Ho CH. 36.  et al. 2014. Border control—a membrane-linked interactome of Arabidopsis. Science 344:711–16 [Google Scholar]
  37. Kaufmann K, Nagasaki M, Jauregui R. 37.  2011. Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana. Stud. Health Technol. Inf. 162:279–97 [Google Scholar]
  38. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S. 38.  et al. 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50:347–63 [Google Scholar]
  39. Kim WC, Kim JY, Ko JH, Kim J, Han KH. 39.  2013. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana. J. Plant Physiol. 170:1374–78 [Google Scholar]
  40. Kubo M. 40.  2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19:1855–60 [Google Scholar]
  41. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M. 41.  et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19:1855–60 [Google Scholar]
  42. Lau OS, Davies KA, Chang J, Adrian J, Rowe MH. 42.  et al. 2014. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science 345:1605–9 [Google Scholar]
  43. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. 43.  2010. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat. Biotechnol. 28:149–56 [Google Scholar]
  44. Levesque MP, Vernoux T, Busch W, Cui H, Wang JY. 44.  et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLOS Biol. 4:e143 [Google Scholar]
  45. Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT. 45.  et al. 2014. Promoter-based integration in plant defense regulation. Plant Physiol. 166:1803–20 [Google Scholar]
  46. MacAlister CA, Ohashi-Ito K, Bergmann DC. 46.  2007. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445:537–40 [Google Scholar]
  47. Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. 47.  2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14:2938–43 [Google Scholar]
  48. McClung CR. 48.  2006. Plant circadian rhythms. Plant Cell 18:792–803 [Google Scholar]
  49. Morohashi K, Grotewold E. 49.  2009. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLOS Genet. 5:e1000396 [Google Scholar]
  50. Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW. 50.  et al. 2013. High-resolution metabolic mapping of cell types in plant roots. PNAS 110:E1232–41 [Google Scholar]
  51. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J. 51.  et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  52. Mustroph A, Bailey-Serres J. 52.  2010. The Arabidopsis translatome cell-specific mRNA atlas: mining suberin and cutin lipid monomer biosynthesis genes as an example for data application. Plant Signal. Behav. 5:320–24 [Google Scholar]
  53. Myers CL, Troyanskaya OG. 53.  2007. Context-sensitive data integration and prediction of biological networks. Bioinformatics 23:2322–30 [Google Scholar]
  54. Nakajima K, Sena G, Nawy T, Benfey PN. 54.  2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–11 [Google Scholar]
  55. Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T. 55.  et al. 2012. Transcriptional repressor PRR5 directly regulates clock-output pathways. PNAS 109:17123–28 [Google Scholar]
  56. Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD. 56.  2001. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?. Cell Stress Chaperones 6:177–89 [Google Scholar]
  57. Omidbakhshfard MA, Winck FV, Arvidsson S, Riano-Pachon DM, Mueller-Roeber B. 57.  2014. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana. J. Integr. Plant Biol. 56:527–38 [Google Scholar]
  58. Para A, Li Y, Marshall-Colon A, Varala K, Francoeur NJ. 58.  et al. 2014. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. PNAS 111:10371–76 [Google Scholar]
  59. Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW. 59.  et al. 2012. The protein expression landscape of the Arabidopsis root. PNAS 109:6811–18 [Google Scholar]
  60. Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K. 60.  et al. 2014. A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Rep. 8:622–32 [Google Scholar]
  61. Pruneda-Paz JL, Breton G, Para A, Kay SA. 61.  2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481–85 [Google Scholar]
  62. Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T. 62.  et al. 2013. Establishing a framework for the ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III homeodomain leucine zipper and KANADI regulation. Plant Cell 25:3228–49 [Google Scholar]
  63. Rhee SY, Mutwil M. 63.  2014. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19:212–21 [Google Scholar]
  64. Ricardi MM, Gonzalez RM, Zhong S, Dominguez PG, Duffy T. 64.  et al. 2014. Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor. BMC Plant Biol. 14:29 [Google Scholar]
  65. Rothenberg M, Ecker JR. 65.  1993. Mutant analysis as an experimental approach towards understanding plant hormone action. Dev. Biol. 4:3–13 [Google Scholar]
  66. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M. 66.  et al. 2005. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37:501–6 [Google Scholar]
  67. Sena G, Jung JW, Benfey PN. 67.  2004. A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131:2817–26 [Google Scholar]
  68. Shen-Orr SS, Milo R, Mangan S, Alon U. 68.  2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31:64–68 [Google Scholar]
  69. Shi H, Zhong S, Mo X, Liu N, Nezames CD, Deng XW. 69.  2013. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25:3770–84 [Google Scholar]
  70. Simon M, Bruex A, Kainkaryam RM, Zheng X, Huang L. 70.  et al. 2013. Tissue-specific profiling reveals transcriptome alterations in Arabidopsis mutants lacking morphological phenotypes. Plant Cell 25:3175–85 [Google Scholar]
  71. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM. 71.  et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–32 [Google Scholar]
  72. Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT. 72.  et al. 2014. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep. 8:2015–30 [Google Scholar]
  73. Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H. 73.  2012. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J. 70:549–61 [Google Scholar]
  74. Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW. 74.  et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–75 [Google Scholar]
  75. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT. 75.  et al. 2012. The accessible chromatin landscape of the human genome. Nature 489:75–82 [Google Scholar]
  76. Tian C, Zhang X, He J, Yu H, Wang Y. 76.  et al. 2014. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10:755 [Google Scholar]
  77. Van de Velde J, Heyndrickx KS, Vandepoele K. 77.  2014. Inference of transcriptional networks in Arabidopsis through conserved noncoding sequence analysis. Plant Cell 26:2729–45 [Google Scholar]
  78. Verkest A, Abeel T, Heyndrickx KS, Van Leene J, Lanz C. 78.  et al. 2014. A generic tool for transcription factor target gene discovery in Arabidopsis cell suspension cultures based on tandem chromatin affinity purification. Plant Physiol. 164:1122–33 [Google Scholar]
  79. Wang W, Barnaby JY, Tada Y, Li H, Tor M. 79.  et al. 2011. Timing of plant immune responses by a central circadian regulator. Nature 470:110–14 [Google Scholar]
  80. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A. 80.  et al. 2014. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–43 [Google Scholar]
  81. Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M. 81.  et al. 2011. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev. Cell 20:430–43 [Google Scholar]
  82. Yamaguchi M, Goue N, Igarashi H, Ohtani M, Nakano Y. 82.  et al. 2010. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 153:906–14 [Google Scholar]
  83. Yamaguchi M, Kubo M, Fukuda H, Demura T. 83.  2008. VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. 55:652–64 [Google Scholar]
  84. Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. 84.  2011. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66:579–90 [Google Scholar]
  85. Yu X, Li L, Zola J, Aluru M, Ye H. 85.  et al. 2011. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 65:634–46 [Google Scholar]
  86. Zhang H, He H, Wang X, Wang X, Yang X. 86.  et al. 2011. Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J. 65:346–58 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error