1932

Abstract

Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-112222
2016-04-29
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-112222.html?itemId=/content/journals/10.1146/annurev-arplant-043015-112222&mimeType=html&fmt=ahah

Literature Cited

  1. Ade CP, Bemm F, Dickson JMJ, Walter C, Harris PJ. 1.  2014. Family 34 glycosyltransferase (GT34) genes and proteins in Pinus radiata (radiata pine) and Pinus taeda (loblolly pine). Plant J. 78:305–18 [Google Scholar]
  2. Anderson CT, Carroll A, Akhmetova L, Somerville C. 2.  2010. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152:787–96 [Google Scholar]
  3. Bar-Peled M, O'Neill MA. 3.  2011. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu. Rev. Plant Biol. 62:127–55 [Google Scholar]
  4. Barber C, Rosti J, Rawat A, Findlay K, Roberts K, Seifert G. 4.  2006. Distinct properties of the five UDP-d-glucose/UDP-d-galactose 4-epimerase isoforms of Arabidopsis thaliana. J. Biol. Chem. 281:17276–85 [Google Scholar]
  5. Bauer W, Talmadge K, Keegstra K, Albersheim P. 5.  1973. Structure of plant cell walls: II. Hemicellulose of walls of suspension-cultured sycamore cells. Plant Physiol. 51:174–87 [Google Scholar]
  6. Bonin C, Reiter W. 6.  2000. A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-l-fucose in Arabidopsis. Plant J. 21:445–54 [Google Scholar]
  7. Bootten TJ, Harris PJ, Melton LD, Newman RH. 7.  2004. Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. J. Exp. Bot. 55:571–83 [Google Scholar]
  8. Brennan M, Harris PJ. 8.  2011. Distribution of fucosylated xyloglucans among the walls of different cell types in monocotyledons determined by immunofluorescence microscopy. Mol. Plant 4:144–56 [Google Scholar]
  9. Brummell DA, Camirand A, Maclachlan GA. 9.  1990. Differential distribution of xyloglucan glycosyl transferases in pea Golgi dictyosomes and secretory vesicles. J. Cell Sci. 96:705–10 [Google Scholar]
  10. Buckeridge MS. 10.  2010. Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol. 154:1017–23 [Google Scholar]
  11. Buckeridge MS, dos Santos HP, Tiné MAS. 11.  2000. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol. Biochem. 38:141–56 [Google Scholar]
  12. Carpita N. 12.  1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. 47:445–76 [Google Scholar]
  13. Cavalier DM, Keegstra K. 13.  2006. Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J. Biol. Chem. 281:34197–207 [Google Scholar]
  14. Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A. 14.  et al. 2008. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.. Plant Cell 20:1519–37 [Google Scholar]
  15. Chevalier L, Bernard S, Ramdani Y, Lamour R, Bardor M. 15.  et al. 2010. Subcompartment localization of the side chain xyloglucan-synthesizing enzymes within Golgi stacks of tobacco suspension-cultured cells. Plant J. 64:977–89 [Google Scholar]
  16. Chou Y-H, Pogorelko G, Young ZT, Zabotina OA. 16.  2015. Protein-protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. Plant Cell Physiol. 56:255–67 [Google Scholar]
  17. Chou Y-H, Pogorelko G, Zabotina OA. 17.  2012. Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol. 159:1355–66 [Google Scholar]
  18. Cocuron J-C, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH. 18.  et al. 2007. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. PNAS 104:8550–55 [Google Scholar]
  19. Dardelle F, Le Mauff F, Lehner A, Loutelier-Bourhis C, Bardor M. 19.  et al. 2015. Pollen tube cell walls of wild and domesticated tomatoes contain arabinosylated and fucosylated xyloglucan. Ann. Bot. 115:55–66 [Google Scholar]
  20. Davis J, Brandizzi F, Liepman AH, Keegstra K. 20.  2010. Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. Plant J. 64:1028–37 [Google Scholar]
  21. Del Bem LEV, Vincentz MG. 21.  2010. Evolution of xyloglucan-related genes in green plants. BMC Evol. Biol. 10:341 [Google Scholar]
  22. Desveaux D, Faik A, Maclachlan G. 22.  1998. Fucosyltransferase and the biosynthesis of storage and structural xyloglucan in developing nasturtium fruits. Plant Physiol. 118:885–94 [Google Scholar]
  23. Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M. 23.  2012. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn. Reson. Chem. 50:539–50 [Google Scholar]
  24. Dick-Perez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. 24.  2011. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000 [Google Scholar]
  25. dos Santos HP, Purgatto E, Mercier H, Buckeridge MS. 25.  2004. The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril. Plant Physiol. 135:287–99 [Google Scholar]
  26. Dwivany FM, Yulia D, Burton RA, Shirley NJ, Wilson SM. 26.  et al. 2009. The CELLULOSE-SYNTHASE LIKE C (CSLC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane. Mol. Plant 2:1025–39 [Google Scholar]
  27. Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S. 27.  et al. 2015. Identification and characterization of a Golgi-localized UDP-xylose transporter family from Arabidopsis. Plant Cell 27:1218–27 [Google Scholar]
  28. Edwards M, Dea ICM, Bulpin PV, Reid JSG. 28.  1985. Xyloglucan (amyloid) mobilisation in the cotyledons of Tropaeolum majus L. seeds following germination. Planta 163:133–40 [Google Scholar]
  29. Edwards M, Dickson C, Chengappa S, Sidebottom C, Gidley M, Reid J. 29.  1999. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J. 19:691–97 [Google Scholar]
  30. Endres S, Tenhaken R. 30.  2011. Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis. Planta 234:157–69 [Google Scholar]
  31. Faik A, Bar-Peled M, DeRocher A, Zeng W, Perrin R. 31.  et al. 2000. Biochemical characterization and molecular cloning of an α-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J. Biol. Chem. 275:15082–89 [Google Scholar]
  32. Faik A, Price N, Raikhel N, Keegstra K. 32.  2002. An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. PNAS 99:7797–802 [Google Scholar]
  33. Franková L, Fry S. 33.  2013. Biochemistry and physiological roles of enzymes that “cut and paste” plant cell-wall polysaccharides.. J. Exp. Bot. 64:3519–50 [Google Scholar]
  34. Fry S, York W, Albersheim P, Darvill A, Hayashi T. 34.  et al. 1993. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol. Plant. 89:1–3 [Google Scholar]
  35. Gibeaut DM, Pauly M, Bacic A, Fincher GB. 35.  2005. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221:729–38 [Google Scholar]
  36. Gille S, de Souza A, Xiong G, Benz M, Cheng K. 36.  et al. 2011. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell 23:4041–53 [Google Scholar]
  37. Gille S, Hänsel U, Ziemann M, Pauly M. 37.  2009. Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases. PNAS 106:14699–704 [Google Scholar]
  38. Gille S, Pauly M. 38.  2012. O-acetylation of plant cell wall polysaccharides. Front. Plant Sci. 3:12 [Google Scholar]
  39. Guillen R, York W, Pauly M, An J, Impallomeni G. 39.  et al. 1995. Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas. Carbohydr. Res. 277:291–311 [Google Scholar]
  40. Günl M, Neumetzler L, Kraemer F, de Souza A, Schultink A. 40.  et al. 2011. AXY8 encodes an α-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell 23:4025–40 [Google Scholar]
  41. Günl M, Pauly M. 41.  2011. AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta 233:707–19 [Google Scholar]
  42. Hantus S, Pauly M, Darvill A, Albersheim P, York W. 42.  1997. Structural characterization of novel l-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans. Carbohydr. Res. 304:11–20 [Google Scholar]
  43. Hayashi T. 43.  1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant. Physiol. 40:139–68 [Google Scholar]
  44. Hayashi T, Maclachlan G. 44.  1984. Pea xyloglucan and cellulose: I. Macromolecular organization. Plant Physiol. 75:596–604 [Google Scholar]
  45. Hayashi T, Marsden M, Delmer D. 45.  1987. Pea xyloglucan and cellulose: V. Xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol. 83:384–89 [Google Scholar]
  46. Hayashi T, Wong YS, Maclachlan G. 46.  1984. Pea xyloglucan and cellulose: II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol. 75:605–10 [Google Scholar]
  47. Hilz H, de Jong LE, Kabel MA, Verhoef R, Schols HA, Voragen AGJ. 47.  2007. Bilberry xyloglucan—novel building blocks containing β-xylose within a complex structure. Carbohydr. Res. 342:170–81 [Google Scholar]
  48. Hoffman M, Jia Z, Pena M, Cash M, Harper A. 48.  et al. 2005. Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr. Res. 340:1826–40 [Google Scholar]
  49. Hotchkiss AT Jr, Nuñez A, Strahan GD, Chau HK, White AK. 49.  et al. 2015. Cranberry xyloglucan structure and inhibition of Escherichia coli adhesion to epithelial cells. J. Agric. Food Chem. 63:5622–33 [Google Scholar]
  50. Hsieh YSY, Harris PJ. 50.  2009. Xyloglucans of monocotyledons have diverse structures. Mol. Plant 2:943–65 [Google Scholar]
  51. Hsieh YSY, Harris PJ. 51.  2012. Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes. Phytochemistry 79:87–101 [Google Scholar]
  52. Iglesias N, Abelenda J, Rodino M, Sampedro J, Revilla G, Zarra I. 52.  2006. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol. 47:55–63 [Google Scholar]
  53. Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M. 53.  2012. RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol. Plant 5:984–92 [Google Scholar]
  54. Jia Z, Cash M, Darvill A, York W. 54.  2005. NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan. Carbohydr. Res. 340:1818–25 [Google Scholar]
  55. Jia Z, Qin Q, Darvill A, York W. 55.  2003. Structure of the xyloglucan produced by suspension-cultured tomato cells. Carbohydr. Res. 338:1197–208 [Google Scholar]
  56. Kabel MA, de Waard P, Schols HA, Voragen AGJ. 56.  2003. Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood. Carbohydr. Res. 338:69–77 [Google Scholar]
  57. Kamerling J, Schauer R, Shukla A, Stoll S, van Halbeek H, Vliegenthart J. 57.  1987. Migration of O-acetyl groups in N,O-acetylneuraminic acids. Eur. J. Biochem. 162:601–7 [Google Scholar]
  58. Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R. 58.  2005. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221:243–54 [Google Scholar]
  59. Keegstra K, Talmadge K, Bauer W, Albersheim P. 59.  1973. Structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on interconnections of macromolecular components. Plant Physiol. 51:188–96 [Google Scholar]
  60. Kiefer L, York W, Darvill A, Albersheim P. 60.  1989. Xyloglucan isolated from suspension-cultured sycamore cell walls is O-acetylated. Phytochemistry 28:2105–7 [Google Scholar]
  61. Kong Y, Pena MJ, Renna L, Avci U, Pattathil S. 61.  et al. 2015. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant Physiol. 167:1296–306 [Google Scholar]
  62. Kooiman P. 62.  1961. The constitution of Tamarindus-amyloid. Recl. Trav. Chim. Pays-Bas 80:849–65 [Google Scholar]
  63. Kotake T, Hojo S, Tajima N, Matsuoka K, Koyama T, Tsumuraya Y. 63.  2008. A bifunctional enzyme with l-fucokinase and GDP-l-fucose pyrophosphorylase activities salvages free l-fucose in Arabidopsis.. J. Biol. Chem. 283:8125–35 [Google Scholar]
  64. Lampugnani ER, Moller IE, Cassin A, Jones DF, Koh PL. 64.  et al. 2013. In vitro grown pollen tubes of Nicotiana alata actively synthesise a fucosylated xyloglucan. PLOS ONE 8:e77140 [Google Scholar]
  65. Larskaya IA, Gorshkova TA. 65.  2015. Plant oligosaccharides—outsiders among elicitors?. Biochemistry (Mosc.) 80:881–900 [Google Scholar]
  66. Lehner A, Menu-Bouaouiche L, Dardelle F, Le Mauff F, Driouich A. 66.  et al. 2015. In silico prediction of proteins related to xyloglucan fucosyltransferases in Solanaceae genomes. Plant Signal. Behav. 10:e1026023 [Google Scholar]
  67. Leroux O, Sorensen I, Marcus SE, Viane RL, Willats WG, Knox JP. 67.  2015. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biol. 15:56 [Google Scholar]
  68. Lerouxel O, Choo TS, Séveno M, Usadel B, Faye L. 68.  et al. 2002. Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol. 130:1754–63 [Google Scholar]
  69. Liang Y, Basu D, Pattathil S, Xu WL, Venetos A. 69.  et al. 2013. Biochemical and physiological characterization of fut4 and fut6 mutants defective in arabinogalactan-protein fucosylation in Arabidopsis. J. Exp. Bot. 64:5537–51 [Google Scholar]
  70. Liu L, Hsia MM, Dama M, Vogel J, Pauly M. 70.  2016. A xyloglucan backbone 6-O-acetyltransferase from Brachypodium distachyon modulates xyloglucan xylosylation. Mol. Plant. In press. doi: 10.1016/j.molp.2015.11.004 [Google Scholar]
  71. Liu L, Paulitz J, Pauly M. 71.  2015. The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. Plant Physiol. 168:549–60 [Google Scholar]
  72. Lund CH, Bromley JR, Stenbaek A, Rasmussen RE, Scheller HV, Sakuragi Y. 72.  2014. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus. J. Exp. Bot. 66:85–97 [Google Scholar]
  73. Madson M, Dunand C, Li X, Verma R, Vanzin G. 73.  et al. 2003. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–70 [Google Scholar]
  74. Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S. 74.  et al. 2011. Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol. 155:1068–78 [Google Scholar]
  75. Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong S-L. 75.  et al. 2013. Reduced Wall Acetylation proteins play vital and distinct roles in cell wall O-acetylation in Arabidopsis. Plant Physiol. 163:1107–17 [Google Scholar]
  76. Mansoori N, Schultink A, Schubert J, Pauly M. 76.  2015. Expression of heterologous xyloglucan xylosyltransferases in Arabidopsis to investigate their role in determining xyloglucan xylosylation substitution patterns. Planta 241:1145–58 [Google Scholar]
  77. Marcus SE, Verhertbruggen Y, Herve C, Ordaz-Ortiz JJ, Farkas V. 77.  et al. 2008. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 8:60 [Google Scholar]
  78. McCann M, Wells B, Roberts K. 78.  1990. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96:323–34 [Google Scholar]
  79. Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU. 79.  et al. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann. Bot. 114:1217–36 [Google Scholar]
  80. Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K. 80.  et al. 2011. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiol. 155:399–413 [Google Scholar]
  81. Nishitani K, Tominaga R. 81.  1992. Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267:21058–64 [Google Scholar]
  82. O'Neill M, Eberhard S, Albersheim P, Darvill A. 82.  2001. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–49 [Google Scholar]
  83. Obel N, Erben V, Schwarz T, Kuhnel S, Fodor A, Pauly M. 83.  2009. Microanalysis of plant cell wall polysaccharides. Mol. Plant 2:922–32 [Google Scholar]
  84. Obel N, Neumetzler L, Pauly M. 84.  2007. Hemicelluloses and cell expansion. The Expanding Cell, J-P Verbelen, K Vissenberg, pp 57–88 Berlin: Springer [Google Scholar]
  85. Park YB, Cosgrove DJ. 85.  2012. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol. 158:1933–43 [Google Scholar]
  86. Park YB, Cosgrove DJ. 86.  2015. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56:180–94 [Google Scholar]
  87. Pattathil S, Harper A, Bar-Peled M. 87.  2005. Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–48 [Google Scholar]
  88. Pauly M, Albersheim P, Darvill A, York W. 88.  1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20:629–39 [Google Scholar]
  89. Pauly M, Andersen L, Kauppinen S, Kofod L, York W. 89.  et al. 1999. A xyloglucan-specific endo-β-1,4-glucanase from Aspergillus aculeatus. expression cloning in yeast, purification and characterization of the recombinant enzyme Glycobiology 9:93–100 [Google Scholar]
  90. Pauly M, Eberhard S, Albersheim P, Darvill A, York W. 90.  2001. Effects of the mur1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells. Planta 214:67–74 [Google Scholar]
  91. Pauly M, Gille S, Liu L, Mansoori N, Souza A. 91.  et al. 2013. Hemicellulose biosynthesis. Planta 238:627–42 [Google Scholar]
  92. Pauly M, Scheller H. 92.  2000. O-acetylation of plant cell wall polysaccharides: identification and partial characterization of a rhamnogalacturonan O-acetyl-transferase from potato suspension-cultured cells. Planta 210:659–67 [Google Scholar]
  93. Pena MJ, Darvill A, Eberhard S, York W, O'Neill MA. 93.  2008. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology 18:891–904 [Google Scholar]
  94. Pena MJ, Kong Y, York W, O'Neill MA. 94.  2012. A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell 24:4511–24 [Google Scholar]
  95. Perrin R, DeRocher A, Bar-Peled M, Zeng W, Norambuena L. 95.  et al. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–79 [Google Scholar]
  96. Perrin R, Jia Z, Wagner T, O'Neill M, Sarria R. 96.  et al. 2003. Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol. 132:768–78 [Google Scholar]
  97. Popper Z, Fry S. 97.  2003. Primary cell wall composition of bryophytes and charophytes. Ann. Bot. 91:1–12 [Google Scholar]
  98. Rautengarten C, Ebert B, Liu L, Stonebloom S, Smith-Moritz AM. 98.  et al. 2016. The Arabidopsis Golgi-localized GDP-fucose transporter is required for plant development. Nat. Commun In press [Google Scholar]
  99. Reiter W, Chapple C, Somerville C. 99.  1993. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261:1032–35 [Google Scholar]
  100. Reiter W, Chapple C, Somerville C. 100.  1997. Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12:335–45 [Google Scholar]
  101. Rose J, Braam J, Fry S, Nishitani K. 101.  2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43:1421–35 [Google Scholar]
  102. Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I. 102.  2012. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol. 158:1146–57 [Google Scholar]
  103. Sampedro J, Pardo B, Gianzo C, Guitián E, Revilla G, Zarra I. 103.  2010. Lack of α-xylosidase activity in Arabidopsis alters xyloglucan composition and results in growth defects. Plant Physiol. 154:1105–15 [Google Scholar]
  104. Sampedro J, Sieiro C, Revilla G, Gonzalez-Villa T, Zarra I. 104.  2001. Cloning and expression pattern of a gene encoding an α-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol. 126:910–20 [Google Scholar]
  105. Scheller HV, Ulvskov P. 105.  2010. Hemicelluloses. . Annu. Rev. Plant Biol. 61:263–89 [Google Scholar]
  106. Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M. 106.  2013. The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant Physiol. 163:86–94 [Google Scholar]
  107. Schultink A, Liu L, Zhu L, Pauly M. 107.  2014. Structural diversity and function of xyloglucan sidechain substituents. Plants 3:526–42 [Google Scholar]
  108. Schultink A, Naylor D, Dama M, Pauly M. 108.  2015. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol. 167:1271–83 [Google Scholar]
  109. Seifert G. 109.  2004. Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr. Opin. Plant Biol. 7:277–84 [Google Scholar]
  110. Seifert G, Barber C, Wells B, Dolan L, Roberts K. 110.  2002. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-d-galactose into cell wall polymers. Curr. Biol. 12:1840–45 [Google Scholar]
  111. Sims I, Middleton K, Lane A, Cairns A, Bacic A. 111.  2000. Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae. Planta 210:261–68 [Google Scholar]
  112. Smith R, Fry S. 112.  1991. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem. J. 279:529–35 [Google Scholar]
  113. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T. 113.  et al. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206–11 [Google Scholar]
  114. Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T. 114.  2002. Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. PNAS 99:9055–60 [Google Scholar]
  115. Talbott L, Ray P. 115.  1992. Changes in molecular size of previously deposited and newly synthesized pea cell wall matrix polysaccharides—effects of auxin and turgor. Plant Physiol. 98:369–79 [Google Scholar]
  116. Talbott L, Ray P. 116.  1992. Molecular size and separability features of pea cell wall polysaccharides—implications for models of primary wall structure. Plant Physiol. 98:357–68 [Google Scholar]
  117. Tamura K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I. 117.  2005. Katamari1/Murus3 is a novel Golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17:1764–76 [Google Scholar]
  118. Tedman-Jones JD, Lei R, Jay F, Fabro G, Li X. 118.  et al. 2008. Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves. Plant J. 56:691–703 [Google Scholar]
  119. Thompson D. 119.  2005. How do cell walls regulate plant growth?. J. Exp. Bot. 56:2275–85 [Google Scholar]
  120. Thompson J, Fry S. 120.  1997. Trimming and solubilization of xyloglucan after deposition in the walls of cultured rose cells. J. Exp. Bot. 48:297–305 [Google Scholar]
  121. Thompson J, Fry S. 121.  2001. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J. 26:23–34 [Google Scholar]
  122. Tuomivaara ST, Yaoi K, O'Neill MA, York W. 122.  2015. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr. Res. 402:56–66 [Google Scholar]
  123. Urbanowicz BR, Pena MJ, Moniz HA, Moremen KW, York W. 123.  2014. Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J. 80:197–206 [Google Scholar]
  124. Valent B, Albersheim P. 124.  1974. Structure of plant cell walls: V. Binding of xyloglucan to cellulose fibers. Plant Physiol. 54:105–8 [Google Scholar]
  125. Vanzin G, Madson M, Carpita N, Raikhel N, Keegstra K, Reiter W. 125.  2002. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. PNAS 99:3340–45 [Google Scholar]
  126. Vincken J, Wijsman A, Beldman G, Niessen W, Voragen A. 126.  1996. Potato xyloglucan is built from XXGG-type subunits. Carbohydr. Res. 288:219–32 [Google Scholar]
  127. Vincken J, York W, Beldman G, Voragen A. 127.  1997. Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol. 114:9–13 [Google Scholar]
  128. Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ. 128.  2012. Arabidopsis GT34 family contains five xyloglucan α-1,6-xylosyltransferases. New Phytol. 195:585–95 [Google Scholar]
  129. Wang C, Li S, Ng S, Zhang B, Zhou Y. 129.  et al. 2014. Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J. Exp. Bot. 65:4149–57 [Google Scholar]
  130. White AR, Xin Y, Pezeshk V. 130.  1993. Xyloglucan glucosyltransferase in Golgi membranes from Pisum sativum (pea). Biochem. J. 294:231–38 [Google Scholar]
  131. Wu Y, Williams M, Bernard S, Driouich A, Showalter A, Faik A. 131.  2010. Functional identification of two nonredundant Arabidopsis α(1,2)fucosyltransferases specific to arabinogalactan proteins. J. Biol. Chem. 285:13638 [Google Scholar]
  132. Xiong G, Cheng K, Pauly M. 132.  2013. Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29. Mol. Plant 6:1373–75 [Google Scholar]
  133. York W, Darvill A, McNeil M, Stevenson TT, Albersheim P. 133.  1986. Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol. 118:3–40 [Google Scholar]
  134. York W, Impallomeni G, Hisamatsu M, Albersheim P, Darvill A. 134.  1995. Eleven newly characterized xyloglucan oligoglycosyl alditols: the specific effects of sidechain structure and location on 1H NMR chemical shifts. Carbohydr. Res. 267:79–104 [Google Scholar]
  135. York W, Kolli V, Orlando R, Albersheim P, Darvill A. 135.  1996. The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr. Res. 285:99–128 [Google Scholar]
  136. York W, van Halbeek H, Darvill A, Albersheim P. 136.  1990. Structural analysis of xyloglucan oligosaccharides by 1H-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydr. Res. 200:9–31 [Google Scholar]
  137. Zablackis E, Huang J, Muller B, Darvill A, Albersheim P. 137.  1995. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107:1129–38 [Google Scholar]
  138. Zablackis E, York W, Pauly M, Hantus S, Reiter W. 138.  et al. 1996. Substitution of l-fucose by l-galactose in cell walls of Arabidopsis mur1. Science 272:1808–10 [Google Scholar]
  139. Zabotin A, Barisheva T, Larskaya I, Toroshina T, Trofimova O. 139.  et al. 2005. Oligosaccharin—a new systemic factor in the acquisition of freeze tolerance in winter plants. Plant Biosyst. 139:36–41 [Google Scholar]
  140. Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou Y-H. 140.  et al. 2012. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant Physiol. 159:1367–84 [Google Scholar]
  141. Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D. 141.  et al. 2008. Arabidopsis XXT5 gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J. 56:101–15 [Google Scholar]
  142. Zhang GF, Staehelin LA. 142.  1992. Functional compartmentation of the Golgi apparatus of plant cells immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 99:1070–83 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-112222
Loading
/content/journals/10.1146/annurev-arplant-043015-112222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error