1932

Abstract

Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

Keyword(s): clathrinendosomesESCRTretromerubiquitin
Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-112242
2016-04-29
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-112242.html?itemId=/content/journals/10.1146/annurev-arplant-043015-112242&mimeType=html&fmt=ahah

Literature Cited

  1. Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J. 1.  et al. 2006. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8:249–56 [Google Scholar]
  2. Abdallah C, Valot B, Guillier C, Mounier A, Balliau T. 2.  et al. 2014. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J. Proteom. 108:354–68 [Google Scholar]
  3. Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A. 3.  et al. 2013. CLASP interacts with Sorting Nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev. Cell 24:649–59 [Google Scholar]
  4. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD. 4.  2002. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3:271–82 [Google Scholar]
  5. Backues SK, Korasick DA, Heese A, Bednarek SY. 5.  2010. The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Cell 22:3218–31 [Google Scholar]
  6. Bandmann V, Homann U. 6.  2012. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J. 70:578–84 [Google Scholar]
  7. Bar M, Avni A. 7.  2009. EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J. 59:600–11 [Google Scholar]
  8. Barajas D, Martin IF, Pogany J, Risco C, Nagy PD. 8.  2014. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLOS Pathog. 10:e1004087 [Google Scholar]
  9. Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G. 9.  2014. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. PNAS 111:8293–98 [Google Scholar]
  10. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C. 10.  et al. 2011. Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. PNAS 108:E450–58 [Google Scholar]
  11. Bashline L, Li S, Anderson CT, Lei L, Gu Y. 11.  2013. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. Plant Physiol. 163:150–60 [Google Scholar]
  12. Bassham DC, Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV. 12.  2000. AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11:2251–65 [Google Scholar]
  13. Ben Khaled S, Postma J, Robatzek S. 13.  2015. A moving view: subcellular trafficking processes in pattern recognition receptor–triggered plant immunity. Annu. Rev. Phytopathol. 53:379–402 [Google Scholar]
  14. Bissig C, Gruenberg J. 14.  2014. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24:19–25 [Google Scholar]
  15. Blanc C, Charette SJ, Mattei S, Aubry L, Smith EW. 15.  et al. 2009. Dictyostelium Tom1 participates to an ancestral ESCRT-0 complex. Traffic 10:161–71 [Google Scholar]
  16. Bonifacino JS, Hurley JH. 16.  2008. Retromer. Curr. Opin. Cell Biol. 20:427–36 [Google Scholar]
  17. Burd C, Cullen PJ. 17.  2014. Retromer: a master conductor of endosome sorting. Cold Spring Harb. Perspect. Biol 6:a016774 [Google Scholar]
  18. Cai Y, Zhuang XH, Gao CJ, Wang XF, Jiang LW. 18.  2014. The Arabidopsis endosomal sorting complex required for transport III regulates internal vesicle formation of the prevacuolar compartment and is required for plant development. Plant Physiol. 165:1328–43 [Google Scholar]
  19. Chappie JS, Dyda F. 19.  2013. Building a fission machine—structural insights into dynamin assembly and activation. J. Cell Sci. 126:2773–84 [Google Scholar]
  20. Chi RJ, Liu J, West M, Wang J, Odorizzi G, Burd CG. 20.  2014. Fission of SNX-BAR–coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1. J. Cell Biol. 204:793–806 [Google Scholar]
  21. Chow C-M, Neto H, Foucart C, Moore I. 21.  2008. Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–23 [Google Scholar]
  22. Choy RW, Park M, Temkin P, Herring BE, Marley A. 22.  et al. 2014. Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82:55–62 [Google Scholar]
  23. Cui Y, Li X, Chen Q, He X, Yang Q. 23.  et al. 2010. BLOS1, a putative BLOC-1 subunit, interacts with SNX1 and modulates root growth in Arabidopsis. J. Cell Sci. 123:3727–33 [Google Scholar]
  24. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. 24.  2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–30 [Google Scholar]
  25. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J. 25.  et al. 2007. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17:520–27 [Google Scholar]
  26. Di Rubbo S, Irani NG, Kim SY, Xu ZY, Gadeyne A. 26.  et al. 2013. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25:2986–97 [Google Scholar]
  27. Doyle SM, Haeger A, Vain T, Rigal A, Viotti C. 27.  et al. 2015. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. PNAS 112:E806–15 [Google Scholar]
  28. Du Y, Tejos R, Beck M, Himschoot E, Li H. 28.  et al. 2013. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. PNAS 110:7946–51 [Google Scholar]
  29. Ebine K, Inoue T, Ito J, Ito E, Uemura T. 29.  et al. 2014. Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr. Biol. 24:1375–82 [Google Scholar]
  30. Ebine K, Okatani Y, Uemura T, Goh T, Shoda K. 30.  et al. 2008. A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006–21 [Google Scholar]
  31. Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. 31.  2015. Genome sequencing of Arabidopsis abp1-5 reveals second-site mutations that may affect phenotypes. Plant Cell 27:1820–26 [Google Scholar]
  32. Fan L, Hao H, Xue Y, Zhang L, Song K. 32.  et al. 2013. Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140:3826–37 [Google Scholar]
  33. Fingerhut A, von Figura K, Honing S. 33.  2001. Binding of AP2 to sorting signals is modulated by AP2 phosphorylation. J. Biol. Chem. 276:5476–82 [Google Scholar]
  34. Ford MGJ, Mills IG, Peter BJ, Vallis Y, Praefcke GJK. 34.  et al. 2002. Curvature of clathrin-coated pits driven by epsin. Nature 419:361–66 [Google Scholar]
  35. Fujimoto M, Arimura S, Ueda T, Takanashi H, Hayashi Y. 35.  et al. 2010. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. PNAS 107:6094–99 [Google Scholar]
  36. Gadeyne A, Sánchez-Rodríguez C, Vanneste S, Di Rubbo S, Zauber H. 36.  et al. 2014. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156:691–704 [Google Scholar]
  37. Gao C, Luo M, Zhao Q, Yang R, Cui Y. 37.  et al. 2014. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr. Biol. 24:2556–63 [Google Scholar]
  38. Gao C, Zhuang X, Cui Y, Fu X, He Y. 38.  et al. 2015. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. PNAS 112:1886–91 [Google Scholar]
  39. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. 39.  2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. PNAS 112:2275–80 [Google Scholar]
  40. Haas TJ, Sliwinski MK, Martinez DE, Preuss M, Ebine K. 40.  et al. 2007. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295–312 [Google Scholar]
  41. Hanzawa T, Shibasaki K, Numata T, Kawamura Y, Gaude T, Rahman A. 41.  2013. Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1–dependent endosomal trafficking pathway. Plant Cell 25:3424–33 [Google Scholar]
  42. Hao H, Fan L, Chen T, Li R, Li X. 42.  et al. 2014. Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26:1729–45 [Google Scholar]
  43. Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. 43.  2006. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 7:262–81 [Google Scholar]
  44. Heard W, Sklenar J, Tome DF, Robatzek S, Jones AM. 44.  2015. Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Proteom. 14:1796–813 [Google Scholar]
  45. Heath RJW, Insall RH. 45.  2008. F-BAR domains: multifunctional regulators of membrane curvature. J. Cell Sci. 121:1951–54 [Google Scholar]
  46. Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y. 46.  et al. 2010. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–84 [Google Scholar]
  47. Henne WM, Buchkovich NJ, Emr SD. 47.  2011. The ESCRT pathway. Dev. Cell 21:77–91 [Google Scholar]
  48. Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G. 48.  et al. 2014. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3:e02866 [Google Scholar]
  49. Hollopeter G, Lange JJ, Zhang Y, Vu TN, Gu M. 49.  et al. 2014. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. eLife 3:e03648 [Google Scholar]
  50. Holstein SE. 50.  2002. Clathrin and plant endocytosis. Traffic 3:614–20 [Google Scholar]
  51. Honing S, Ricotta D, Krauss M, Spate K, Spolaore B. 51.  et al. 2005. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18:519–31 [Google Scholar]
  52. Huang J, Fujimoto M, Fujiwara M, Fukao Y, Arimura S-I, Tsutsumi N. 52.  2015. Arabidopsis dynamin-related proteins, DRP2A and DRP2B, function coordinately in post-Golgi trafficking. Biochem. Biophys. Res. Commun. 456:238–44 [Google Scholar]
  53. Irani NG, Di Rubbo S, Mylle E, Van den Begin J, Schneider-Pizoń J. 53.  et al. 2012. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat. Chem. Biol. 8:583–89 [Google Scholar]
  54. Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M. 54.  et al. 2013. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25:4894–911 [Google Scholar]
  55. Isono E, Katsiarimpa A, Müller IK, Anzenberger F, Stierhof Y-D. 55.  et al. 2010. The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22:1826–37 [Google Scholar]
  56. Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A. 56.  2012. Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 69:204–16 [Google Scholar]
  57. Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC. 57.  et al. 2010. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–29 [Google Scholar]
  58. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T. 58.  2006. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–9 [Google Scholar]
  59. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miege C, Gaude T. 59.  2007. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–70 [Google Scholar]
  60. Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. 60.  2011. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–29 [Google Scholar]
  61. Kang H, Kim SY, Song K, Sohn EJ, Lee Y. 61.  et al. 2012. Trafficking of vacuolar proteins: the crucial role of Arabidopsis Vacuolar Protein Sorting 29 in recycling vacuolar sorting receptor. Plant Cell 24:5058–73 [Google Scholar]
  62. Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T. 62.  2011. High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J. Biol. Chem. 286:6175–83 [Google Scholar]
  63. Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser M-T. 63.  et al. 2011. The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 23:3026–40 [Google Scholar]
  64. Kelly BT, Owen DJ. 64.  2011. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 23:404–12 [Google Scholar]
  65. Kim SY, Xu ZY, Song K, Kim DH, Kang H. 65.  et al. 2013. Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25:2970–85 [Google Scholar]
  66. Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T. 66.  et al. 2011. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–31 [Google Scholar]
  67. Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J. 67.  2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–81 [Google Scholar]
  68. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L. 68.  et al. 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. PNAS 105:17812–17 [Google Scholar]
  69. Kolb C, Nagel MK, Kalinowska K, Hagmann J, Ichikawa M. 69.  et al. 2015. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiol. 167:1361–73 [Google Scholar]
  70. Konopka CA, Backues SK, Bednarek SY. 70.  2008. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–80 [Google Scholar]
  71. Korbei B, Moulinier-Anzola J, De-Araujo L, Lucyshyn D, Retzer K. 71.  et al. 2013. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 23:2500–5 [Google Scholar]
  72. Kostelansky MS, Schluter C, Tam YY, Lee S, Ghirlando R. 72.  et al. 2007. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129:485–98 [Google Scholar]
  73. Kumar MN, Hsieh YF, Verslues PE. 73.  2015. At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. PNAS 112:10545–50 [Google Scholar]
  74. Lam BC-H, Sage TL, Bianchi F, Blumwald E. 74.  2001. Role of SH3 domain–containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Plant Cell 13:2499–512 [Google Scholar]
  75. Lam SK, Siu CL, Hillmer S, Jang S, An G. 75.  et al. 2007. Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319 [Google Scholar]
  76. Laxmi A, Pan J, Morsy M, Chen R. 76.  2008. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLOS ONE 3:e1510 [Google Scholar]
  77. Leitner J, Petrášek J, Tomanov K, Retzer K, Pařezová M. 77.  et al. 2012. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. PNAS 109:8322–27 [Google Scholar]
  78. Leitner J, Retzer K, Korbei B, Luschnig C. 78.  2012. Dynamics in PIN2 auxin carrier ubiquitylation in gravity-responding Arabidopsis roots. Plant Signal. Behav. 7:1271–73 [Google Scholar]
  79. Leung KF, Dacks JB, Field MC. 79.  2008. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–716 [Google Scholar]
  80. Lewis JD, Lazarowitz SG. 80.  2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. PNAS 107:2491–96 [Google Scholar]
  81. Li R, Liu P, Wan Y, Chen T, Wang Q. 81.  et al. 2012. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–22 [Google Scholar]
  82. Li X, Wang X, Yang Y, Li R, He Q. 82.  et al. 2011. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–97 [Google Scholar]
  83. Lin D, Nagawa S, Chen J, Cao L, Chen X. 83.  et al. 2012. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr. Biol. 22:1319–25 [Google Scholar]
  84. Lu D, Lin W, Gao X, Wu S, Cheng C. 84.  et al. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–42 [Google Scholar]
  85. Luschnig C, Vert G. 85.  2014. The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141:2924–38 [Google Scholar]
  86. Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J. 86.  et al. 2011. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell 21:796–804 [Google Scholar]
  87. Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A. 87.  et al. 2014. Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr. Biol. 24:1031–37 [Google Scholar]
  88. Martins S, Dohmann EMN, Cayrel A, Johnson A, Fischer W. 88.  et al. 2015. Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nat. Commun. 6:6151 [Google Scholar]
  89. Mayers JR, Wang L, Pramanik J, Johnson A, Sarkeshik A. 89.  et al. 2013. Regulation of ubiquitin-dependent cargo sorting by multiple endocytic adaptors at the plasma membrane. PNAS 110:11857–62 [Google Scholar]
  90. McMahon HT, Boucrot E. 90.  2011. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12:517–33 [Google Scholar]
  91. McMichael CM, Reynolds GD, Koch LM, Wang C, Jiang N. 91.  et al. 2013. Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. Plant Cell 25:3910–25 [Google Scholar]
  92. Miyagishima SY, Kuwayama H, Urushihara H, Nakanishi H. 92.  2008. Evolutionary linkage between eukaryotic cytokinesis and chloroplast division by dynamin proteins. PNAS 105:15202–7 [Google Scholar]
  93. Mukadam AS, Seaman MNJ. 93.  2015. Retromer-mediated endosomal protein sorting: the role of unstructured domains. FEBS Lett 589:2620–26 [Google Scholar]
  94. Munch D, Teh O-K, Malinovsky FG, Liu Q, Vetukuri RR. 94.  et al. 2015. Retromer contributes to immunity-associated cell death in Arabidopsis. Plant Cell 27:463–79 [Google Scholar]
  95. Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T. 95.  et al. 2010. ADP-ribosylation factor machinery mediates endocytosis in plant cells. PNAS 107:21890–95 [Google Scholar]
  96. Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T. 96.  et al. 2014. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–76 [Google Scholar]
  97. Nordmann M, Cabrera M, Perz A, Brocker C, Ostrowicz C. 97.  et al. 2010. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20:1654–59 [Google Scholar]
  98. Nothwehr SF, Ha SA, Bruinsma P. 98.  2000. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151:297–310 [Google Scholar]
  99. Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I. 99.  et al. 1995. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269:1872–75 [Google Scholar]
  100. Oliviusson P, Heinzerling O, Hillmer S, Hinz G, Tse YC. 100.  et al. 2006. Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18:1239–52 [Google Scholar]
  101. Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA. 101.  2001. Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–51 [Google Scholar]
  102. Otto GP, Nichols BJ. 102.  2011. The roles of flotillin microdomains—endocytosis and beyond. J. Cell Sci. 124:3933–40 [Google Scholar]
  103. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof Y-D. 103.  et al. 2005. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–56 [Google Scholar]
  104. Paczkowski JE, Richardson BC, Fromme JC. 104.  2015. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol. 25:408–16 [Google Scholar]
  105. Pan J, Fujioka S, Peng J, Chen J, Li G, Chen R. 105.  2009. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21:568–80 [Google Scholar]
  106. Pearse BM. 106.  1976. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. PNAS 73:1255–59 [Google Scholar]
  107. Peleg-Grossman S, Volpin H, Levine A. 107.  2007. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J. Exp. Bot. 58:1637–49 [Google Scholar]
  108. Pourcher M, Santambrogio M, Thazar N, Thierry AM, Fobis-Loisy I. 108.  et al. 2010. Analyses of sorting nexins reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana. Plant Cell 22:3980–91 [Google Scholar]
  109. Puertollano R. 109.  2005. Interactions of TOM1L1 with the multivesicular body sorting machinery. J. Biol. Chem. 280:9258–64 [Google Scholar]
  110. Puertollano R, Bonifacino JS. 110.  2004. Interactions of GGA3 with the ubiquitin sorting machinery. Nat. Cell Biol. 6:244–51 [Google Scholar]
  111. Rapoport I, Miyazaki M, Boll W, Duckworth B, Cantley LC. 111.  et al. 1997. Regulatory interactions in the recognition of endocytic sorting signals by AP-2 complexes. EMBO J. 16:2240–50 [Google Scholar]
  112. Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A. 112.  et al. 2015. pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell 27:1200–17 [Google Scholar]
  113. Reyes FC, Buono RA, Roschzttardtz H, Di Rubbo S, Yeun LH. 113.  et al. 2014. A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development. J. Biol. Chem. 289:4980–88 [Google Scholar]
  114. Richter S, Geldner N, Schrader J, Wolters H, Stierhof YD. 114.  et al. 2007. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448:488–92 [Google Scholar]
  115. Ringstad N, Nemoto Y, De Camilli P. 115.  1997. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. PNAS 94:8569–74 [Google Scholar]
  116. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T. 116.  et al. 2010. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–21 [Google Scholar]
  117. Robinson DG, Pimpl P, Scheuring D, Stierhof Y-D, Sturm S, Viotti C. 117.  2012. Trying to make sense of retromer. Trends Plant Sci. 17:431–39 [Google Scholar]
  118. Rojas R, Kametaka S, Haft CR, Bonifacino JS. 118.  2007. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell. Biol. 27:1112–24 [Google Scholar]
  119. Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL. 119.  et al. 2008. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183:513–26 [Google Scholar]
  120. Roth TF, Porter KR. 120.  1964. Yolk protein uptake in the oocyte of the mosquito Aedesaegypti. L. J. Cell Biol. 20:313–32 [Google Scholar]
  121. Ryser U. 121.  1979. Cotton fibre differentiation: occurrence and distribution of coated and smooth vesicles during primary and secondary wall formation. Protoplasma 98:223–39 [Google Scholar]
  122. Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E. 122.  et al. 1997. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev. 11:2239–49 [Google Scholar]
  123. Schlossman DM, Schmid SL, Braell WA, Rothman JE. 123.  1984. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol 99:723–33 [Google Scholar]
  124. Schuh AL, Audhya A. 124.  2014. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit. Rev. Biochem. Mol. Biol. 49:242–61 [Google Scholar]
  125. Seaman MNJ. 125.  2007. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120:2378–89 [Google Scholar]
  126. Seaman MNJ, McCaffery JM, Emr SD. 126.  1998. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol 142:665–81 [Google Scholar]
  127. Shahriari M, Richter K, Keshavaiah C, Sabovljevic A, Huelskamp M, Schellmann S. 127.  2011. The Arabidopsis ESCRT protein-protein interaction network. Plant Mol. Biol. 76:85–96 [Google Scholar]
  128. Shen B, Li C, Min Z, Meeley RB, Tarczynski MC, Olsen O-A. 128.  2003. Sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. PNAS 100:6552–57 [Google Scholar]
  129. Shen QT, Schuh AL, Zheng Y, Quinney K, Wang L. 129.  et al. 2014. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206:763–77 [Google Scholar]
  130. Shestakova A, Hanono A, Drosner S, Curtiss M, Davies BA. 130.  et al. 2010. Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol. Biol. Cell 21:1059–71 [Google Scholar]
  131. Shibasaki K, Uemura M, Tsurumi S, Rahman A. 131.  2009. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–38 [Google Scholar]
  132. Shimada T, Koumoto Y, Li L, Yamazaki M, Kondo M. 132.  et al. 2006. AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant Cell Physiol. 47:1187–94 [Google Scholar]
  133. Shin LJ, Lo JC, Chen GH, Callis J, Fu H, Yeh KC. 133.  2013. IRT1 DEGRADATION FACTOR1, a RING E3 ubiquitin ligase, regulates the degradation of IRON-REGULATED TRANSPORTER1 in Arabidopsis. Plant Cell 25:3039–51 [Google Scholar]
  134. Shinohara N, Taylor C, Leyser O. 134.  2013. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biol. 11e1001474
  135. Singh MK, Kruger F, Beckmann H, Brumm S, Vermeer JE. 135.  et al. 2014. Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr. Biol. 24:1383–89 [Google Scholar]
  136. Skruzny M, Desfosses A, Prinz S, Dodonova SO, Gieras A. 136.  et al. 2015. An organized co-assembly of clathrin adaptors is essential for endocytosis. Dev. Cell 33:150–62 [Google Scholar]
  137. Spallek T, Beck M, Ben Khaled S, Salomon S, Bourdais G. 137.  et al. 2013. ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLOS Genet. 9:e1004035 [Google Scholar]
  138. Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T. 138.  et al. 2015. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 27:391–402 [Google Scholar]
  139. Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS. 139.  2009. The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21:749–66 [Google Scholar]
  140. Spitzer C, Schellmann S, Sabovljevic A, Shahriari M, Keshavaiah C. 140.  et al. 2006. The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133:4679–89 [Google Scholar]
  141. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL. 141.  et al. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–18 [Google Scholar]
  142. Stierhof YD, Viotti C, Scheuring D, Sturm S, Robinson DG. 142.  2013. Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma 250:235–40 [Google Scholar]
  143. Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T. 143.  2005. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102:12276–81 [Google Scholar]
  144. Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K. 144.  et al. 2010. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. PNAS 107:5220–25 [Google Scholar]
  145. Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J. 145.  2009. Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr. Biol. 19:391–97 [Google Scholar]
  146. Tanno H, Komada M. 146.  2013. The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem. 153:497–504 [Google Scholar]
  147. Tebar F, Sorkina T, Sorkin A, Ericsson M, Kirchhausen T. 147.  1996. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271:28727–30 [Google Scholar]
  148. Teis D, Saksena S, Judson BL, Emr SD. 148.  2010. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29:871–83 [Google Scholar]
  149. Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T. 149.  2015. Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. PNAS 112:4158–63 [Google Scholar]
  150. Tian Q, Olsen L, Sun B, Lid SE, Brown RC. 150.  et al. 2007. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19:3127–45 [Google Scholar]
  151. Traub LM, Bonifacino JS. 151.  2013. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5:a016790 [Google Scholar]
  152. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K. 152.  et al. 1995. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–35 [Google Scholar]
  153. Van Damme D, Coutuer S, De Rycke R, Bouget FY, Inzé D, Geelen D. 153.  2006. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18:3502–18 [Google Scholar]
  154. van der Valk P, Fowke LC. 154.  1981. Ultrastructural aspects of coated vesicles in tobacco protoplasts. Can. J. Bot. 59:1307–13 [Google Scholar]
  155. van Weering JRT, Verkade P, Cullen PJ. 155.  2012. SNX–BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 13:94–107 [Google Scholar]
  156. Wang C, Yan X, Chen Q, Jiang N, Fu W. 156.  et al. 2013. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25:499–516 [Google Scholar]
  157. Wang F, Shang Y, Fan B, Yu JQ, Chen Z. 157.  2014. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLOS Pathog. 10:e1004243 [Google Scholar]
  158. Wang F, Yang Y, Wang Z, Zhou J, Fan B, Chen Z. 158.  2015. A critical role of Lyst-Interacting Protein 5, a positive regulator of multivesicular body biogenesis, in plant responses to heat and salt stresses. Plant Physiol. 169:497–511 [Google Scholar]
  159. Wang Q, Zhao Y, Luo W, Li R, He Q. 159.  et al. 2013. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. PNAS 110:13204–9 [Google Scholar]
  160. Winter V, Hauser M-T. 160.  2006. Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci. 11:115–23 [Google Scholar]
  161. Wollert T, Hurley JH. 161.  2010. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–69 [Google Scholar]
  162. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. 162.  2009. Membrane scission by the ESCRT-III complex. Nature 458:172–77 [Google Scholar]
  163. Wright M, Berlin I, Nash P. 163.  2011. Regulation of endocytic sorting by ESCRT–DUB-mediated deubiquitination. Cell Biochem. Biophys. 60:39–46 [Google Scholar]
  164. Wywial E, Singh SM. 164.  2010. Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 10:157 [Google Scholar]
  165. Yamaoka S, Shimono Y, Shirakawa M, Fukao Y, Kawase T. 165.  et al. 2013. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25:2958–69 [Google Scholar]
  166. Yamazaki M, Shimada T, Takahashi H, Tamura K, Kondo M. 166.  et al. 2008. Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant Cell Physiol. 49:142–56 [Google Scholar]
  167. Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA. 167.  2010. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191:367–81 [Google Scholar]
  168. Zelazny E, Santambrogio M, Pourcher M, Chambrier P, Berne-Dedieu A. 168.  et al. 2013. Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. J. Biol. Chem. 288:8815–25 [Google Scholar]
  169. Zhang A, He X, Zhang L, Yang L, Woodman P, Li W. 169.  2014. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments. J. Biol. Chem. 289:29180–94 [Google Scholar]
  170. Zhang Y, Persson S, Hirst J, Robinson MS, van Damme D, Sánchez-Rodríguez C. 170.  2015. Change your TPLATE, change your fate: plant CME and beyond. Trends Plant Sci. 20:41–48 [Google Scholar]
  171. Zouhar J, Sauer M. 171.  2014. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion. Plant Cell 26:4232–44 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-112242
Loading
/content/journals/10.1146/annurev-arplant-043015-112242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error