Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems—not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abdel-Aal EM, Akhtar H, Zaheer K, Ali R. 1.  2013. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5:1169–85 [Google Scholar]
  2. Adler P, Del Grasso S, Parton W. 2.  2007. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 17:675–91 [Google Scholar]
  3. Alston JM, Beddow JM, Pardey PG. 3.  2009. Agricultural research, productivity, and food prices in the long run. Science 325:120910 [Google Scholar]
  4. Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH. 4.  2009. Changes in soil organic carbon under biofuel crops. Glob. Change Biol. Bioenergy 1:75–96 [Google Scholar]
  5. Araus JL, Cairns JE. 5.  2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19:52–61 [Google Scholar]
  6. Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S. 6.  et al. 2011. Artificial selection for a green revolution gene during japonica rice domestication. PNAS 108:11034–39 [Google Scholar]
  7. Asp T, Byrne S, Gundlach H, Bruggmann R, Mayer KFX. 7.  et al. 2011. Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Mol. Genet. Genom. 286:433–47 [Google Scholar]
  8. Baer SG, Kitchen DJ, Blair JM, Rice CW. 8.  2002. Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecol. Appl. 12:1688–701 [Google Scholar]
  9. Baraibar B, Torra J, Westerman PR. 9.  2011. Harvester ant (Messor barbarus (L.)) density as related to soil properties, topography and management in semi-arid cereals. Appl. Soil Ecol. 51:60–65 [Google Scholar]
  10. Batello C, Wade L, Cox S, Pogna N, Bozzini A, Choptiany J. 10.  2014. Perennial Crops for Food Security: Proceedings of the FAO Expert Workshop Rome: Food Agric. Organ. UN [Google Scholar]
  11. Baulcombe D, Crute I, Davies B, Dunwell J, Gale M. 11.  et al. 2009. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture London: R. Soc. [Google Scholar]
  12. Becker R, Wagoner P, Hanners GD, Saunders RM. 12.  1991. Compositional, nutritional and functional evaluation of intermediate wheatgrass (Thinopyrum intermedium). J. Food Process. Preservat. 15:63–77 [Google Scholar]
  13. Beres BL, Harker KN, Clayton GW, Bremer E, Blackshaw RE, Graf RJ. 13.  2010. Weed-competitive ability of spring and winter cereals in the northern great plains. Weed Technol 24:108–16 [Google Scholar]
  14. Bigler F, Albajes R. 14.  2011. Indirect effects of genetically modified herbicide tolerant crops on biodiversity and ecosystem services: the biological control example. J. Verbr. Lebensm. 6:79–84 [Google Scholar]
  15. Björkman T, Lowry C, Shail JW, Brainard DC, Anderson DS, Masiunas JB. 15.  2015. Mustard cover crops for biomass production and weed suppression in the great lakes region. Agron. J. 107:1235–49 [Google Scholar]
  16. Blubaugh CK, Kaplan I. 16.  2015. Tillage compromises weed seed predator activity across developmental stages. Biol. Control 81:76–82 [Google Scholar]
  17. Bock JE, Damodaran S. 17.  2013. Bran-induced changes in water structure and gluten conformation in model gluten dough studied by Fourier transform infrared spectroscopy. Food Hydrocolloids 31:146–55 [Google Scholar]
  18. Bos B, Koerkmap PG, Gosselink J, Bokma S. 18.  2009. Reflexive interactive design and its application in a project on sustainable dairy husbandry systems. Outlook Agric. 38:137–45 [Google Scholar]
  19. Cameron PJ, Hill RL, Bain J, Thomas WP. 19.  1993. Analysis of importations for biological control of insect pests and weeds in New Zealand. Biocontrol Sci. Technol. 3:387–404 [Google Scholar]
  20. Cao S, Li Z, Gong C, Xu H, Yang X. 20.  et al. 2014. Identification and characterization of high-molecular weight glutenin subunits from Agropyron intermedium. PLOS ONE 9:e87477 [Google Scholar]
  21. Cao S, Xu H, Li Z, Wang X, Wang D. 21.  et al. 2007. Identification and characterization of a novel Ag. intermedium HMW-GS gene from T. aestivum-Ag. intermedium addition lines TAI-I series. J. Cereal Sci. 54:293–301 [Google Scholar]
  22. Ceccarelli S. 22.  2015. Efficiency of plant breeding. Crop Sci. 55:87 [Google Scholar]
  23. Clark WC, Tomich TP, van Noordwijk M, Guston D, Catacutan D. 23.  et al. 2011. Boundary work for sustainable development: natural resource management at the Consultative Group on International Agricultural Research (CGIAR). PNAS. In press. doi: 10.1073/pnas.0900231108 [Google Scholar]
  24. Clement SL, Elberson LR, Youssef N, Young FL, Evans AA. 24.  2004. Cereal aphid and natural enemy populations in cereal production systems in eastern Washington. J. Kans. Entomol. Soc. 77:165–73 [Google Scholar]
  25. Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB. 25.  et al. 2002. Breeding perennial grain crops. Crit. Rev. Plant Sci. 21:59–91 [Google Scholar]
  26. Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR. 26.  2006. Prospects for developing perennial-grain crops. BioScience 56:649–59 [Google Scholar]
  27. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM. 27.  et al. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499–510 [Google Scholar]
  28. De Haro A, Fernandez-Martinez J. 28.  1991. Evaluation of wild sunflower (Helianthus) species for high content and stability of linoleic acid in the seed oil. J. Agric. Sci. 116:359–67 [Google Scholar]
  29. DeHaan LR, Van Tassel DL, Cox TS. 29.  2005. Perennial grain crops: a synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 20:5–14 [Google Scholar]
  30. DeHaan LR, Wang S, Larson S, Cattani D, Zhang X, Kantarski T. 30.  2014. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. See Ref. 10 72–89
  31. Delcour JA, Joye I, Pareyt B, Wilderjans E, Brijs K, Lagrain B. 31.  2012. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu. Rev. Food Sci. Technol. 3:469–92 [Google Scholar]
  32. Demurin Y, Skoric D, Karlovic D. 32.  1996. Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed. 115:33–36 [Google Scholar]
  33. Denison RF. 33.  2012. Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture Princeton, NJ: Princeton Univ. Press [Google Scholar]
  34. Doebley J, Stec A. 34.  1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–95 [Google Scholar]
  35. Dohleman FG, Long SP. 35.  2009. More productive than maize in the Midwest: How does Miscanthus do it?. Plant Physiol. 150:2104–15 [Google Scholar]
  36. Dornez E, Verjans P, Aranaut F, Delcour JA, Courtin CM. 36.  2011. Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J. Food Agric. Chem. 59:9553–62 [Google Scholar]
  37. Eckberg JO, Johnson GA, Pain RE, Wyse DL, Heimpel GE. 37.  2015. Spillover of tent caterpillar (Malacosoma americanum) herbivory onto willow bioenergy crops in an agricultural landscape. Ann. Appl. Biol. 167:178–85 [Google Scholar]
  38. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K. 38.  et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 6:e19379 [Google Scholar]
  39. Faris JD, Fellers JP, Brooks SA, Gill BS. 39.  2003. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–21 [Google Scholar]
  40. Fehr WR. 40.  1987. Principles of Cultivar Development 1 Theory and Technique New York: Macmillan [Google Scholar]
  41. Fernandez L, Agaras B, Zalba P, Wall LG, Valverde C. 40a.  2012. Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biol. Fertil. Soils 48763–73 [Google Scholar]
  42. Finke DL, Denno RF. 41.  2002. Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83:643–52 [Google Scholar]
  43. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 42.  et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  44. Frewin AJ, Schaafsma AW, Hallett RH. 43.  2012. Susceptibility of Aphelinus certus to foliar-applied insecticides currently or potentially registered for soybean aphid control. Pest Manag. Sci. 68:202–8 [Google Scholar]
  45. Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y. 44.  et al. 2008. Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breed. Sci. 58:63–69 [Google Scholar]
  46. Furusho M, Baba T, Yamaguchi O, Yoshida T, Hamachi Y. 45.  et al. 1999. Breeding of a new malting barley cultivar Houshun by the bulbosum method. Breed. Sci. 49:281–84 [Google Scholar]
  47. Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O'Neal M. 46.  et al. 2009. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol. Appl. 19:143–54 [Google Scholar]
  48. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG. 47.  et al. 2013. Sustainable intensification in agriculture: premises and policies. Science 341:33–34 [Google Scholar]
  49. Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG. 48.  et al. 2010. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur. 2:197–214 [Google Scholar]
  50. Gazza L, Galassi E, Ciccoritti R, Cacciatori P, Pogna NE. 49.  2016. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet. Resour. Crop. Evol. 63209–19 [Google Scholar]
  51. Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP. 50.  2013. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–17 [Google Scholar]
  52. Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC. 51.  et al. 2010. Increased food and ecosystem security via perennial grains. Science 328:1638–39 [Google Scholar]
  53. Griggs D, Stafford Smith M, Rockström J, Öhman MC, Gaffney O. 52.  et al. 2014. An integrated framework for sustainable development goals. Ecol. Soc. 19:art49 [Google Scholar]
  54. Hall RW, Ehler LE. 53.  1979. Rate of establishment of natural enemies in classical biological control. Bull. Entomol. Soc. Am. 25:280–82 [Google Scholar]
  55. Han Y, Hu T, Wang X, Hannaway DB, Li J. 54.  et al. 2014. Effects of seeding rate and nitrogen application on tall fescue seed production. Agron. J. 106:119 [Google Scholar]
  56. Harlan JR, De Wet JMJ, Price EG. 55.  1973. Comparative evolution of cereals. Evolution 27:311–25 [Google Scholar]
  57. Hawkins BA, Mills NJ, Jervis MA, Price PW. 56.  1999. Is the biological control of insects a natural phenomenon?. Oikos 86:493–506 [Google Scholar]
  58. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. 57.  2009. Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92:433–43 [Google Scholar]
  59. Hayes RC, Newell MT, DeHaan LR, Murphy KM, Crane S. 58.  et al. 2012. Perennial cereal crops: an initial evaluation of wheat derivatives. Field Crops Res. 133:68–89 [Google Scholar]
  60. Heaton EA, Schulte LA, Berti M, Langeveld H, Zegada-Lizarazu W. 59.  et al. 2013. Managing a second-generation crop portfolio through sustainable intensification: examples from the USA and the EU. Biofuels Bioprod. Biorefin. 7:702–14 [Google Scholar]
  61. Heimpel GE, Asplen MK. 60.  2011. A “Goldilocks” hypothesis for dispersal of biological control agents. BioControl 56:441–50 [Google Scholar]
  62. Heimpel GE, Yang Y, Hill JD, Ragsdale DW. 61.  2013. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLOS ONE 8:e72293 [Google Scholar]
  63. Hill RD. 62.  2010. The cultivation of perennial rice, an early phase in southeast Asian agriculture?. J. Hist. Geogr. 36:215–23 [Google Scholar]
  64. Holt RD, Lawton JH. 63.  1994. The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Syst. 25:495–520 [Google Scholar]
  65. Jackson W. 64.  1980. New Roots for Agriculture San Francisco: Friends of the Earth [Google Scholar]
  66. Jannink JL, Lorenz AJ, Iwata H. 65.  2010. Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genom. 9:166–77 [Google Scholar]
  67. Jarchow ME, Liebman M, Rawat V, Anex RP. 66.  2012. Functional group and fertilization affect the composition and bioenergy yields of prairie plants. GCB Bioenergy 4:671–79 [Google Scholar]
  68. Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M. 67.  et al. 2009. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct. Integr. Genom. 9:255–62 [Google Scholar]
  69. Jonsson M, Straub CS, Didham RK, Buckley HL, Case BS. 68.  et al. 2015. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J. Appl. Ecol. 52:1274–82 [Google Scholar]
  70. Jordan N, Boody G, Broussard W, Glover JD, Keeney D. 69.  et al. 2007. Sustainable development of the agricultural bio-economy. Science 316:1570 [Google Scholar]
  71. Jordan N, Schulte LA, Williams C, Mulla D, Pitt D. 70.  et al. 2013. Landlabs: an integrated approach to creating agricultural enterprises that meet the triple bottom line. J. High. Educ. Outreach Engagem. 17:175–200 [Google Scholar]
  72. Koch RL, Sezen Z, Porter PM, Ragsdale DW, Wyckhuys KAG, Heimpel GE. 71.  2015. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean. Agric. For. Entomol. 17:239–46 [Google Scholar]
  73. Koeritz EJ, Watkins E, Ehlke NJ. 72.  2013. A split application approach to nitrogen and growth regulator management for perennial ryegrass seed production. Crop Sci. 53:1762 [Google Scholar]
  74. Lalonde O, Legere A, Stevenson FC, Roy M, Vanasse A. 73.  2012. Carabid beetle communities after 18 years of conservation tillage and crop rotation in a cool humid climate. Can. Entomol. 144:645–57 [Google Scholar]
  75. Larkin PJ, Newell MT. 74.  2014. Perennial wheat breeding: current germplasm and a way forward for breeding and global cooperation. See Ref. 10 39–49
  76. Laurance WF, Sayer J, Cassman KG. 75.  2014. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29:107–16 [Google Scholar]
  77. Lee JC, Menalled FD, Landis DA. 76.  2001. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J. Appl. Ecol. 38:472–83 [Google Scholar]
  78. Lemus R, Parrish DJ, Abaye O. 77.  2008. Nitrogen-use dynamics in switchgrass grown for biomass. BioEnergy Res. 1:153–62 [Google Scholar]
  79. Lenser T, Theissen G. 78.  2013. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18:704–14 [Google Scholar]
  80. Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ. 79.  et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21 [Google Scholar]
  81. Li C, Zhou A, Sang T. 80.  2006. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol. 170:185–94 [Google Scholar]
  82. Li C, Zhou A, Sang T. 81.  2006. Rice domestication by reducing shattering. Science 311:1936–39 [Google Scholar]
  83. Li Q, Li L, Yang XH, Warburton ML, Bai GH. 82.  et al. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. 10:143 [Google Scholar]
  84. Li Q, Yang XH, Bai GH, Warburton ML, Mahuku G. 83.  et al. 2010. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor. Appl. Genet. 120:753–63 [Google Scholar]
  85. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ. 84.  et al. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43:1266–69 [Google Scholar]
  86. Liebl R, Simmons RW, Wax LM, Stoller EW. 85.  1992. Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybean (Glycine max). Weed Technol. 6:838–46 [Google Scholar]
  87. Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML. 86.  et al. 2012. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44:720–24 [Google Scholar]
  88. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH. 87.  et al. 2013. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLOS Genet. 9:e1003215 [Google Scholar]
  89. Mao HL, Sun SY, Yao JL, Wang CR, Yu SB. 88.  et al. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. PNAS 107:19579–84 [Google Scholar]
  90. Marti A, Bock JE, Pagani MA, Ismail B, Seetharaman K. 89.  2015. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour. Food. Chem. 194:994–1002 [Google Scholar]
  91. Marti A, Qiu X, Schoenfuss TC, Seetharaman K. 90.  2015. Characteristics of perennial wheatgrass (Thinopyrum intermedium) and refined wheat flour blends: impact on rheological properties. Cereal Chem. 92:434–40 [Google Scholar]
  92. Mejia CD, Mauer LJ, Hamaker BR. 91.  2007. Similarities and differences in secondary structure of viscoelastic polymers of maize α-zein and wheat gluten proteins. J. Cereal Sci. 45:353–59 [Google Scholar]
  93. Meyer RS, Purugganan MD. 92.  2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14:840–52 [Google Scholar]
  94. Meziere D, Colbach N, Dessaint F, Granger S. 93.  2015. Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. Eur. J. Agron. 68:22–37 [Google Scholar]
  95. Miller AJ, Gross BL. 94.  2011. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98:1389–414 [Google Scholar]
  96. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS. 95.  et al. 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84 [Google Scholar]
  97. Nagamine T, Kato T. 96.  2008. Recent advances and problems in malting barley breeding in Japan. Jpn. Agric. Res. Q. 42:237–43 [Google Scholar]
  98. Nicholls CI, Altieri MA. 97.  2012. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33:257–74 [Google Scholar]
  99. Ogle D, St. John L, Tober D, Jensen K. 98.  2011. Intermediate wheatgrass: Thinopyrum intermedium (Host) Barkworth & D.R. Dewey Plant Guide, Ida. N.D. Plant Mater. Cent., Nat. Resour. Conserv. Serv., US Dep. Agric., Washington, DC. http://plants.usda.gov/plantguide/pdf/pg_thin6.pdf [Google Scholar]
  100. Oliveira I, Pereira JA, Quesada-Moraga E, Lino-Neto T, Bento A. 99.  et al. 2013. Effect of soil tillage on natural occurrence of fungal entomopathogens associated to Prays oleae Bern. Sci. Hortic. 159:190–96 [Google Scholar]
  101. Parvathaneni RK, Jakkula V, Padi FK, Faure S, Nagarajappa N. 100.  et al. 2013. Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone. G3 3:563–72 [Google Scholar]
  102. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP. 101.  et al. 2011. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 157:1820–31 [Google Scholar]
  103. Pereira JL, Picanço MC, Pereira EJG, Silva AA, Jakelaitis A. 102.  et al. 2010. Influence of crop management practices on bean foliage arthropods. Bull. Entomol. Res. 100:679–88 [Google Scholar]
  104. Pickering R, Niks R, Johnston P, Butler R. 103.  2004. Importance of the secondary genepool in barley genetics and breeding II. Disease resistance, agronomic performance and quality. Czech J. Genet. Plant Breed. 40:79–85 [Google Scholar]
  105. Pleasants JM, Oberhauser KS. 104.  2013. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6:135–44 [Google Scholar]
  106. Poland JA, Brown PJ, Sorrells ME, Jannink JL. 105.  2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLOS ONE 7:e32253 [Google Scholar]
  107. Rauwald KS, Ives AR. 106.  2001. Biological control in disturbed agricultural systems and the rapid recovery of parasitoid populations. Ecol. Appl. 11:1224–34 [Google Scholar]
  108. 107.  Deleted in proof
  109. Ricou C, Schneller C, Amiaud B, Plantureux S, Bockstaller C. 108.  2014. A vegetation-based indicator to assess the pollination value of field margin flora. Ecol. Indic. 45:320–31 [Google Scholar]
  110. Rife TW, Wu SY, Bowden RL, Poland JA. 109.  2015. Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling. BMC Genom. 16:248 [Google Scholar]
  111. Roger-Estrade J, Anger C, Bertrand M, Richard G. 110.  2010. Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res. 111:33–40 [Google Scholar]
  112. Rogers CE. 111.  1992. Insect pests and strategies for their management in cultivated sunflower. Field Crops Res. 30:301–32 [Google Scholar]
  113. Roumet C, Urcelay C, Díaz S. 112.  1997. Suites of root traits differ between annual and perennial species growing in the field. New Phytol. 170:357–68 [Google Scholar]
  114. Runck BC, Kantar MB, Jordan NR, Anderson JA, Wyse DL. 113.  et al. 2014. The reflective plant breeding paradigm: a robust system of germplasm development to support strategic diversification of agroecosystems. Crop Sci. 54:1939–48 [Google Scholar]
  115. Runge FC, Senauer B, Pardey PG, Rosegrant MW. 114.  2003. Ending Hunger in Our Lifetime: Food Security and Globalization Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  116. Sacks EJ, Dhanapala MP, Cruz MTS, Sallan R. 115.  2007. Clonal performance of perennial Oryza sativa/O. rufipogon selections and their combining ability with O. sativa cultivars for survival, stolon production and yield. Field Crops Res. 100:155–67 [Google Scholar]
  117. Sacks EJ, Dhanapala MP, Tao DY, Cruz MTS, Sallan R. 116.  2006. Breeding for perennial growth and fertility in an Oryza sativa/O. longistaminata population. Field Crops Res. 95:39–48 [Google Scholar]
  118. Sacks EJ, Schmit V, McNally KL, Cruz MTS. 117.  2006. Fertility in an interspecific rice population and its effect on selection for rhizome length. Field Crops Res. 95:30–38 [Google Scholar]
  119. Sang T. 118.  2009. Genes and mutations underlying domestication transitions in grasses. Plant Physiol. 149:63–70 [Google Scholar]
  120. Sang T. 119.  2011. Toward the domestication of lignocellulosic energy crops: learning from food crop domestication free access. J. Integr. Plant Biol. 53:96–104 [Google Scholar]
  121. Schendel RR, Becker A, Tyl C, Bunzel M. 120.  2015. Isolation and characterization of feruloylated arabinoxylan oligosaccharides from the perennial cereal grain intermediate wheat grass (Thinopyrum intermedium). Carbohydr. Res. 407:16–25 [Google Scholar]
  122. Schrotenboer AC, Allen MS, Malmstrom CM. 121.  2011. Modification of native grasses for biofuel production may increase virus susceptibility. GCB Bioenergy 3:360–74 [Google Scholar]
  123. Schultz RC, Isenhart TM, Simpkins WW, Colletti JP. 122.  2004. Riparian forest buffers in agroecosystems—lessons learned from the Bear Creek Watershed, central Iowa, USA. Agrofor. Syst 61:35–50 [Google Scholar]
  124. Seiler GJ, Brothers ME. 123.  1999. Oil concentration and fatty acid composition of achenes of Helianthus species (Asteraceae) from Canada. Econ. Bot. 53:273–80 [Google Scholar]
  125. Shan QW, Wang YP, Li J, Gao CX. 124.  2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9:2395–410 [Google Scholar]
  126. Shapter FM, Cross M, Ablett G, Malory S, Chivers IH. 125.  et al. 2013. High throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLOS ONE 8:e82641 [Google Scholar]
  127. Shuler RE, Roulston TH, Farris GE. 125a.  2005. Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol 98:790–95 [Google Scholar]
  128. Snyder WE, Ives AR. 126.  2001. Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–16 [Google Scholar]
  129. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. 127.  2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39:623–30 [Google Scholar]
  130. Sprague LA, Hirsch RM, Aulenbach BT. 128.  2011. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress?. Environ. Sci. Technol. 45:7209–16 [Google Scholar]
  131. Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY. 129.  2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122:211–23 [Google Scholar]
  132. Sun KM, Li R, Li Y, Xin M, Xiao J. 130.  et al. 2015. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions. Estuar. Coast. Shelf Sci. 163:56–62 [Google Scholar]
  133. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D. 131.  et al. 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. PNAS 105:4062–67 [Google Scholar]
  134. Tang H, Cuevas HE, Das S, Sezen UU, Zhou C. 132.  et al. 2013. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. PNAS 110:15824–29 [Google Scholar]
  135. Tenhumberg B, Poehling HM. 133.  1995. Syrphids as natural enemies of cereal aphids in Germany: aspects of their biology and efficacy in different years and regions. Agric. Ecosyst. Environ. 52:39–43 [Google Scholar]
  136. Thies C, Tscharntke T. 134.  1999. Landscape structure and biological control in agroecosystems. Science 285:893–95 [Google Scholar]
  137. Threapleton DE, Burley VJ, Greenwood DC, Cade JE. 135.  2015. Dietary fibre intake and risk of ischaemic and haemorrhagic stroke in the UK Women's Cohort Study. Eur. J. Clin. Nutr. 69:467–74 [Google Scholar]
  138. Tilman D, Balzer C, Hill J, Befort BL. 136.  2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64 [Google Scholar]
  139. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 137.  2002. Agricultural sustainability and intensive production practices. Nature 418:671–77 [Google Scholar]
  140. Tilman D, Clark M. 138.  2014. Global diets link environmental sustainability and human health. Nature 515:518–22 [Google Scholar]
  141. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 139.  2005. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8:857–74 [Google Scholar]
  142. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L. 140.  et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87:661–85 [Google Scholar]
  143. Vavilov NI. 141.  1926. Origin and Geography of Cultivated Plants Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  144. Vinkx C, Delcour J, Verbruggen MA, Gruppen H. 142.  1996. Rye (Secale cereale L.) arabinoxylans: a critical review. J. Cereal Sci. 24:1–14 [Google Scholar]
  145. Vogel KP. 143.  2013. Comparison of two perennial grass breeding systems with switchgrass. Crop Sci. 53:863–70 [Google Scholar]
  146. Voytas DF, Gao C. 144.  2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLOS Biol. 12:e1001877 [Google Scholar]
  147. Wang M, van Vliet T, Hamer RJ. 145.  2004. How gluten properties are affected by pentosans. J. Cereal Sci 39:395–402 [Google Scholar]
  148. Wang RL, Stec A, Hey J, Lukens L, Doebley J. 146.  1999. The limits of selection during maize domestication. Nature 398:236–39 [Google Scholar]
  149. Ward MJ, Ryan MR, Curran WS, Barbercheck ME, Mortensen DA. 147.  2010. Cover crops and disturbance influence activity-density of weed seed predators Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 59:76–81 [Google Scholar]
  150. Warner K, Miller J, Demurin Y. 148.  2008. Oxidative stability of crude mid-oleic sunflower oils from seeds with high γ- and δ-tocopherol levels. J. Am. Oil Chem. Soc. 85:529–33 [Google Scholar]
  151. Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SS. 149.  et al. 2012. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63:3485–98 [Google Scholar]
  152. Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C. 150.  et al. 2014. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. PNAS 111:1652–57 [Google Scholar]
  153. Wieser H. 151.  2007. Chemistry of gluten proteins. Food Microbiol. 24:115–19 [Google Scholar]
  154. Williams MM II, Mortensen DA, Doran JW. 152.  1998. Assessment of weed and crop fitness in cover crop residues for integrated weed management. Weed Sci. 46:595–603 [Google Scholar]
  155. Wright CK, Wimberly MC. 153.  2013. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. PNAS 110:4134–39 [Google Scholar]
  156. Yao B, Fang H, Xu W, Yan Y, Xu H. 154.  et al. 2014. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur. J. Epidemiol. 29:79–88 [Google Scholar]
  157. Zhang X, DeHaan LR, Higgins LA, Markowski TW, Wyse DL. 155.  et al. 2014. New insights into high-molecular-weight glutenin subunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). J. Cereal Sci. 59:203–10 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error