In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J. 1.  et al. 2009. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol. 181:613–25 [Google Scholar]
  2. Arikita FN, Azevedo MS, Scotton DC, Pinto MDS, Figueira A, Peres LE. 2.  2013. Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Sci. 199–200:121–30 [Google Scholar]
  3. Axtell MJ, Bowman JL. 3.  2008. Evolution of plant microRNAs and their targets. Trends Plant Sci. 13:343–49 [Google Scholar]
  4. Azevedo JL, Araujo WL. 4.  2007. Diversity and applications of endophytic fungi isolated from tropical plants. Fungi: Multifaceted Microbes BN Guangui, SK Deshmukh 189–207 Boca Raton, FL: Anamaya Publ. New Delhi and CRC Press [Google Scholar]
  5. Ballester A, San-José MC, Vidal N, Fernández-Lorenzo JL, Vieitez AM. 5.  1999. Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Ann. Bot. 83:619–29 [Google Scholar]
  6. Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z. 6.  2004. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 134:1624–31 [Google Scholar]
  7. Baraldi R, Rossi F, Lercari B. 7.  1988. In vitro shoot development of Prunus GF 655-2: interaction between light and benzyladenine. Physiol. Plant. 74:440–43 [Google Scholar]
  8. Baurens FC, Nicolleau J, Legavre T, Verdeil JL, Monteuuis O. 8.  2004. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 24:401–7 [Google Scholar]
  9. Bayuelo-Jiménez JS, Gallardo-Valdéz M, Pérez-Decelis VA, Magdaleno-Armas L, Ochoa I, Lynch JP. 9.  2011. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Res. 121:350–62 [Google Scholar]
  10. Beeckman T. 10.  2009. Root Development Annu. Plant Rev 37 London: Wiley & Sons [Google Scholar]
  11. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W. 11.  et al. 1995. superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–19 [Google Scholar]
  12. Brady SM, Sarkar SF, Bonetta D, McCourt P. 12.  2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34:67–75 [Google Scholar]
  13. Busov V, Meilan R, Pearce DW, Rood SB, Ma C. 13.  et al. 2006. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 224:288–99 [Google Scholar]
  14. Camehl I, Sherameti I, Venus Y, Bethke G, Varma A. 14.  et al. 2010. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 185:1062–73 [Google Scholar]
  15. Casero PJ, Casimiro I, Lloret PG. 15.  1995. Lateral root initiation by asymmetrical transverse divisions of pericycle cells in four plant species: Raphanus sativus, Helianthus annuus, Zea mays, and Daucus carota. Protoplasma 188:49–58 [Google Scholar]
  16. Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC. 16.  2006. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol. 47:1–13 [Google Scholar]
  17. Chiou TJ, Lin SI. 17.  2011. Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 62:185–206 [Google Scholar]
  18. Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G. 18.  et al. 2010. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–70 [Google Scholar]
  19. Cooper WC. 19.  1935. Hormones in relation to root formation on stem cuttings. Plant Physiol. 10:789–94 [Google Scholar]
  20. Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. 20.  2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J. Exp. Bot. 57:581–88 [Google Scholar]
  21. Correa-Aragunde N, Graziano M, Lamattina L. 21.  2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–5 [Google Scholar]
  22. Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. 22.  2011. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. Plant Physiol. 157:1138–50 [Google Scholar]
  23. Coudert Y, Perin C, Courtois B, Khong NG, Gantet P. 23.  2010. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 15:219–26 [Google Scholar]
  24. da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. 24.  2013. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 4:133 [Google Scholar]
  25. da Rocha Correa L, Troleis J, Mastroberti AA, Mariath JE, Fett-Neto AG. 25.  2012. Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol. 14:100–9 [Google Scholar]
  26. Dag A, Erel R, Ben-Gal A, Zipori I, Yermiyahu U. 26.  2012. The effect of olive tree stock plant nutritional status on propagation rates. HortScience 47:307–10 [Google Scholar]
  27. Dai X, Wang Y, Yang A, Zhang WH. 27.  2012. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol. 159:169–83 [Google Scholar]
  28. Daud N, Faizal A, Geelen D. 28.  2013. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell. Dev. Biol. Plant 49183–90 [Google Scholar]
  29. De Klerk GJ, Van der Krieken W, De Jong JC. 29.  1999. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35:189–99 [Google Scholar]
  30. De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H. 30.  2003. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33:543–55 [Google Scholar]
  31. De Smet I, Vanneste S, Inzé D, Beeckman T. 31.  2006. Lateral root initiation or the birth of a new meristem. Plant Mol. Biol. 60:871–87 [Google Scholar]
  32. Devaiah BN, Karthikeyan AS, Raghothama KG. 32.  2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143:1789–801 [Google Scholar]
  33. Devaiah BN, Nagarajan VK, Raghothama KG. 33.  2007. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 145:147–59 [Google Scholar]
  34. Díaz-Sala C, Garrido G, Sabater B. 34.  2002. Age-related loss of rooting capability in Arabidopsis thaliana and its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiol. Plant. 114:601–7 [Google Scholar]
  35. Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J. 35.  et al. 2011. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat. Cell Biol. 13:447–52 [Google Scholar]
  36. Druart P, Kevers C, Boxus P, Gaspar T. 36.  1982. In vitro promotion of root-formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z. Pflanzenphysiol. 108:429–36 [Google Scholar]
  37. Druege U, Zerche S, Kadner R. 37.  2004. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann. Bot. 94:831–42 [Google Scholar]
  38. Esau K. 38.  1977. Anatomy of Seed Plants New York: Wiley & Sons [Google Scholar]
  39. Fahn A. 39.  1990. Plant Anatomy Oxford, UK: Pergamon [Google Scholar]
  40. Fattorini L, Falasca G, Kevers C, Rocca LM, Zadra C, Altamura MM. 40.  2009. Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers. Planta 231:155–68 [Google Scholar]
  41. Felten J, Kohler A, Morin E, Bhalerao RP, Palme K. 41.  et al. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 151:1991–2005 [Google Scholar]
  42. Fernandez A, Drozdzecki A, Hoogewijs K, Nguyen A, Beeckman T. 42.  et al. 2013. Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-like signaling peptides reveals their role in lateral root and hair formation. Plant Physiol. 161:954–70 [Google Scholar]
  43. Fett-Neto AG, Fett JP, Veira Goulart LW, Pasquali G, Termignoni RR, Ferreira AG. 43.  2001. Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol. 21:457–64 [Google Scholar]
  44. Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE. 44.  2006. Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–98 [Google Scholar]
  45. Fu X, Harberd NP. 45.  2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–43 [Google Scholar]
  46. Fuernkranz HA, Nowak CA, Maynard CA. 46.  1990. Light effects on in vitro adventitious root formation in axillary shoots of mature Prunus serotina. Physiol. Plant. 80:337–41 [Google Scholar]
  47. Galen C, Rabenold JJ, Liscum E. 47.  2007. Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol. 173:91–99 [Google Scholar]
  48. Geiss G, Gutierrez L, Bellini C. 48.  2009. Adventitious root formation: new insights and perspective. See Ref. 10 127–56
  49. Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B. 49.  2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26:227–42 [Google Scholar]
  50. Gonzalez-Rizzo S, Crespi M, Frugier F. 50.  2006. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–93 [Google Scholar]
  51. Grattapaglia D, Bertolucci FL, Sederoff RR. 51.  1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 90:933–47 [Google Scholar]
  52. Greenwood MS, Cui X, Xu F. 52.  2001. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol. Plant. 111:373–80 [Google Scholar]
  53. Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S. 53.  et al. 2012. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol. 160:1303–17 [Google Scholar]
  54. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C. 54.  2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–32 [Google Scholar]
  55. Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O. 55.  et al. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–27 [Google Scholar]
  56. Gutjahr C, Casieri L, Paszkowski U. 56.  2009. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol. 182:829–37 [Google Scholar]
  57. Hammerschlag FA, Bauchan GR, Scorza R. 57.  1987. Factors influencing in vitro multiplication and rooting of peach cultivars. Plant Cell Tissue Organ Cult. 8:235–42 [Google Scholar]
  58. Hartmann HT, Kester DE, Davies FT. 58.  1990. Plant Propagation: Principles and Practices Englewood Cliffs, NJ: Prentice Hall, 5th ed.. [Google Scholar]
  59. Hasbún R, Valledor L, Santamariá E, Cañal MJ, Rodríguez R. 59.  2007. Dynamics of DNA methylation in chestnut trees development. Acta Hortic. 760:563–66 [Google Scholar]
  60. Hetz W, Hochholdinger F, Schwall M, Feix G. 60.  1996. Isolation and characterisation of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10:845–57 [Google Scholar]
  61. Hochholdinger F, Park WJ, Sauer M, Woll K. 61.  2004. From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 9:42–48 [Google Scholar]
  62. Hochholdinger F, Woll K, Sauer M, Dembinsky D. 62.  2004. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann. Bot. 93:359–68 [Google Scholar]
  63. Hochholdinger F, Zimmermann R. 63.  2008. Conserved and diverse mechanisms in root development. Curr. Opin. Plant Biol. 11:70–74 [Google Scholar]
  64. Hochholdinger F, Zimmermann R. 64.  2009. Molecular and genetic dissection of cereal root system development. See Ref. 10 175–91
  65. Hu B, Zhu CG, Li F, Tang JY, Wang YQ. 65.  et al. 2011. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol. 156:1101–15 [Google Scholar]
  66. Huang LC, Hsiao LJ, Pu SY, Kuo CI, Huang BL. 66.  et al. 2012. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol. Plant. 145:360–68 [Google Scholar]
  67. Huang LC, Lius S, Huang BL, Murashige T, Mahdi EFM, Van Gundy R. 67.  1992. Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro: model for phase reversal of trees. Plant Physiol. 98:166–73 [Google Scholar]
  68. Ikeda H, Kamoshita A, Manabe T. 68.  2007. Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions. J. Exp. Bot. 58:309–18 [Google Scholar]
  69. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K. 69.  et al. 2005. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–96 [Google Scholar]
  70. Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P. 70.  et al. 2013. Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol. J. 11:1092–1102 [Google Scholar]
  71. Jarvis BC, Shaheed AI. 71.  1987. Adventitious root formation in relation to irradiance and auxin supply. Biol. Plant. 29:321–33 [Google Scholar]
  72. Jásik J, De Klerk GJ. 72.  1997. Anatomical and ultrastructural examination of adventitious root formation in stem slices of apple. Biol. Plant. 39:79–90 [Google Scholar]
  73. Jung JK, McCouch S. 73.  2013. Getting to the roots of it: genetic and hormonal control of root architecture. Front. Plant Sci. 4:186 [Google Scholar]
  74. Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M. 74.  et al. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants?. Plant J. 35:104–15 [Google Scholar]
  75. King JJ, Stimart DP. 75.  1998. Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh. J. Hered. 89:481–87 [Google Scholar]
  76. Klopotek Y, Haensch KT, Hause B, Hajirezaei MR, Druege U. 76.  2010. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light. J. Plant Physiol. 167:547–54 [Google Scholar]
  77. Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P. 77.  et al. 2012. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196:535–47 [Google Scholar]
  78. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K. 78.  et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18:927–37 [Google Scholar]
  79. Kurepin L, Haslam T, Lopez-Villalobos A, Oinam G, Yeung E. 79.  2011. Adventitious root formation in ornamental plants: II. The role of plant growth regulators. Propag. Ornam. Plants 11:161–71 [Google Scholar]
  80. Kuroha T, Sakakibara H. 80.  2007. Involvement of cytokinins in adventitious and lateral root formation. Plant Root 1:27–33 [Google Scholar]
  81. Lanteri ML, Pagnussat GC, Lamattina L. 81.  2006. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J. Exp. Bot. 57:1341–51 [Google Scholar]
  82. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S. 82.  et al. 2007. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–900 [Google Scholar]
  83. Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M. 83.  et al. 2013. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18:450–58 [Google Scholar]
  84. Li ZX, Xu CZ, Li KP, Yan S, Qu X, Zhang JR. 84.  2012. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC Plant Biol. 12:89 [Google Scholar]
  85. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA. 85.  et al. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–18 [Google Scholar]
  86. Lombardi-Crestana S, da Silva Azevedo M, e Silva GFF, Pino LE, Appezzato-da-Glória B. 86.  et al. 2012. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. J. Exp. Bot. 63:5689–703 [Google Scholar]
  87. Long HH, Schmidt DD, Baldwin IT. 87.  2008. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3:e2702 [Google Scholar]
  88. López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R. 88.  et al. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 20:207–17 [Google Scholar]
  89. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. 89.  2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244–56 [Google Scholar]
  90. Lorbiecke R, Sauter M. 90.  1999. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119:21–30 [Google Scholar]
  91. Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A. 91.  et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63 [Google Scholar]
  92. Malamy JE. 92.  2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28:67–77 [Google Scholar]
  93. Malamy JE, Benfey PN. 93.  1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44 [Google Scholar]
  94. Malamy JE, Ryan KS. 94.  2001. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol. 127:899–909 [Google Scholar]
  95. Mano Y, Omori F, Muraki M, Takamizo T. 95.  2005. QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed. Sci. 55:343–47 [Google Scholar]
  96. Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B. 96.  2006. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603 [Google Scholar]
  97. Marques C, Vasquez-Kool J, Carocha V, Ferreira J, O'Malley D. 97.  et al. 1999. Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor. Appl. Genet. 99:936–46 [Google Scholar]
  98. McCully M. 98.  1995. How do real roots work? Some new views of root structure. Plant Physiol. 109:1–6 [Google Scholar]
  99. Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP. 99.  2003. Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct. Plant Biol. 30:973–85 [Google Scholar]
  100. Monteuuis O, Doulbeau S, Verdeil JL. 100.  2008. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees 22:779–84 [Google Scholar]
  101. Moreno-Risueno MA, Busch W, Benfey PN. 101.  2010. Omics meet networks: using systems approaches to infer regulatory networks in plants. Curr. Opin. Plant Biol. 13:126–31 [Google Scholar]
  102. Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T. 102.  et al. 2002. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 130:1152–61 [Google Scholar]
  103. Mouchel CF, Briggs GC, Hardtke CS. 103.  2004. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 18:700–14 [Google Scholar]
  104. Muday GK, Rahman A, Binder BM. 104.  2012. Auxin and ethylene: collaborators or competitors?. Trends Plant Sci. 17:181–95 [Google Scholar]
  105. Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P. 105.  et al. 2004. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16:2433–47 [Google Scholar]
  106. Murphy E, Smith S, De Smet I. 106.  2012. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24:3198–217 [Google Scholar]
  107. Mussig C, Shin GH, Altmann T. 107.  2003. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol. 133:1261–71 [Google Scholar]
  108. Myburg AA, Grattapaglia D, Tuskan GA, Schmutz J, Mizrachi E. 108.  et al. 2011. The Eucalyptus grandis Genome Project: genome and transcriptome resources for comparative analysis of woody plant biology. BMC Proc. 5:I20 [Google Scholar]
  109. Naija S, Elloumi N, Ammar S, Kevers C, Dommes J. 109.  2008. Involvement of polyamines in the adventitious rooting of micropropagated shoots of the apple rootstock MM106. In Vitro Cell. Dev. Biol. Plant 45:83–91 [Google Scholar]
  110. Naija S, Elloumi N, Jbir N, Ammar S, Kevers C. 110.  2008. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. C. R. Biol. 331:518–25 [Google Scholar]
  111. Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S. 111.  et al. 2010. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Mol. Biol. 72:533–44 [Google Scholar]
  112. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. 112.  2010. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J. 61:3–15 [Google Scholar]
  113. Nemhauser JL, Mockler TC, Chory J. 113.  2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2:E258 [Google Scholar]
  114. Niemi K, Haggman H, Sarjala T. 114.  2002. Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol. 22:373–81 [Google Scholar]
  115. Niemi K, Scagel C, Haggman H. 115.  2004. Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tissue Organ Cult. 78:83–91 [Google Scholar]
  116. Niemi K, Vuorinen T, Ernstsen A, Haggman H. 116.  2002. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol. 22:1231–39 [Google Scholar]
  117. Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. 117.  2013. Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 112:391–408 [Google Scholar]
  118. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC. 118.  et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–84 [Google Scholar]
  119. Ochoa IE, Blair MW, Lynch JP. 119.  2006. QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci. 46:1609–21 [Google Scholar]
  120. Olah B, Briere C, Becard G, Denarie J, Gough C. 120.  2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 44:195–207 [Google Scholar]
  121. Oldacres AM, Newbury HJ, Puddephat IJ. 121.  2005. QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. Theor. Appl. Genet. 111:479–88 [Google Scholar]
  122. Orfanoudakis M, Wheeler CT, Hooker JE. 122.  2010. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 20:117–26 [Google Scholar]
  123. Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X. 123.  2013. Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci. 18:459–67 [Google Scholar]
  124. Osmont KS, Sibout R, Hardtke CS. 124.  2007. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58:93–113 [Google Scholar]
  125. Osterc G. 125.  2009. A change in perspective: stock plant qualities that influence adventitious root formation in woody species. Adventitious Root Formation of Forest Trees and Horticultural Plants—from Genes to Applications K Niemi, C Scagel 175–85 Kerala, India: Res. Signpost [Google Scholar]
  126. Pagnussat GC, Lanteri ML, Lamattina L. 126.  2003. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132:1241–48 [Google Scholar]
  127. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. 127.  2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135:279–86 [Google Scholar]
  128. Paz IC, Santin RC, Guimaraes AM, Rosa OP, Dias AC. 128.  et al. 2012. Eucalyptus growth promotion by endophytic Bacillus spp. Genet. Mol. Res. 11:3711–20 [Google Scholar]
  129. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R. 129.  et al. 2009. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14:399–408 [Google Scholar]
  130. Peret B, Svistoonoff S, Laplaze L. 130.  2009. When plants socialize: symbioses and root development. See Ref. 10 209–38
  131. Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S. 131.  et al. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–72 [Google Scholar]
  132. Petricka JJ, Winter CM, Benfey PN. 132.  2012. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63:563–90 [Google Scholar]
  133. Poethig RS. 133.  1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–30 [Google Scholar]
  134. Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. 134.  1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–37 [Google Scholar]
  135. Ramírez-Carvajal GA, Morse AM, Dervinis C, Davis JM. 135.  2009. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol. 150:759–71 [Google Scholar]
  136. Rani Debi B, Taketa S, Ichii M. 136.  2005. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J. Plant Physiol. 162:507–15 [Google Scholar]
  137. Rasmussen A, Beveridge CA, Geelen D. 137.  2012. Inhibition of strigolactones promotes adventitious root formation. Plant Signal. Behav. 7:694–97 [Google Scholar]
  138. Rasmussen A, Depuydt S, Goormachtig S, Geelen D. 138.  2013. Strigolactones fine-tune the root system. Planta 238:615–26 [Google Scholar]
  139. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S. 139.  et al. 2012. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 158:1976–87 [Google Scholar]
  140. Ravnikar M, Vilhar B, Gogala N. 140.  1992. Stimulatory effects of jasmonic acid on potato stem node and protoplast culture. J. Plant Growth Regul. 11:29–33 [Google Scholar]
  141. Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G. 141.  et al. 2009. Molecular genetics of rice root development. Rice 2:15–34 [Google Scholar]
  142. Remans T, Nacry P, Pervent M, Girin T, Tillard P. 142.  et al. 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 140:909–21 [Google Scholar]
  143. Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T. 143.  2006. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ. 29:115–25 [Google Scholar]
  144. Ricci A, Carra A, Torelli A, Maggiali CA, Morini G, Branca C. 144.  2001. Cytokinin-like activity of N,N′-diphenylureas. N,N′-bis-(2,3-methylenedioxyphenyl)urea and N,N′-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious root formation in apple rootstock M26 (Malus pumila Mill.). Plant Sci. 160:1055–65 [Google Scholar]
  145. Ricci A, Rolli E, Dramis L, Díaz-Sala C. 145.  2008. N,N′-bis-(2,3-methylenedioxyphenyl)urea and N,N′-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Sci. 175:356–63 [Google Scholar]
  146. Riefler M, Novak O, Strnad M, Schmulling T. 146.  2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54 [Google Scholar]
  147. Rigal A, Yordanov Y, Perrone I, Karlberg A, Tisserant E. 147.  et al. 2012. The AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160:1996–2006 [Google Scholar]
  148. Ronsch H, Adam G, Matschke J, Schachler G. 148.  1993. Influence of (22S,23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiol. 12:71–80 [Google Scholar]
  149. Rouached H, Arpat AB, Poirier Y. 149.  2010. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol. Plant 3:288–99 [Google Scholar]
  150. Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P. 150.  et al. 2012. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–12 [Google Scholar]
  151. Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. 151.  2013. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol. 200:473–82 [Google Scholar]
  152. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M. 152.  et al. 2005. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37:501–6 [Google Scholar]
  153. Schulze J, Temple G, Temple SJ, Beschow H, Vance CP. 153.  2006. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 98:731–40 [Google Scholar]
  154. Schwambach J, Fadanelli C, Fett-Neto AG. 154.  2005. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiol. 25:487–94 [Google Scholar]
  155. Scotti-Saintagne C, Bertocchi E, Barreneche T, Kremer A, Plomion C. 155.  2005. Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann. For. Sci. 62:369–74 [Google Scholar]
  156. Sergeeva LI, Keurentjes JJ, Bentsink L, Vonk J, van der Plas LH. 156.  et al. 2006. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc. Natl. Acad. Sci. USA 103:2994–99 [Google Scholar]
  157. Shkolnik-Inbar D, Bar-Zvi D. 157.  2010. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–73 [Google Scholar]
  158. Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS. 158.  2006. Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet. 2:e202 [Google Scholar]
  159. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M. 159.  et al. 2005. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–59 [Google Scholar]
  160. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM. 160.  et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–32 [Google Scholar]
  161. Spaepen S, Vanderleyden J. 161.  2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3:a001438 [Google Scholar]
  162. Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P. 162.  2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 150:2018–29 [Google Scholar]
  163. Staswick PE. 163.  2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150:1310–21 [Google Scholar]
  164. Steffens B, Wang J, Sauter M. 164.  2006. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–12 [Google Scholar]
  165. Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D. 165.  et al. 2012. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J. Exp. Bot. 63:6125–38 [Google Scholar]
  166. Stepanova AN, Alonso JM. 166.  2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12:548–55 [Google Scholar]
  167. Strader LC, Bartel B. 167.  2009. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007 [Google Scholar]
  168. Strader LC, Bartel B. 168.  2011. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant 4:477–86 [Google Scholar]
  169. Sukumar P, Maloney GS, Muday GK. 169.  2013. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol. 162:1392–405 [Google Scholar]
  170. Sun JH, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM. 170.  2006. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J. 46:961–70 [Google Scholar]
  171. Tang W, Newton RJ. 171.  2005. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep. 24:581–89 [Google Scholar]
  172. Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A. 172.  et al. 2010. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 64:775–89 [Google Scholar]
  173. Thompson AJ, Thorne ET, Burbridge A, Jackson AC, Sharp RE, Taylor IB. 173.  2004. Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell Environ. 27:459–71 [Google Scholar]
  174. Tian Q, Chen F, Liu J, Zhang F, Mi G. 174.  2008. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165:942–51 [Google Scholar]
  175. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR. 175.  et al. 2013. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc. Natl. Acad. Sci. USA 110:E1695–704 [Google Scholar]
  176. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I. 176.  et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–604 [Google Scholar]
  177. Ubeda-Tomas S, Beemster GT, Bennett MJ. 177.  2012. Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci. 17:326–31 [Google Scholar]
  178. Verstraeten I, Beeckman T, Geelen D. 178.  2013. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis. Plant Organogenesis: Methods and Protocols I De Smet 159–75 New York: Springer [Google Scholar]
  179. Vidal N, Arellano G, San-José MC, Vieitez AM, Ballester A. 179.  2003. Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23:1247–54 [Google Scholar]
  180. Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P. 180.  2010. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 63:551–62 [Google Scholar]
  181. Visser E, Cohen JD, Barendse G, Blom C, Voesenek L. 181.  1996. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687–92 [Google Scholar]
  182. von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X. 182.  et al. 2011. Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. Plant J. 66:341–53 [Google Scholar]
  183. Wasternack C, Hause B. 183.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  184. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. 184.  2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–50 [Google Scholar]
  185. Wilcox JR, Farmer RE. 185.  1968. Heritability and C effects in early growth of eastern cottonwood cuttings. Heredity 23:239–45 [Google Scholar]
  186. Willmann MR, Poethig RS. 186.  2005. Time to grow up: the temporal role of small RNAs in plants. Curr. Opin. Plant Biol. 8:548–52 [Google Scholar]
  187. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. 187.  2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–59 [Google Scholar]
  188. Wu G, Poethig RS. 188.  2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–47 [Google Scholar]
  189. Wynne J, McDonald M. 189.  2002. Adventitious root formation in woody plant tissue: influence of light and indole-3-butyric acid (IBA) on adventitious root induction in Betula pendula. In Vitro Cell. Dev. Biol. Plant 38:210–12 [Google Scholar]
  190. Xie X, Yoneyama K, Yoneyama K. 190.  2010. The strigolactone story. Annu. Rev. Phytopathol. 48:93–117 [Google Scholar]
  191. Xu L, Liu F, Lechner E, Genschik P, Crosby WL. 191.  et al. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–35 [Google Scholar]
  192. Yamada M, Sawa S. 192.  2013. The roles of peptide hormones during plant root development. Curr. Opin. Plant Biol. 16:56–61 [Google Scholar]
  193. Zerche S, Druege U. 193.  2009. Nitrogen content determines adventitious rooting in Euphorbia pulcherrima under adequate light independently of pre-rooting carbohydrate depletion of cuttings. Sci. Hortic. 121:340–47 [Google Scholar]
  194. Zhang B, Tong CF, Yin TM, Zhang XY, Zhuge QQ. 194.  et al. 2009. Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping. Tree Genet. Genomes 5:539–52 [Google Scholar]
  195. Zhang H, Forde BG. 195.  1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–9 [Google Scholar]
  196. Zhang H, Jennings A, Barlow PW, Forde BG. 196.  1999. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 96:6529–34 [Google Scholar]
  197. Zhao DY, Tian QY, Li LH, Zhang WH. 197.  2007. Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann. Bot. 100:497–503 [Google Scholar]
  198. Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR. 198.  et al. 2003. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet. 107:1505–15 [Google Scholar]
  199. Zhou J, Jiao F, Wu Z, Li Y, Wang X. 199.  et al. 2008. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 146:1673–86 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error