1932

Abstract

Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencing-based genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-035715
2014-04-29
2024-05-25
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-035715.html?itemId=/content/journals/10.1146/annurev-arplant-050213-035715&mimeType=html&fmt=ahah

Literature Cited

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H. 1.  et al. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 30:174–78 [Google Scholar]
  2. Altshuler D, Daly MJ, Lander ES. 2.  2008. Genetic mapping in human disease. Science 322:881–88 [Google Scholar]
  3. Ashikari M, Matsuoka M. 3.  2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11:344–50 [Google Scholar]
  4. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M. 4.  et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31 [Google Scholar]
  5. Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ. 5.  et al. 2011. Next-generation mapping of Arabidopsis genes. Plant J. 67:715–25 [Google Scholar]
  6. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL. 6.  et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376 [Google Scholar]
  7. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J. 7.  et al. 2012. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30:555–61 [Google Scholar]
  8. Bevan MW, Uauy C. 8.  2013. Genomics reveals new landscapes for crop improvement. Genome Biol. 14:206 [Google Scholar]
  9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 9.  2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–35 [Google Scholar]
  10. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R. 10.  et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–10 [Google Scholar]
  11. Browning BL, Browning SR. 11.  2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210–23 [Google Scholar]
  12. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ. 12.  et al. 2009. The genetic architecture of maize flowering time. Science 325:714–18 [Google Scholar]
  13. Chen H, Patterson N, Reich D. 13.  2010. Population differentiation as a test for selective sweeps. Genome Res. 20:393–402 [Google Scholar]
  14. Chen J, Huang Q, Gao D, Wang J, Lang Y. 14.  et al. 2013. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat. Commun. 4:1595 [Google Scholar]
  15. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N. 15.  et al. 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44:803–7 [Google Scholar]
  16. Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D. 16.  et al. 2012. Transcriptome and methylome interactions in rice hybrids. Proc. Natl. Acad. Sci. USA 109:12040–45 [Google Scholar]
  17. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G. 17.  et al. 2007. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–42 [Google Scholar]
  18. Doebley JF, Gaut BS, Smith BD. 18.  2006. The molecular genetics of crop domestication. Cell 127:1309–21 [Google Scholar]
  19. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K. 19.  et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 [Google Scholar]
  20. Endelman JB, Jannink JL. 20.  2012. Shrinkage estimation of the realized relationship matrix. G3 2:1405–13 [Google Scholar]
  21. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH. 21.  2004. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14:1812–19 [Google Scholar]
  22. Feng Q, Zhang Y, Hao P, Wang S, Fu G. 22.  et al. 2002. Sequence and analysis of rice chromosome 4. Nature 420:316–20 [Google Scholar]
  23. Fernie AR, Schauer N. 23.  2009. Metabolomics-assisted breeding: a viable option for crop improvement?. Trends Genet. 25:39–48 [Google Scholar]
  24. Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. 24.  2011. Crop genome sequencing: lessons and rationales. Trends Plant Sci. 16:77–88 [Google Scholar]
  25. Gan X, Stegle O, Behr J, Steffen JG, Drewe P. 25.  et al. 2012. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–23 [Google Scholar]
  26. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES. 26.  et al. 2011. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334 [Google Scholar]
  27. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D. 27.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–18 [Google Scholar]
  28. Goff SA, Ricke D, Lan TH, Presting G, Wang R. 28.  et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100 [Google Scholar]
  29. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES. 29.  et al. 2009. A first-generation haplotype map of maize. Science 326:1115–17 [Google Scholar]
  30. Hamblin MT, Buckler ES, Jannink JL. 30.  2011. Population genetics of genomics-based crop improvement methods. Trends Genet. 27:98–106 [Google Scholar]
  31. Harper AL, Trick M, Higgins J, Fraser F, Clissold L. 31.  et al. 2012. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat. Biotechnol. 30:798–802 [Google Scholar]
  32. Harushima Y, Yano M, Shomura A, Sato M, Shimano T. 32.  et al. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–94 [Google Scholar]
  33. He G, Zhu X, Elling AA, Chen L, Wang X. 33.  et al. 2010. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33 [Google Scholar]
  34. He Z, Zhai W, Wen H, Tang T, Wang Y. 34.  et al. 2011. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet. 7:9 [Google Scholar]
  35. Hua J, Xing Y, Wu W, Xu C, Sun X. 35.  et al. 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 100:2574–79 [Google Scholar]
  36. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S. 36.  et al. 1997. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 95:313–20 [Google Scholar]
  37. Huang S, Li R, Zhang Z, Li L, Gu X. 37.  et al. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41:1275–81 [Google Scholar]
  38. Huang X, Feng Q, Qian Q, Zhao Q, Wang L. 38.  et al. 2009. High-throughput genotyping by whole-genome resequencing. Genome Res. 19:1068–76 [Google Scholar]
  39. Huang X, Kurata N, Wei X, Wang ZX, Wang A. 39.  et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501 [Google Scholar]
  40. Huang X, Paulo MJ, Boer M, Effgen S, Keizer P. 40.  et al. 2011. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc. Natl. Acad. Sci. USA 108:4488–93 [Google Scholar]
  41. Huang X, Wei X, Sang T, Zhao Q, Feng Q. 41.  et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42:961–67 [Google Scholar]
  42. Huang X, Zhao Y, Wei X, Li C, Wang A. 42.  et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44:32–39 [Google Scholar]
  43. Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia JM. 43.  et al. 2012. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44:808–11 [Google Scholar]
  44. 44. Int. HapMap Consort 2005. A haplotype map of the human genome. Nature 437:1299–320 [Google Scholar]
  45. 45. Int. HapMap Consort 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–61 [Google Scholar]
  46. 46. Int. Rice Genome Seq. Proj 2005. The map-based sequence of the rice genome. Nature 436:793–800 [Google Scholar]
  47. Jacquemin J, Bhatia D, Singh K, Wing RA. 47.  2013. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr. Opin. Plant Biol. 16:147–56 [Google Scholar]
  48. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C. 48.  et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–67 [Google Scholar]
  49. James G-V, Patel V, Nordström K-JV, Klasen J-R, Salomé P-A. 49.  et al. 2013. User guide for mapping-by-sequencing in Arabidopsis. Genome Biol. 14:R61 [Google Scholar]
  50. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q. 50.  et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 45:957–61 [Google Scholar]
  51. Jia J, Zhao S, Kong X, Li Y, Zhao G. 51.  et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95 [Google Scholar]
  52. Jiao Y, Zhao H, Ren L, Song W, Zeng B. 52.  et al. 2012. Genome-wide genetic changes during modern breeding of maize. Nat. Genet. 44:812–15 [Google Scholar]
  53. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY. 53.  et al. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42:348–54 [Google Scholar]
  54. Keurentjes J, Fu J, Terpstra IR, Garcia JM, Ackerveken G. 54.  et al. 2007. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc. Natl. Acad. Sci. USA 104:1708–13 [Google Scholar]
  55. Korte A, Farlow A. 55.  2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29 [Google Scholar]
  56. Korte A, Vilhjalmsson BJ, Segura V, Platt A, Long Q, Nordborg M. 56.  2012. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat. Genet. 44:1066–71 [Google Scholar]
  57. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM. 57.  et al. 2009. A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet. 5:e1000551 [Google Scholar]
  58. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR. 58.  et al. 2011. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43:163–68 [Google Scholar]
  59. Lai J, Li R, Xu X, Jin W, Xu M. 59.  et al. 2010. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 42:1027–30 [Google Scholar]
  60. Lam HM, Xu X, Liu X, Chen W, Yang G. 60.  et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:1053–59 [Google Scholar]
  61. Li H, Peng Z, Yang X, Wang W, Fu J. 61.  et al. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45:43–50 [Google Scholar]
  62. Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. 62.  2008. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–42 [Google Scholar]
  63. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. 63.  2011. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 21:940–51 [Google Scholar]
  64. Lin Z, Li X, Shannon LM, Yeh CT, Wang ML. 64.  et al. 2012. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44:720–24 [Google Scholar]
  65. Ling HQ, Zhao S, Liu D, Wang J, Sun H. 65.  et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90 [Google Scholar]
  66. Lipka AE, Tian F, Wang Q, Peiffer J, Li M. 66.  et al. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–99 [Google Scholar]
  67. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. 67.  2011. FaST linear mixed models for genome-wide association studies. Nat. Methods 8:833–35 [Google Scholar]
  68. Majewski J, Pastinen T. 68.  2011. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 27:72–79 [Google Scholar]
  69. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L. 69.  et al. 2013. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 76:494–505 [Google Scholar]
  70. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P. 70.  et al. 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–16 [Google Scholar]
  71. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H. 71.  et al. 2009. Genetic properties of the maize nested association mapping population. Science 325:737–40 [Google Scholar]
  72. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K. 72.  et al. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 106:12273–78 [Google Scholar]
  73. Meuwissen TH, Hayes BJ, Goddard ME. 73.  2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29 [Google Scholar]
  74. Miura K, Ashikari M, Matsuoka M. 74.  2011. The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 16:319–26 [Google Scholar]
  75. Montes JM, Melchinger AE, Reif JC. 75.  2007. Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci. 12:433–36 [Google Scholar]
  76. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T. 76.  et al. 2012. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 110:453–58 [Google Scholar]
  77. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z. 77.  et al. 2009. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–202 [Google Scholar]
  78. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW. 78.  et al. 2009. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–76 [Google Scholar]
  79. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. 79.  2005. Genomic scans for selective sweeps using SNP data. Genome Res. 15:1566–75 [Google Scholar]
  80. Olsen KM, Wendel JF. 80.  2013. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64:47–70 [Google Scholar]
  81. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G. 81.  et al. 2012. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 12:16 [Google Scholar]
  82. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N. 82.  et al. 2012. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44:631–35 [Google Scholar]
  83. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J. 83.  et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–56 [Google Scholar]
  84. Peter BM, Huerta-Sanchez E, Nielsen R. 84.  2012. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLoS Genet. 8:e1003011 [Google Scholar]
  85. Platt A, Vilhjalmsson BJ, Nordborg M. 85.  2010. Conditions under which genome-wide association studies will be positively misleading. Genetics 186:1045–52 [Google Scholar]
  86. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ. 86.  2011. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci. USA 108:6893–98 [Google Scholar]
  87. 87. Potato Genome Seq. Consort 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189–95 [Google Scholar]
  88. Rafalski JA. 88.  2010. Association genetics in crop improvement. Curr. Opin. Plant Biol. 13:174–80 [Google Scholar]
  89. 89. Rice Chromosome 10 Seq. Consort 2003. In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–69 [Google Scholar]
  90. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F. 90.  et al. 2012. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 44:217–20 [Google Scholar]
  91. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL. 91.  et al. 2013. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14:R55 [Google Scholar]
  92. Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y. 92.  2004. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168:997–1007 [Google Scholar]
  93. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A. 93.  et al. 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–2 [Google Scholar]
  94. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T. 94.  et al. 2002. The genome sequence and structure of rice chromosome 1. Nature 420:312–16 [Google Scholar]
  95. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M. 95.  et al. 2013. Patterns of population epigenomic diversity. Nature 495:193–98 [Google Scholar]
  96. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T. 96.  et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178–83 [Google Scholar]
  97. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F. 97.  et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–15 [Google Scholar]
  98. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH. 98.  et al. 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat. Methods 6:550–51 [Google Scholar]
  99. Schneeberger K, Weigel D. 99.  2011. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci. 16:282–88 [Google Scholar]
  100. Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U. 100.  et al. 2012. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44:825–30 [Google Scholar]
  101. Seren U, Vilhjalmsson BJ, Horton MW, Meng D, Forai P. 101.  et al. 2012. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24:4793–805 [Google Scholar]
  102. Singer T, Fan Y, Chang HS, Zhu T, Hazen SP, Briggs SP. 102.  2006. A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genet. 2:e144 [Google Scholar]
  103. Song GS, Zhai HL, Peng YG, Zhang L, Wei G. 103.  et al. 2010. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 3:1012–25 [Google Scholar]
  104. Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS. 104.  2006. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl. Acad. Sci. USA 103:6805–10 [Google Scholar]
  105. Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A. 105.  et al. 2013. MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200:276–83 [Google Scholar]
  106. Takeda S, Matsuoka M. 106.  2008. Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9:444–57 [Google Scholar]
  107. Tang H, Cuevas HE, Das S, Sezen UU, Zhou C. 107.  et al. 2013. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc. Natl. Acad. Sci. USA 110:15824–29 [Google Scholar]
  108. Tester M, Langridge P. 108.  2010. Breeding technologies to increase crop production in a changing world. Science 327:818–22 [Google Scholar]
  109. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q. 109.  et al. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43:159–62 [Google Scholar]
  110. 110. Tomato Genome Consor 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–41 [Google Scholar]
  111. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A. 111.  et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 42:833–39 [Google Scholar]
  112. Vilhjalmsson BJ, Nordborg M. 112.  2012. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 14:1–2 [Google Scholar]
  113. Wang H, Chattopadhyay A, Li Z, Daines B, Li Y. 113.  et al. 2010. Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing. Genome Res. 20:981–88 [Google Scholar]
  114. Wang L, Wang A, Huang X, Zhao Q, Dong G. 114.  et al. 2011. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor. Appl. Genet. 122:327–40 [Google Scholar]
  115. Wang M, Jiang N, Jia T, Leach L, Cockram J. 115.  et al. 2011. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor. Appl. Genet. 124:233–46 [Google Scholar]
  116. Wang X, Wang H, Wang J, Sun R, Wu J. 116.  et al. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035–39 [Google Scholar]
  117. Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP. 117.  et al. 1995. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 7:613–22 [Google Scholar]
  118. 118. Wellcome Trust Case Control Consort 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78 [Google Scholar]
  119. Wenzl P, Carling J, Kudrna K, Jaccoud D, Huttner E. 119.  et al. 2004. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 101:9915–20 [Google Scholar]
  120. Wing RA, Ammiraju JS, Luo M, Kim H, Yu Y. 120.  et al. 2005. The Oryza Map Alignment Project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol. Biol. 59:53–62 [Google Scholar]
  121. Winzeler EA, Richards DR, Conway AR, Goldstein AL, Kalman S. 121.  et al. 1998. Direct allelic variation scanning of the yeast genome. Science 281:1194–97 [Google Scholar]
  122. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. 122.  2013. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14:507–15 [Google Scholar]
  123. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF. 123.  et al. 2005. The effects of artificial selection on the maize genome. Science 308:1310–14 [Google Scholar]
  124. Xie W, Feng Q, Yu H, Huang X, Zhao Q. 124.  et al. 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. USA 107:10578–83 [Google Scholar]
  125. Xing Y, Zhang Q. 125.  2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61:421–42 [Google Scholar]
  126. Xu J, Zhao Q, Du P, Xu C, Wang B. 126.  et al. 2010. Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 11:656 [Google Scholar]
  127. Xu X, Liu X, Ge S, Jensen JD, Hu F. 127.  et al. 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30:105–11 [Google Scholar]
  128. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK. 128.  et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42:565–69 [Google Scholar]
  129. Yu H, Xie W, Wang J, Xing Y, Xu C. 129.  et al. 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE 6:e17595 [Google Scholar]
  130. Yu J, Hu S, Wang J, Wong GK, Li S. 130.  et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92 [Google Scholar]
  131. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M. 131.  et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203–8 [Google Scholar]
  132. Zhang G, Liu X, Quan Z, Cheng S, Xu X. 132.  et al. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30:549–54 [Google Scholar]
  133. Zhang Q. 133.  2007. Strategies for developing Green Super Rice. Proc. Natl. Acad. Sci. USA 104:16402–9 [Google Scholar]
  134. Zhang Z, Buckler ES, Casstevens TM, Bradbury PJ. 134.  2009. Software engineering the mixed model for genome-wide association studies on large samples. Brief. Bioinforma. 10:664–75 [Google Scholar]
  135. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK. 135.  et al. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42:355–60 [Google Scholar]
  136. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML. 136.  et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2:467 [Google Scholar]
  137. Zhao Q, Huang X, Lin Z, Han B. 137.  2010. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3:98–102 [Google Scholar]
  138. Zhou G, Chen Y, Yao W, Zhang C, Xie W. 138.  et al. 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 109:15847–52 [Google Scholar]
  139. Zhou X, Stephens M. 139.  2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44:821–24 [Google Scholar]
  140. Zong G, Wang A, Wang L, Liang G, Gu M. 140.  et al. 2012. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J. Genet. Genomics 39:335–50 [Google Scholar]
  141. Zou G, Zhai G, Feng Q, Yan S, Wang A. 141.  et al. 2012. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J. Exp. Bot. 63:5451–62 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-035715
Loading
/content/journals/10.1146/annurev-arplant-050213-035715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error