1932

Abstract

Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-035748
2014-04-29
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-035748.html?itemId=/content/journals/10.1146/annurev-arplant-050213-035748&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmadabadi M, Bock R. 1.  2012. Plastid division and morphology in the genus Peperomia. Biol. Plant. 56:301–6 [Google Scholar]
  2. Ajjawi I, Coku A, Froehlich JE, Yang Y, Osteryoung KW. 2.  et al. 2011. A J-like protein influences fatty acid composition of chloroplast lipids in Arabidopsis. PLoS ONE 6:e25368 [Google Scholar]
  3. Aldridge C, Møller SG. 3.  2005. The plastid division protein AtMinD1 is a Ca2+-ATPase stimulated by AtMinE1. J. Biol. Chem. 280:31673–78 [Google Scholar]
  4. Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y. 4.  2004. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. Plant J. 38:448–59 [Google Scholar]
  5. Benning C, Xu C, Awai K. 5.  2006. Non-vesicular and vesicular lipid trafficking involving plastids. Curr. Opin. Plant Biol. 9:241–47 [Google Scholar]
  6. Breuers FKH, Bräutigam A, Geimer S, Welzel UY, Stefano G. 6.  et al. 2012. Dynamic remodeling of the plastid envelope membranes—a tool for chloroplast envelope in vivo localizations. Front. Plant Sci. 3:7 [Google Scholar]
  7. Chen Y, Asano T, Fujiwara MT, Yoshida S, Machida Y, Yoshioka Y. 7.  2009. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana. Plant Cell Physiol. 50:956–69 [Google Scholar]
  8. Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW. 8.  2000. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr. Biol. 10:507–16 [Google Scholar]
  9. de Boer PAJ, Crossley RE, Rothfield LI. 9.  1992. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174:63–70 [Google Scholar]
  10. Du H, Tang D, Huang D. 10.  2013. Plastids division in shoot apical meristem during the tuberization of taro (Colocasia esculenta). Sci. Hortic. 150:22–24 [Google Scholar]
  11. El-Kafafi ES, Mukherjee S, El-Shami M, Putaux JL, Block MA. 11.  et al. 2005. The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization. Biochem. J. 387:669–76 [Google Scholar]
  12. Erickson HP, Anderson DE, Osawa M. 12.  2010. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74:504–28 [Google Scholar]
  13. Falconet D. 13.  2012. Origin, evolution and division of plastids. Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation JJ Eaton-Rye, BC Tripathy, TD Sharkey 35–61 Dordrecht, Neth.: Springer [Google Scholar]
  14. Fan J, Xu C. 14.  2011. Genetic analysis of Arabidopsis mutants impaired in plastid lipid import reveals a role of membrane lipids in chloroplast division. Plant Signal. Behav. 6:458–60 [Google Scholar]
  15. Ferguson SM, De Camilli P. 15.  2012. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13:75–88 [Google Scholar]
  16. Fester T, Strack D, Hause B. 16.  2001. Reorganization of tobacco root plastids during arbuscule development. Planta 213:864–68 [Google Scholar]
  17. Forth D, Pyke KA. 17.  2006. The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening. J. Exp. Bot. 57:1971–79 [Google Scholar]
  18. Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S. 18.  et al. 2008. The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol. 49:345–61 [Google Scholar]
  19. Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. 19.  2003. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl. Acad. Sci. USA 100:4328–33 [Google Scholar]
  20. Gao Y, Liu H, An C, Shi Y, Liu X. 20.  et al. 2013. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division. Plant J. 75:795–807 [Google Scholar]
  21. Glynn JM, Froehlich JE, Osteryoung KW. 21.  2008. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20:2460–70 [Google Scholar]
  22. Glynn JM, Miyagishima S, Yoder DW, Osteryoung KW, Vitha S. 22.  2007. Chloroplast division. Traffic 8:451–61 [Google Scholar]
  23. Glynn JM, Yang Y, Vitha S, Schmitz AJ, Hemmes M. 23.  et al. 2009. PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J. 59:700–11 [Google Scholar]
  24. Gould SB, Waller RF, McFadden GI. 24.  2008. Plastid evolution. Annu. Rev. Plant Biol. 59:491–517 [Google Scholar]
  25. Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R. 25.  et al. 2012. Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J. 69:387–98 [Google Scholar]
  26. Gunning BES. 26.  2005. Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42 [Google Scholar]
  27. Gunning BES. 27.  2009. Plant Cell Biology on DVD Berlin: Springer
  28. Hanson MR, Sattarzadeh A. 28.  2011. Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol. 155:1486–92 [Google Scholar]
  29. Haswell ES, Meyerowitz EM. 29.  2006. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16:1–11 [Google Scholar]
  30. Holtsmark I, Lee S, Lunde KA, Auestad K, Maple-Grødem J, Møller SG. 30.  2013. Plastid division control: the PDV proteins regulate DRP5B dynamin activity. Plant Mol. Biol. 82:255–66 [Google Scholar]
  31. Holzinger A, Kwok EY, Hanson MR. 31.  2008. Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and nongreen tissues of Arabidopsis thaliana. Photochem. Photobiol. 84:1324–35 [Google Scholar]
  32. Hong Z, Bednarek SY, Blumwald E, Hwang I, Jurgens G. 32.  et al. 2003. A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol. Biol. 53:261–65 [Google Scholar]
  33. Hsin J, Gopinathan A, Huang KC. 33.  2012. Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 109:9432–37 [Google Scholar]
  34. Im YJ, Davis AJ, Perera IY, Johannes E, Allen NS, Boss WF. 34.  2007. The N-terminal membrane occupation and recognition nexus domain of Arabidopsis phosphatidylinositol phosphate kinase 1 regulates enzyme activity. J. Biol. Chem. 282:5443–52 [Google Scholar]
  35. Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop H-U, Krupinska K. 35.  2012. Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett. 586:85–88 [Google Scholar]
  36. Itoh R, Fujiwara MT. 36.  2010. Regulation of leucoplast morphology in roots: interorganellar signalling from mitochondria. Plant Signal. Behav. 5:856–59 [Google Scholar]
  37. Itoh R, Fujiwara M, Nagata N, Yoshida S. 37.  2001. A chloroplast protein homologous to the eubacterial topological specificity factor MinE plays a role in chloroplast division. Plant Physiol. 127:1644–55 [Google Scholar]
  38. Jeong WJ, Park Y-I, Suh K, Raven JA, Yoo OJ, Liu JR. 38.  2002. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol. 129:112–21 [Google Scholar]
  39. Jiang X, Li H, Wang T, Peng C, Wang H. 39.  et al. 2012. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J. 72:768–80 [Google Scholar]
  40. Johnson CB, Tang LK, Smith AG, Ravichandran A, Luo Z. 40.  et al. 2013. Single particle tracking analysis of the chloroplast division protein FtsZ anchoring to the inner envelope membrane. Microsc. Microanal. 19:507–12 [Google Scholar]
  41. Kadirjan-Kalbach DK, Yoder DW, Ruckle ME, Larkin RM, Osteryoung KW. 41.  2012. FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division. Plant J. 72:856–67 [Google Scholar]
  42. Karamoko M, El-Kafafi ES, Mandaron P, Lerbs-Mache S, Falconet D. 42.  2011. Multiple FtsZ2 isoforms involved in chloroplast division and biogenesis are developmentally associated with thylakoid membranes in Arabidopsis. FEBS Lett. 585:1203–8 [Google Scholar]
  43. Keeling PJ. 43.  2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64:583–607 [Google Scholar]
  44. Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ. 44.  et al. 2007. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol. Biol. Evol. 24:1832–42 [Google Scholar]
  45. Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR. 45.  1997. Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–42 [Google Scholar]
  46. Köhler RH, Hanson MR. 46.  2000. Plastid tubules of higher plants are tissue-specific and developmentally regulated. J. Cell Sci. 113:81–89 [Google Scholar]
  47. Koksharova OA, Wolk CP. 47.  2002. A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J. Bacteriol. 184:5524–28 [Google Scholar]
  48. Kong SG, Wada M. 48.  2011. New insights into dynamic actin-based chloroplast photorelocation movement. Mol. Plant 4:771–81 [Google Scholar]
  49. Königer M, Delamaide JA, Marlow ED, Harris GC. 49.  2008. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light. J. Exp. Bot. 59:2285–97 [Google Scholar]
  50. Krause K, Krupinska K. 50.  2009. Nuclear regulators with a second home in organelles. Trends Plant Sci. 14:194–99 [Google Scholar]
  51. Krenz B, Jeske H, Kleinow T. 51.  2012. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Front. Plant Sci. 3:291 [Google Scholar]
  52. Kulandaivelu G, Gnanam A. 52.  1985. Scanning electron microscopic evidence for a budding mode of chloroplast multiplication in higher plants. Physiol. Plant. 63:299–302 [Google Scholar]
  53. Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R. 53.  1998. The division apparatus of plastids and mitochondria. Int. Rev. Cytol. 181:1–41 [Google Scholar]
  54. Kuroiwa T, Misumi O, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H. 54.  2008. Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. Int. Rev. Cell Mol. Biol. 271:97–152 [Google Scholar]
  55. Kwok EY, Hanson MR. 55.  2003. Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J. 35:16–26 [Google Scholar]
  56. Kwok EY, Hanson MR. 56.  2004. GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J. Exp. Bot. 55:595–604 [Google Scholar]
  57. Kwok EY, Hanson MR. 57.  2004. In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules. BMC Plant Biol. 4:2 [Google Scholar]
  58. Kwok EY, Hanson MR. 58.  2004. Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep. 23:188–95 [Google Scholar]
  59. Kwok EY, Hanson MR. 59.  2004. Stromules and the dynamic nature of plastid morphology. J. Microsc. 214:124–37 [Google Scholar]
  60. Leech RM, Thomson WW, Platt-Aloia KA. 60.  1981. Observations on the mechanism of chloroplast division in higher plants. New Phytol. 87:1–9 [Google Scholar]
  61. Li Y, Hsin J, Zhao L, Cheng Y, Shang W. 61.  et al. 2013. FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341:392–95 [Google Scholar]
  62. Lohse S, Hause B, Hause G, Fester T. 62.  2006. FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of Medicago truncatula. Plant Cell Physiol. 47:1124–34 [Google Scholar]
  63. Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. 63.  2005. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol. 139:329–40 [Google Scholar]
  64. Löwe J, Amos LA. 64.  2009. Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int. J. Biochem. Cell Biol. 41:323–29 [Google Scholar]
  65. Lutkenhaus J. 65.  2007. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76:539–62 [Google Scholar]
  66. Lutkenhaus J, Pichoff S, Du S. 66.  2012. Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69:778–90 [Google Scholar]
  67. Ma H, Lou Y, Lin WH, Xue HW. 67.  2006. MORN motifs in plant PIPKs are involved in the regulation of subcellular localization and phospholipid binding. Cell Res. 16:466–78 [Google Scholar]
  68. Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H. 68.  et al. 2006. Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc. Natl. Acad. Sci. USA 103:6753–58 [Google Scholar]
  69. Maple J, Aldridge C, Møller SG. 69.  2005. Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 43:811–23 [Google Scholar]
  70. Maple J, Chua NH, Møller SG. 70.  2002. The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J. 31:269–77 [Google Scholar]
  71. Maple J, Fujiwara MT, Kitahata N, Lawson T, Baker NR. 71.  et al. 2004. GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis. Curr. Biol. 14:776–81 [Google Scholar]
  72. Maple J, Møller SG. 72.  2007. Interdependency of formation and localisation of the Min complex controls symmetric plastid division. J. Cell Sci. 120:3446–56 [Google Scholar]
  73. Maple J, Vojta L, Soll J, Møller SG. 73.  2007. ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep. 8:293–99 [Google Scholar]
  74. Marbouty M, Saguez C, Cassier-Chauvat C, Chauvat F. 74.  2009. ZipN, a FtsA-like orchestrator of divisome assembly in the model cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 74:409–20 [Google Scholar]
  75. Margolin W. 75.  2005. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 6:862–71 [Google Scholar]
  76. Martin A, Lang D, Hanke ST, Mueller SJ, Sarnighausen E. 76.  et al. 2009. Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. Mol. Plant 2:1359–72 [Google Scholar]
  77. Mathur J, Mammone A, Barton KA. 77.  2012. Organelle extensions in plant cells. J. Integr. Plant Biol. 54:851–67 [Google Scholar]
  78. Mazouni K, Domain F, Cassier-Chauvat C, Chauvat F. 78.  2004. Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol. Microbiol. 52:1145–58 [Google Scholar]
  79. McAndrew RS, Froehlich JE, Vitha S, Stokes KD, Osteryoung KW. 79.  2001. Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol. 127:1656–66 [Google Scholar]
  80. Mehrshahi P, Stefano G, Andaloro JM, Brandizzi F, Froehlich JE, DellaPenna D. 80.  2013. Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc. Natl. Acad. Sci. USA 110:12126–31 [Google Scholar]
  81. Miernyk JA. 81.  2001. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6:209–18 [Google Scholar]
  82. Miyagishima S. 82.  2011. Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol. 155:1533–44 [Google Scholar]
  83. Miyagishima S, Froehlich JE, Osteryoung KW. 83.  2006. PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell 18:2517–30 [Google Scholar]
  84. Miyagishima S, Nakanishi H, Kabeya Y. 84.  2011. Structure, regulation, and evolution of the plastid division machinery. Int. Rev. Cell Mol. Biol. 291:115–53 [Google Scholar]
  85. Miyagishima S, Nozaki H, Nishida K, Matsuzaki M, Kuroiwa T. 85.  2004. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J. Mol. Evol. 58:291–303 [Google Scholar]
  86. Miyagishima S, Suzuki K, Okazaki K, Kabeya Y. 86.  2012. Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle. Mol. Biol. Evol. 29:2957–70 [Google Scholar]
  87. Miyagishima S, Takahara M, Kuroiwa T. 87.  2001. Novel filaments 5 in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13:707–21 [Google Scholar]
  88. Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 88.  2001. Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13:2257–68 [Google Scholar]
  89. Miyagishima S, Wolk CP, Osteryoung KW. 89.  2005. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol. Microbiol. 56:126–43 [Google Scholar]
  90. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T. 90.  et al. 2003. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–65 [Google Scholar]
  91. Morita MT, Nakamura M. 91.  2012. Dynamic behavior of plastids related to environmental response. Curr. Opin. Plant Biol. 15:722–28 [Google Scholar]
  92. Morlot S, Roux A. 92.  2013. Mechanics of dynamin-mediated membrane fission. Annu. Rev. Biophys. 42:629–49 [Google Scholar]
  93. Nakanishi H, Suzuki K, Kabeya Y, Miyagishima S. 93.  2009. Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr. Biol. 19:151–56 [Google Scholar]
  94. Natesan SK, Sullivan JA, Gray JC. 94.  2005. Stromules: a characteristic cell-specific feature of plastid morphology. J. Exp. Bot. 56:787–97 [Google Scholar]
  95. Natesan SK, Sullivan JA, Gray JC. 95.  2009. Myosin XI is required for actin-associated movement of plastid stromules. Mol. Plant 2:1262–72 [Google Scholar]
  96. Newell CA, Natesan SK, Sullivan JA, Jouhet J, Kavanagh TA, Gray JC. 96.  2012. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. Plant J. 69:399–410 [Google Scholar]
  97. Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M. 97.  et al. 2008. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol. 148:829–42 [Google Scholar]
  98. Okazaki K, Kabeya Y, Suzuki K, Mori T, Ichikawa T. 98.  et al. 2009. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell 21:1769–80 [Google Scholar]
  99. Olson BJ, Wang Q, Osteryoung KW. 99.  2010. GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J. Biol. Chem. 285:20634–43 [Google Scholar]
  100. Oross JW, Possingham JV. 100.  1989. Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150:131–38 [Google Scholar]
  101. Osteryoung KW, McAndrew RS. 101.  2001. The plastid division machine. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:315–33 [Google Scholar]
  102. Osteryoung KW, Nunnari J. 102.  2003. The division of endosymbiotic organelles. Science 302:1698–704 [Google Scholar]
  103. Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY. 103.  1998. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10:1991–2004 [Google Scholar]
  104. Osteryoung KW, Vierling E. 104.  1995. Conserved cell and organelle division. Nature 376:473–74 [Google Scholar]
  105. Ottesen E, Zhong R, Lamppa GK. 105.  2010. Identification of a chloroplast division mutant coding for ARC6H, an ARC6 homolog that plays a nonredundant role. Plant Sci. 178:114–22 [Google Scholar]
  106. Praefcke GJ, McMahon HT. 106.  2004. The dynamin superfamily: universal membrane tubulation and fission molecules?. Nat. Rev. Mol. Cell Biol. 5:133–47 [Google Scholar]
  107. Pyke K. 107.  2007. Plastid biogenesis and differentiation. Cell and Molecular Biology of Plastids R Bock 1–28 Top. Curr. Genet 19 Berlin: Springer [Google Scholar]
  108. Pyke KA. 108.  1999. Plastid division and development. Plant Cell 11:549–56 [Google Scholar]
  109. Pyke KA. 109.  2009. Plastid Biology Cambridge, UK: Cambridge Univ. Press
  110. Pyke KA. 110.  2010. Plastid division. AoB Plants 2010:plq016 [Google Scholar]
  111. Pyke KA. 111.  2013. Divide and shape: an endosymbiont in action. Planta 237:381–87 [Google Scholar]
  112. Pyke KA, Howells CA. 112.  2002. Plastid and stromule morphogenesis in tomato. Ann. Bot. 90:559–66 [Google Scholar]
  113. Pyke KA, Leech RM. 113.  1994. A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol. 104:201–7 [Google Scholar]
  114. Pyke KA, Page AM. 114.  1998. Plastid ontogeny during petal development in Arabidopsis. Plant Physiol. 116:797–803 [Google Scholar]
  115. Pyke KA, Rutherford SM, Robertson EJ, Leech RM. 115.  1994. arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol. 106:1169–77 [Google Scholar]
  116. Raynaud C, Cassier-Chauvat C, Perennes C, Bergounioux C. 116.  2004. An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division. Plant Cell 16:1801–11 [Google Scholar]
  117. Robertson EJ, Pyke KA, Leech RM. 117.  1995. arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J. Cell Sci. 108:2937–44 [Google Scholar]
  118. Robertson EJ, Rutherford SM, Leech RM. 118.  1996. Characterization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol. 112:149–59 [Google Scholar]
  119. Sage TL, Sage RF. 119.  2009. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol. 50:756–72 [Google Scholar]
  120. Sattarzadeh A, Krahmer J, Germain AD, Hanson MR. 120.  2009. A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol. Plant 2:1351–58 [Google Scholar]
  121. Schattat M, Barton K, Baudisch B, Klosgen RB, Mathur J. 121.  2011. Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol. 155:1667–77 [Google Scholar]
  122. Schattat M, Barton K, Mathur J. 122.  2011. Correlated behavior implicates stromules in increasing the interactive surface between plastids and ER tubules. Plant Signal. Behav. 6:715–18 [Google Scholar]
  123. Schmid SL, Frolov VA. 123.  2011. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27:79–105 [Google Scholar]
  124. Schmidt von Braun S, Schleiff E. 124.  2008. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227:1151–59 [Google Scholar]
  125. Schmitz AJ, Glynn JM, Olson BJSC, Stokes KD, Osteryoung KW. 125.  2009. Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol. Plant 2:1211–22 [Google Scholar]
  126. Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H. 126.  et al. 2004. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol. 45:960–67 [Google Scholar]
  127. Smith AG, Johnson CB, Vitha S, Holzenburg A. 127.  2010. Plant FtsZ1 and FtsZ2 expressed in a eukaryotic host: GTPase activity and self-assembly. FEBS Lett. 584:166–72 [Google Scholar]
  128. Stokes KD, Osteryoung KW. 128.  2003. Early divergence of the FtsZ1 and FtsZ2 plastid division gene families in photosynthetic eukaryotes. Gene 320:97–108 [Google Scholar]
  129. Strack D, Fester T. 129.  2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 172:22–34 [Google Scholar]
  130. Strepp R, Scholz S, Kruse S, Speth V, Reski R. 130.  1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acad. Sci. USA 95:4368–73 [Google Scholar]
  131. Sugita C, Kato Y, Yoshioka Y, Tsurumi N, Iida Y. 131.  et al. 2012. CRUMPLED LEAF (CRL) homologs of Physcomitrella patens are involved in the complete separation of dividing plastids. Plant Cell Physiol. 53:1124–33 [Google Scholar]
  132. Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY. 132.  2009. Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in Arabidopsis thaliana. BMC Plant Biol. 9:38 [Google Scholar]
  133. TerBush AD, Osteryoung KW. 133.  2012. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J. Cell Biol. 199:623–37 [Google Scholar]
  134. TerBush AD, Yoshida Y, Osteryoung KW. 134.  2013. FtsZ in chloroplast division: structure, function and evolution. Curr. Opin. Cell Biol. 25:461–70 [Google Scholar]
  135. Veley KM, Marshburn S, Clure CE, Haswell ES. 135.  2012. Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr. Biol. 22:408–13 [Google Scholar]
  136. Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW. 136.  2003. ARC6 is a J-domain plastid division protein and evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–33 [Google Scholar]
  137. Vitha S, McAndrew RS, Osteryoung KW. 137.  2001. FtsZ ring formation at the chloroplast division site in plants. J. Cell Biol. 153:111–19 [Google Scholar]
  138. Wang Z, Benning C. 138.  2012. Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem. Soc. Trans. 40:457–63 [Google Scholar]
  139. Waters MT, Fray RG, Pyke KA. 139.  2004. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J. 39:655–67 [Google Scholar]
  140. Whatley JM. 140.  1980. Plastid growth and division in Phaseolus vulgaris. New Phytol. 86:1–16 [Google Scholar]
  141. Whatley JM. 141.  1988. Mechanisms and morphology of plastid division. Division and Segregation of Organelles SA Boffey, D Lloyd 63–84 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  142. Wilson ME, Jensen GS, Haswell ES. 142.  2011. Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–49 [Google Scholar]
  143. Yang Y, Glynn JM, Olson BJSC, Schmitz AJ, Osteryoung KW. 143.  2008. Plastid division: across time and space. Curr. Opin. Plant Biol. 11:577–84 [Google Scholar]
  144. Yang Y, Sage TL, Liu Y, Ahmad TR, Marshall WF. 144.  et al. 2011. CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis. Proc. Natl. Acad. Sci. USA 108:18530–35 [Google Scholar]
  145. Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F. 145.  et al. 2006. Isolated chloroplast division machinery can actively constrict after stretching. Science 313:1435–38 [Google Scholar]
  146. Yoshida Y, Kuroiwa H, Misumi O, Yoshida M, Ohnuma M. 146.  et al. 2010. Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–53 [Google Scholar]
  147. Yun MS, Kawagoe Y. 147.  2009. Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice. Plant Cell Physiol. 50:1617–26 [Google Scholar]
  148. Yun MS, Kawagoe Y. 148.  2010. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant Cell Physiol. 51:1469–79 [Google Scholar]
  149. Zhang M, Hu Y, Jia J, Li D, Zhang R. 149.  et al. 2009. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis. Cell Res. 19:877–86 [Google Scholar]
  150. Zhang M, Schmitz AJ, Kadirjan-Kalbach DK, TerBush AD, Osteryoung KW. 150.  2013. Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in Arabidopsis through interaction with FtsZ2. Plant Cell 25:1787–802 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-035748
Loading
/content/journals/10.1146/annurev-arplant-050213-035748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error