1932

Abstract

Iron is an essential element for all photosynthetic organisms. The biological use of this transition metal is as an enzyme cofactor, predominantly in electron transfer and catalysis. The main forms of iron cofactor are, in order of decreasing abundance, iron-sulfur clusters, heme, and di-iron or mononuclear iron, with a wide functional range. In plants and algae, iron-sulfur cluster assembly pathways of bacterial origin are localized in the mitochondria and plastids, where there is a high demand for these cofactors. A third iron-sulfur cluster assembly pathway is present in the cytosol that depends on the mitochondria but not on plastid assembly proteins. The biosynthesis of heme takes place mainly in the plastids. The importance of iron-sulfur cofactors beyond photosynthesis and respiration has become evident with recent discoveries of novel iron-sulfur proteins involved in epigenetics and DNA metabolism. In addition, increased understanding of intracellular iron trafficking is opening up research into how iron is distributed between iron cofactor assembly pathways and how this distribution is regulated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-035759
2014-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-035759.html?itemId=/content/journals/10.1146/annurev-arplant-050213-035759&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Ghany SE, Ye H, Garifullina G, Zhang L, Pilon-Smits EA. 1.  2005. Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. Plant Physiol. 138:161–72 [Google Scholar]
  2. Adam AC, Bornhövd C, Prokisch H, Neupert W, Hell K. 2.  2006. The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J. 25:174–83 [Google Scholar]
  3. Ahn CS, Lee JH, Pai H-S. 3.  2005. Silencing of NbNAP1 encoding a plastidic SufB-like protein affects chloroplast development in Nicotiana benthamiana. Mol. Cells 20:112–18 [Google Scholar]
  4. 4. Arabidopsis Genome Init 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815 [Google Scholar]
  5. Arnaud N, Ravet K, Borlotti A, Touraine B, Boucherez J. 5.  et al. 2007. The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)–cytosolic aconitase iron-regulatory switch does not operate in plants. Biochem. J. 405:523–31 [Google Scholar]
  6. Balk J, Lobréaux S. 6.  2005. Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci. 10:324–31 [Google Scholar]
  7. Balk J, Netz DJ, Tepper K, Pierik AJ, Lill R. 7.  2005. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly. Mol. Cell. Biol. 25:10833–41 [Google Scholar]
  8. Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R. 8.  2004. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J. 23:2105–15 [Google Scholar]
  9. Balk J, Pilon M. 9.  2011. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci. 16:218–26 [Google Scholar]
  10. Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M. 10.  et al. 2011. The rice mitochondrial iron transporter is essential for plant growth. Nat. Commun. 2:322 [Google Scholar]
  11. Beinert H. 11.  2000. Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5:2–15 [Google Scholar]
  12. Beinert H, Holm RH, Münck E. 12.  1997. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653–59 [Google Scholar]
  13. Bernard DG, Cheng Y, Zhao Y, Balk J. 13.  2009. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol. 151:590–602 [Google Scholar]
  14. Bernard DG, Netz DJ, Lagny TJ, Pierik AJ, Balk J. 14.  2013. Requirements of the cytosolic iron-sulfur cluster assembly pathway in Arabidopsis. Philos. Trans. R. Soc. B 368:20120259 [Google Scholar]
  15. Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y. 15.  et al. 2006. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 26:5675–87 [Google Scholar]
  16. Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ. 16.  et al. 2006. Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. Plant J. 48:873–82 [Google Scholar]
  17. Butterfield ER, Howe CJ, Nisbet RE. 17.  2013. An analysis of dinoflogellate metabolism using EST data. Protist 164:218–36 [Google Scholar]
  18. Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K. 18.  et al. 2008. The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J. 27:1736–46 [Google Scholar]
  19. Bych K, Netz DJ, Vigani G, Bill E, Lill R. 19.  et al. 2008. The essential cytosolic iron-sulfur protein Nbp35 acts without Cfd1 partner in the green lineage. J. Biol. Chem. 283:35797–804 [Google Scholar]
  20. Cavazza C, Martin L, Mondy S, Gaillard J, Ratet P, Fontecilla-Camps JC. 20.  2008. The possible role of an [FeFe]-hydrogenase-like protein in the plant responses to changing atmospheric oxygen levels. J. Inorg. Biochem. 102:1359–65 [Google Scholar]
  21. Chen S, Sánchez-Fernández R, Lyver ER, Dancis A, Rea PA. 21.  2007. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J. Biol. Chem. 282:21561–71 [Google Scholar]
  22. Cheng N-H, Liu J-Z, Brock A, Nelson RS, Hirschi KD. 22.  2006. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281:26280–88 [Google Scholar]
  23. Couturier J, Touraine B, Briat J-F, Gaymard F, Rouhier N. 23.  2013. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front. Plant Sci. 4:259 [Google Scholar]
  24. Cupp-Vickery JR, Urbina H, Vickery LE. 24.  2003. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J. Mol. Biol. 330:1049–59 [Google Scholar]
  25. Dai X, Hayashi K, Nozaki H, Cheng Y, Zhao Y. 25.  2005. Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proc. Natl. Acad. Sci. USA 102:3129–34 [Google Scholar]
  26. Dai Y, Outten FW. 26.  2012. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. FEBS Lett. 586:4016–22 [Google Scholar]
  27. Davenport HE, Hill R, Whatley FR. 27.  1952. A natural factor catalyzing reduction of methaemoglobin by isolated chloroplasts. Proc. R. Soc. B 139:346–58 [Google Scholar]
  28. Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K. 28.  2007. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19:986–1006 [Google Scholar]
  29. Fleischhacker AS, Kiley PJ. 29.  2011. Iron-containing transcription factors and their roles as sensors. Curr. Opin. Chem. Biol. 15:335–41 [Google Scholar]
  30. 30. Food Stand. Agency 2002. McCance and Widdowson's The Composition of Foods. Cambridge, UK: R. Soc. Chem, 6th summ. ed..
  31. Fosset C, Chauveau MJ, Guillon B, Canal F, Drapier JC, Bouton C. 31.  2006. RNA silencing of mitochondrial m-Nfs1 reduces Fe-S enzyme activity both in mitochondria and cytosol of mammalian cells. J. Biol. Chem. 281:25398–406 [Google Scholar]
  32. Frazzon AP, Ramirez MV, Warek U, Balk J, Frazzon J. 32.  et al. 2007. Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly. Plant Mol. Biol. 64:225–40 [Google Scholar]
  33. Freire P, Moreira RN, Arraiano CM. 33.  2009. BolA inhibits cell elongation and regulates MreB expression levels. J. Mol. Biol. 385:1345–51 [Google Scholar]
  34. Fujii M, Adachi N, Shikatani K, Ayusawa D. 34.  2009. [FeFe]-hydrogenase-like gene is involved in the regulation of sensitivity to oxygen in yeast and nematode. Genes Cells 14:457–68 [Google Scholar]
  35. Gari K, León Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ. 35.  2012. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337:243–45 [Google Scholar]
  36. Garton S, Knight H, Warren GJ, Knight MR, Thorlby GJ. 36.  2007. crinkled leaves 8—a mutation in the large subunit of ribonucleotide reductase—leads to defects in leaf development and chloroplast division in Arabidopsis thaliana. Plant J. 50:118–27 [Google Scholar]
  37. Godman J, Balk J. 37.  2008. Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins. Genetics 179:59–68 [Google Scholar]
  38. Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B. 38.  et al. 2006. Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. J. Plant Physiol. 163:333–47 [Google Scholar]
  39. Hamza I, Dailey HA. 39.  2012. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta 1823:1617–32 [Google Scholar]
  40. Hausmann A, Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R. 40.  2005. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc. Natl. Acad. Sci. USA 102:3266–71 [Google Scholar]
  41. Haussig JM, Matuschewski K, Kooij TW. 41.  2013. Experimental genetics of Plasmodium berghei NFU in the apicoplast iron-sulfur cluster biogenesis pathway. PLoS ONE 8:e67269 [Google Scholar]
  42. Hayashi M, De Bellis L, Alpi A, Nishimura M. 42.  1995. Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons. Plant Cell Physiol. 36:669–80 [Google Scholar]
  43. Hitzert MM, Bos AF, Bergman KA, Veldman A, Schwarz G. 43.  et al. 2012. Favorable outcome in a newborn with molybdenum cofactor type A deficiency treated with cPMP. Pediatrics 130:e1005–10 [Google Scholar]
  44. Hjorth E, Hadfi K, Zauner S, Maier U-G. 44.  2005. Unique genetic compartmentation of the SUF system in cryophytes and characterization of a SufD mutant in Arabidopsis thaliana. FEBS Lett. 579:1129–35 [Google Scholar]
  45. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S. 45.  et al. 2008. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinforma. 2008:420747 [Google Scholar]
  46. Imsande J. 46.  1999. Iron-sulfur clusters: formation, perturbation, and physiological functions. Plant Physiol. Biochem. 37:87–97 [Google Scholar]
  47. Ito J, Batth TS, Petzold CJ, Redding-Johanson AM, Mukhopadhyay A. 47.  et al. 2011. Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J. Proteome Res. 10:1571–82 [Google Scholar]
  48. Kessler D, Papenbrock J. 48.  2005. Iron-sulfur cluster biosynthesis in photosynthetic organisms. Photosynth. Res. 86:391–407 [Google Scholar]
  49. Kispal G, Csere P, Guiard B, Lill R. 49.  1997. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett. 418:346–50 [Google Scholar]
  50. Kispal G, Csere P, Prohl C, Lill R. 50.  1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18:3981–89 [Google Scholar]
  51. Kitaoka S, Wada K, Hasegawa Y, Minami Y, Fukuyama K, Takahashi Y. 51.  2006. Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery. FEBS Lett. 580:137–43 [Google Scholar]
  52. Klodmann J, Senkler M, Rode C, Braun HP. 52.  2011. Defining the protein complex proteome of plant mitochondria. Plant Physiol 157:587–98 [Google Scholar]
  53. Kobayashi T, Nishizawa NK. 53.  2012. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63:131–52 [Google Scholar]
  54. Kohbushi H, Nakai Y, Kikuchi S, Yabe T, Hori H, Nakai M. 54.  2009. Arabidopsis cytosolic Nbp35 homodimer can assemble both [2Fe-2S] and [4Fe-4S] clusters in two distinct domains. Biochem. Biophys. Res. Commun. 378:810–15 [Google Scholar]
  55. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J. 55.  et al. 2001. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100 [Google Scholar]
  56. Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D. 56.  et al. 2007. SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J. Biol. Chem. 282:13342–50 [Google Scholar]
  57. Leighton J, Schatz G. 57.  1995. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J. 14:188–95 [Google Scholar]
  58. Léon S, Touraine B, Briat J-F, Lobréaux S. 58.  2005. Mitochondrial localization of Arabidopsis thaliana Isu Fe-S scaffold proteins. FEBS Lett. 579:1930–34 [Google Scholar]
  59. Lezhneva L, Amann K, Meurer J. 59.  2004. The universally conserved HCF101 protein is involved in assembly of [4Fe-4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J. 37:174–85 [Google Scholar]
  60. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS. 60.  et al. 2009. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48:9569–81 [Google Scholar]
  61. Li H-M, Theg SM, Bauerle CM, Keegstra K. 61.  1990. Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Proc. Natl. Acad. Sci. USA 87:6748–52 [Google Scholar]
  62. Li K, Tong WH, Hughes RM, Rouault TA. 62.  2006. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281:12344–51 [Google Scholar]
  63. Liang X, Qin L, Liu P, Wang M, Ye H. 63.  2014. Genes for iron-sulfur cluster assembly are targets of abiotic stress in rice, Oryza sativa. Plant Cell Environ. 37780–94
  64. Lill R. 64.  2009. Function and biogenesis of iron-sulphur proteins. Nature 460:831–38 [Google Scholar]
  65. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N. 65.  et al. 2013. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823:1491–508 [Google Scholar]
  66. Lima CD. 66.  2002. Analysis of the E. coli NifS CsdB protein at 2.0 Å reveals the structural basis for perselenide and persulfide intermediate formation. J. Mol. Biol. 315:1199–208 [Google Scholar]
  67. Luo D, Bernard DG, Balk J, Hai H, Cui X. 67.  2012. The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell 24:4135–48 [Google Scholar]
  68. Marinoni EN, de Oliveira JS, Nicolet Y, Raulfs EC, Amara P. 68.  et al. 2012. (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew. Chem. Int. Ed. 51:5439–42 [Google Scholar]
  69. Markley JL, Kim JH, Dai Z, Bothe JR, Cai K. 69.  et al. 2013. Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery. FEBS Lett. 587:1172–79 [Google Scholar]
  70. Martin M, Colman MJR, Gómez-Casati DF, Lamattina L, Zabaleta EJ. 70.  2009. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett. 583:542–48 [Google Scholar]
  71. Mendel RR. 71.  2013. The molybdenum cofactor. J. Biol. Chem. 288:13165–72 [Google Scholar]
  72. Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC. 72.  et al. 2006. Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim. Biophys. Acta 1763:578–94 [Google Scholar]
  73. Miao R, Kim H, Koppolu UM, Ellis EA, Scott RA, Lindahl PA. 73.  2009. Biophysical characterization of the iron in mitochondria from Atm1p-depleted Saccharomyces cerevisiae. Biochemistry 48:9556–68 [Google Scholar]
  74. Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M. 74.  et al. 2010. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci. 15:488–98 [Google Scholar]
  75. Mok YG, Uzawa R, Lee JH, Weiner GM, Eichman BF. 75.  et al. 2010. Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. Proc. Natl. Acad. Sci. USA 107:19225–30 [Google Scholar]
  76. Møller SG, Kunkel T, Chua N-H. 76.  2001. A plastidic ABC protein involved in intercompartmental communication of light signalling. Genes Dev. 15:90–103 [Google Scholar]
  77. Mondy S, Lenglet A, Cosson V, Pelletier S, Pateyron S. 77.  et al. 2014. GOLLUM [FeFe]-hydrogenase-like proteins are essential for plant development in normoxic conditions and moderate energy metabolism. Plant Cell Environ. 37:54–69 [Google Scholar]
  78. Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K. 78.  et al. 2004. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J. Biol. Chem. 279:36906–15 [Google Scholar]
  79. Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N. 79.  et al. 2010. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 12:373–85 [Google Scholar]
  80. Mukherjee I, Campbell NH, Ash JS, Connolly EL. 80.  2006. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–90 [Google Scholar]
  81. Murthy NUM, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C. 81.  et al. 2007. Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and NAD synthesis. J. Biol. Chem. 282:18254–64 [Google Scholar]
  82. Nagane T, Tanaka A, Tanaka R. 82.  2010. Involvement of AtNAP1 in the regulation of chlorophyll degradation in Arabidopsis thaliana. Planta 231:939–49 [Google Scholar]
  83. Nakamura M, Buzas DM, Kato A, Fujita M, Kurata N, Kinoshita T. 83.  2013. The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue. New Phytol. 199925–35
  84. Netz DJ, Pierik AJ, Stümpfig M, Bill E, Sharma AK. 84.  et al. 2012. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J. Biol. Chem. 287:12365–78 [Google Scholar]
  85. Netz DJ, Pierik AJ, Stümpfig M, Mühlenhoff U, Lill R. 85.  2007. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 3:278–86 [Google Scholar]
  86. Netz DJ, Stümpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R. 86.  2010. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 6:758–65 [Google Scholar]
  87. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ. 87.  2013. On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta 1827.871–81
  88. Nouet C, Motte P, Hanikenne M. 88.  2011. Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci. 16:395–404 [Google Scholar]
  89. Outten CE, Albetel A-N. 89.  2013. Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr. Opin. Microbiol. 16:1–7 [Google Scholar]
  90. Outten FW, Wood MJ, Muñoz FM, Storz G. 90.  2003. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J. Biol. Chem. 278:45713–19 [Google Scholar]
  91. Palmer T, Berks BC. 91.  2012. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10:483–96 [Google Scholar]
  92. Pandey A, Golla R, Yoon H, Dancis A, Pain D. 92.  2012. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interaction protein and Fe-S cluster synthesis. Biochem. J. 448:171–87 [Google Scholar]
  93. Pastore A, Puccio H. 93.  2013. Frataxin: a protein in search for a function. J. Neurochem. 126:Suppl. 143–52 [Google Scholar]
  94. Picciocchi A, Douce R, Alban C. 94.  2003. The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J. Biol. Chem. 278:24966–75 [Google Scholar]
  95. Pondarre C, Antiochos BB, Campagna DR, Clarke SL, Greer EL. 95.  et al. 2006. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum. Mol. Genet. 15:953–64 [Google Scholar]
  96. Ravet K, Touraine J, Boucherez J, Briat JF, Gaymard F, Cellier F. 96.  2009. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 57:400–12 [Google Scholar]
  97. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. 97.  2013. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim. Biophys. Acta 1827:455–69 [Google Scholar]
  98. Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE. 98.  2003. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 22:4826–35 [Google Scholar]
  99. Saha K, Webb ME, Rigby SE, Leech HK, Warren MJ, Smith AG. 99.  2012. Characterization of the evolutionarily conserved iron-sulfur cluster of sirohydrochlorin ferrochelatase from Arabidopsis thaliana. Biochem. J. 444:227–37 [Google Scholar]
  100. Salvato F, Havelund JF, Chen M, Rao RSP, Rogowska-Wresinska A. 100.  et al. 2014. The potato tuber mitochondrial proteome. Plant Physiol. 164637–53
  101. Schwenkert S, Netz DJ, Frazzon J, Pierik AJ, Bill E. 101.  et al. 2009. Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochem. J. 425:207–14 [Google Scholar]
  102. Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A. 102.  et al. 2000. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97:12908–13 [Google Scholar]
  103. Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G. 103.  2002. Maturation of cytosolic iron-sulfur proteins requires glutathione. J. Biol. Chem. 277:26944–49 [Google Scholar]
  104. Srinivasan V, Netz DJ, Webert H, Mascarenhas J, Pierik AJ. 104.  et al. 2007. Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15:1246–57 [Google Scholar]
  105. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T. 105.  et al. 2012. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–99 [Google Scholar]
  106. Stöckel J, Oelmüller R. 106.  2004. A novel protein for photosystem I biogenesis. J. Biol. Chem. 279:10243–51 [Google Scholar]
  107. Strain J, Lorenz CR, Bode J, Garland S, Smolen GA. 107.  et al. 1998. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae: identification of proteins predicted to mediate iron-sulfur cluster assembly. J. Biol. Chem. 273:31138–44 [Google Scholar]
  108. Tagawa K, Arnon DI. 108.  1962. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195:537–43 [Google Scholar]
  109. Takahashi Y, Mitsui A, Fujita Y, Matsubara H. 109.  1991. Roles of ATP and NADPH in formation of the Fe-S cluster of spinach ferredoxin. Plant Physiol. 95:104–10 [Google Scholar]
  110. Takahashi Y, Mitsui A, Matsubara H. 110.  1991. Formation of the Fe-S cluster of ferredoxin in lysed spinach chloroplasts. Plant Physiol. 95:97–103 [Google Scholar]
  111. Takahashi Y, Tokumoto U. 111.  2002. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J. Biol. Chem. 277:28380–83 [Google Scholar]
  112. Tanaka R, Tanaka A. 112.  2007. Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58:321–46 [Google Scholar]
  113. Taylor NL, Heazlewood JL, Millar AH. 113.  2011. The Arabidopsis thaliana 2-D gel mitochondrial proteome: refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications. Proteomics 11:1720–33 [Google Scholar]
  114. Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K. 114.  et al. 2010. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell 22:468–80 [Google Scholar]
  115. Thornley JH, Gibson JF, Whatley FR, Hall DO. 115.  1966. Comment on a recent model of the iron complex in spinach ferredoxin. Biochem. Biophys. Res. Commun. 24:877–79 [Google Scholar]
  116. Touraine B, Boutin J, Marion-Poll A, Briat JF, Peltier G, Lobréaux S. 116.  2004. Nfu2: a scaffold protein required for [4Fe-4S] and ferredoxin iron-sulfur cluster assembly in Arabidopsis chloroplasts. Plant J. 40:101–11 [Google Scholar]
  117. Turowski VR, Busi MV, Gomez-Casati DF. 117.  2012. Structural and functional studies of the mitochondrial cysteine desulfurase from Arabidopsis thaliana. Mol. Plant 5:1001–10 [Google Scholar]
  118. Urzica E, Pierik AJ, Muhlenhoff U, Lill R. 118.  2009. Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48:4946–58 [Google Scholar]
  119. Van Hoewyk D, Abdel-Ghany SE, Cohu C, Herbert S, Kugrens P. 119.  et al. 2007. The Arabidopsis cysteine desulfurase CpNifS is essential for maturation of iron-sulfur cluster proteins, photosynthesis, and chloroplast development. Proc. Natl. Acad. Sci. USA 104:5686–91 [Google Scholar]
  120. Varadarajan J, Guilleminot J, Saint-Jore-Dupas C, Piégu B, Chabouté ME. 120.  et al. 2010. ATR3 encodes a diflavin reductase essential for Arabidopsis embryo development. New Phytol. 187:67–82 [Google Scholar]
  121. Vazzola V, Losa A, Soave C, Murgia I. 121.  2007. Knockout of frataxin gene causes embryo lethality in Arabidopsis. FEBS Lett. 581:667–72 [Google Scholar]
  122. Vigani G, Maffi D, Zocchi G. 122.  2009. Iron availability affects the function of mitochondria in cucumber roots. New Phytol. 182:127–36 [Google Scholar]
  123. Wang C, Liu Z. 123.  2006. Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–65 [Google Scholar]
  124. Watanabe S, Kita A, Miki K. 124.  2005. Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8. J. Mol. Biol. 353:1043–54 [Google Scholar]
  125. Weerapana E, Wang C, Simon GM, Richter F, Khare S. 125.  et al. 2010. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–95 [Google Scholar]
  126. Wiedemann N, Urzica E, Guiard B, Müller H, Lohaus C. 126.  et al. 2006. Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO J. 25:184–95 [Google Scholar]
  127. Wollers S, Heidenreich T, Zarepour M, Zachmann D, Kraft C. 127.  et al. 2008. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 283:9642–50 [Google Scholar]
  128. Wollers S, Layer G, Garcia-Serres R, Signor L, Clemancey M. 128.  et al. 2010. Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. J. Biol. Chem. 285:23331–41 [Google Scholar]
  129. Wu Y, Brosh RM Jr. 129.  2012. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res. 40:4247–60 [Google Scholar]
  130. Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J. 130.  2013. The evolutionarily conserved iron-sulfur protein IND1 is required for complex I assembly and mitochondrial translation in Arabidopsis. Plant Cell 25:4014–27 [Google Scholar]
  131. Xu XM, Adams S, Chua N-H, Møller GM. 131.  2005. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J. Biol. Chem. 280:6648–54 [Google Scholar]
  132. Xu XM, Lin H, Latijnhouwers M, Møller SG. 132.  2009. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis. PLoS ONE 4:e7662 [Google Scholar]
  133. Xu XM, Møller SG. 133.  2004. AtNAP7 is a plastidic SufC-like ABC/ATPase essential for Arabidopsis embryogenesis. Proc. Natl. Acad. Sci. USA 101:9143–48 [Google Scholar]
  134. Xu XM, Møller SG. 134.  2006. AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J. 25:900–9 [Google Scholar]
  135. Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M. 135.  2004. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007 [Google Scholar]
  136. Yabe T, Nakai M. 136.  2006. Arabidopsis AtIscA-I is affected by deficiency of Fe-S cluster biosynthetic scaffold AtCnfU-V. Biochem. Biophys. Res. Commun. 340:1047–52 [Google Scholar]
  137. Ye H, Abdel-Ghany S, Anderson TD, Pilon-Smits EAH, Pilon M. 137.  2006. CpSufE activates the cysteine desulfurase CpNifS for chloroplastic Fe-S cluster formation. J. Biol. Chem. 273:13264–72 [Google Scholar]
  138. Zhang B, Crack JC, Subramanian S, Green J, Thomson AJ. 138.  et al. 2012. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proc. Natl. Acad. Sci. USA 109:15734–39 [Google Scholar]
  139. Zheng L, Cash VL, Flint DH, Dean DR. 139.  1998. Assembly of iron-sulfur clusters: identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273:13264–72 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-035759
Loading
/content/journals/10.1146/annurev-arplant-050213-035759
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error