Investigators studying G protein–coupled signaling—often called the best-understood pathway in the world owing to intense research in medical fields—have adopted plants as a new model to explore the plasticity and evolution of G signaling. Much research on plant G signaling has not disappointed. Although plant cells have most of the core elements found in animal G signaling, differences in network architecture and intrinsic properties of plant G protein elements make G signaling in plant cells distinct from the animal paradigm. In contrast to animal G proteins, plant G proteins are self-activating, and therefore regulation of G activation in plants occurs at the deactivation step. The self-activating property also means that plant G proteins do not need and therefore do not have typical animal G protein–coupled receptors. Targets of activated plant G proteins, also known as effectors, are unlike effectors in animal cells. The simpler repertoire of G signal elements in makes G signaling easier to manipulate in a multicellular context.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aki T, Funakoshi T, Nishida-Kitayama J, Mizukami Y. 1.  2008. TPRA40/GPR175 regulates early mouse embryogenesis through functional membrane transport by Sjögren's syndrome-associated protein NA14. J. Cell. Physiol. 217:194–206 [Google Scholar]
  2. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. 2.  1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96:10284–89 [Google Scholar]
  3. Baida GE, Kuzmin NP. 3.  1996. Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta 1284:122–24 [Google Scholar]
  4. Bauer H, Mayer H, Marchler-Bauer A, Salzer U, Prohaska R. 4.  2000. Characterization of p40/GPR69A as a peripheral membrane protein related to the lantibiotic synthetase component C. Biochem. Biophys. Res. Commun. 275:69–74 [Google Scholar]
  5. Bommert P, Je BI, Goldshmidt A, Jackson D. 5.  2013. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555–58 [Google Scholar]
  6. Booker KS, Schwarz J, Garrett MB, Jones AM. 6.  2010. Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by the heterotrimeric G protein complex. PLoS ONE 5:e12833 [Google Scholar]
  7. Boss WF, Im YJ. 7.  2012. Phosphoinositide signaling. Annu. Rev. Plant Biol. 63:409–29 [Google Scholar]
  8. Botto JF, Ibarra S, Jones AM. 8.  2009. The heterotrimeric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochem. Photobiol. 85:949–54 [Google Scholar]
  9. Bradford W, Buckholz A, Morton J, Price C, Jones AM, Urano D. 9.  2013. Eukaryotic G protein signaling evolved to require G protein–coupled receptors for activation. Sci. Signal. 6:ra37 [Google Scholar]
  10. Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB. 10.  et al. 2011. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J. 67:840–51 [Google Scholar]
  11. Chen J-G, Gao Y, Jones AM. 11.  2006. Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol. 141:887–97 [Google Scholar]
  12. Chen J-G, Pandey S, Huang J, Alonso JM, Ecker JR. 12.  et al. 2004. GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol. 135:907–15 [Google Scholar]
  13. Chen J-G, Willard FS, Huang J, Liang J, Chasse SA. 13.  et al. 2003. A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–31 [Google Scholar]
  14. Chen J-H, Guo J, Chen J-G, Nair SK. 14.  2013. Crystal structure of Arabidopsis GCR2 RCSB Protein Data Bank, released Apr. 17. http://www.rcsb.org/pdb/explore/explore.do?pdbId=3T33
  15. Chung KY, Rasmussen SGF, Liu T, Li S, DeVree BT. 15.  et al. 2011. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477:611–15 [Google Scholar]
  16. Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR. 16.  1994. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265:1405–12 [Google Scholar]
  17. Delcourt N, Bockaert J, Marin P. 17.  2007. GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol. Sci. 28:602–7 [Google Scholar]
  18. Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, Miedes E, Fernández PV. 18.  et al. 2012. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol. Plant 5:98–114 [Google Scholar]
  19. Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM. 19.  2008. Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines. Proc. Natl. Acad. Sci. USA 105:8476–81 [Google Scholar]
  20. Fox AR, Soto GC, Jones AM, Casal JJ, Muschietti JP, Mazzella MA. 20.  2012. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Mol. Biol. 80:315–24 [Google Scholar]
  21. Fredriksson R, Schiöth HB. 21.  2005. The repertoire of G-protein–coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67:1414–25 [Google Scholar]
  22. Friedman EJ, Wang HX, Perovic I, Deshpande A, Pochapsky TC. 22.  et al. 2011. ACI-REDUCTONE DIOXYGENASE 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in Arabidopsis. J. Biol. Chem. 286:30107–18 [Google Scholar]
  23. Fu Y, Lim S, Urano D, Tunc-Ozdemir M, Phan NG et al.23.  2014. Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell. 1561084–95
  24. Gehring C. 24.  2010. Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun. Signal. 8:15 [Google Scholar]
  25. Gookin T, Kim J, Assmann S. 25.  2008. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol. 9:R120 [Google Scholar]
  26. Gresset A, Sondek J, Harden TK. 26.  2012. The phospholipase C isozymes and their regulation. Phosphoinositides I: Enzymes of Synthesis and Degradation T Balla, M Wymann, JD York 61–94 Subcell. Biochem. 58 Dordrecht, Neth.: Springer [Google Scholar]
  27. Grigston JC, Osuna D, Scheible WR, Stitt M, Jones AM. 27.  2008. d-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett. 582:3577–84 [Google Scholar]
  28. Hanson M, Sattarzadeh A. 28.  2011. Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol. 155:1486–92 [Google Scholar]
  29. Huang J, Taylor JP, Chen J-G, Uhrig JF, Schnell DJ. 29.  et al. 2006. The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–38 [Google Scholar]
  30. Hung C-M, Garcia-Haro L, Sparks CA, Guertin DA. 30.  2012. mTOR-dependent cell survival mechanisms. Cold Spring Harb. Perspect. Biol. 4:a008771 [Google Scholar]
  31. Irannejad R, Tomshine J, Tomshine J, Chevalier M, Mahoney J. 31.  et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–38 [Google Scholar]
  32. Ishikawa A. 32.  2009. The Arabidopsis G-protein β-subunit is required for defense response against Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. 73:47–52 [Google Scholar]
  33. Iwasaki Y, Kato T, Daidoh T, Ishikawa A, Asahi T. 33.  1997. Characterization of the putative α subunit of heterotrimeric G protein in rice. Plant Mol. Biol. 34:563–72 [Google Scholar]
  34. Jaffé FW, Freschet G-EC, Valdes BM, Runions J, Terry MJ, Williams LE. 34.  2012. G protein–coupled receptor-type G proteins are required for light-dependent seedling growth and fertility in Arabidopsis. Plant Cell 24:3649–68 [Google Scholar]
  35. Jiang K, Frick-Cheng A, Trusov Y, Delgado-Cerezo M, Rosenthal DM. 35.  et al. 2012. Dissecting Arabidopsis Gβ signal transduction on the protein surface. Plant Physiol. 159:975–83 [Google Scholar]
  36. Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC. 36.  et al. 2007. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc. Natl. Acad. Sci. USA 104:17317–22 [Google Scholar]
  37. Johnston CA, Willard MD, Kimple AJ, Siderovski DP, Willard FS. 37.  2008. A sweet cycle for Arabidopsis G-proteins: recent discoveries and controversies in plant G-protein signal transduction. Plant Signal. Behav. 3:1067–76 [Google Scholar]
  38. Jones AM, Assmann SM. 38.  2004. Plants: the latest model system for G-protein research. EMBO Rep. 5:572–78 [Google Scholar]
  39. Jones AM, Ecker JR, Chen JG. 39.  2003. A re-evaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131:1623–27 [Google Scholar]
  40. Jones JC, Duffy JW, Machius M, Temple BRS, Dohlman HG, Jones AM. 40.  2011. The crystal structure of a self-activating G protein α subunit reveals its distinct mechanism of signal initiation. Sci. Signal. 4:ra8 [Google Scholar]
  41. Jones JC, Jones AM, Temple BRS, Dohlman HG. 41.  2012. Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins. Proc. Natl. Acad. Sci. USA 109:7275–79 [Google Scholar]
  42. Jones JC, Temple BRS, Jones AM, Dohlman HG. 42.  2011. Functional reconstitution of an atypical G protein heterotrimer and regulator of G protein signaling protein (RGS1) from Arabidopsis thaliana. J. Biol. Chem. 286:13143–50 [Google Scholar]
  43. Ju T, Goldsmith RB, Chai SC, Maroney MJ, Pochapsky SS, Pochapsky TC. 43.  2006. One protein, two enzymes revisited: A structural entropy switch interconverts the two isoforms of acireductone dioxygenase. J. Mol. Biol. 363:823–34 [Google Scholar]
  44. Khalil HB, Wang Z, Wright JA, Ralevski A, Donayo AO, Gulick PJ. 44.  2011. Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1. Plant Mol. Biol. 77:145–58 [Google Scholar]
  45. Kim J, Moriyama EN, Warr CG, Clyne PJ, Carlson JR. 45.  2000. Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinformatics 16:767–75 [Google Scholar]
  46. Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP. 46.  2002. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416:878–81 [Google Scholar]
  47. Klopffleisch K, Phan N, Augustin K, Bayne RS, Booker KS. 47.  et al. 2011. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol. Syst. Biol. 7:532 [Google Scholar]
  48. Kobilka B. 48.  2013. The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Angew. Chem. Int. Ed. 52:6380–88 [Google Scholar]
  49. Kupchak BR, Garitaonandia I, Villa NY, Smith JL, Lyons TJ. 49.  2009. Antagonism of human adiponectin receptors and their membrane progesterone receptor paralogs by TNFα and a ceramidase inhibitor.. Biochemistry 48:5504–6 [Google Scholar]
  50. Lapik VR, Kaufman LS. 50.  2003. The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein α subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15:1578–90 [Google Scholar]
  51. Lease KA, Wen J, Li J, Doke JT, Liscum E, Walker JC. 51.  2001. A mutant Arabidopsis heterotrimeric G-protein β subunit affects leaf, flower, and fruit development. Plant Cell 13:2631–41 [Google Scholar]
  52. Lefkowitz RJ. 52.  2004. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25:413–22 [Google Scholar]
  53. Lefkowitz RJ. 53.  2013. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. 52:6366–78 [Google Scholar]
  54. Li W, Luan S, Schreiber SL, Assmann SM. 54.  1994. Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia faba L. Plant Physiol. 106:957–61 [Google Scholar]
  55. Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG. 55.  et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. USA 110:10010–15 [Google Scholar]
  56. Liu J, Ding P, Sun T, Nitta Y, Dong O. 56.  et al. 2013. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol. 161:2146–58 [Google Scholar]
  57. Liu X, Yue Y, Li B, Nie Y, Li W. 57.  et al. 2007. A G protein–coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–16 [Google Scholar]
  58. Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. 58.  2005. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 43:165–80 [Google Scholar]
  59. Lorek J, Griebel T, Jones AM, Kuhn H, Panstruga R. 59.  2013. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Mol. Plant-Microbe Interact. 26:991–1003 [Google Scholar]
  60. Lu G, Wang Z, Jones AM, Moriyama EN. 60.  2009. 7TMRmine: a Web server for hierarchical mining of 7TMR proteins. BMC Genet. 10:275 [Google Scholar]
  61. Ma H, Yanofsky MF, Meyerowitz EM. 61.  1990. Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 87:3821–25 [Google Scholar]
  62. Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T. 62.  2008. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat. Cell Biol. 10:1135–45 [Google Scholar]
  63. Mason MG, Botella JR. 63.  2000. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc. Natl. Acad. Sci. USA 97:14784–88 [Google Scholar]
  64. Mason MG, Botella JR. 64.  2001. Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim. Biophys. Acta 1520:147–53 [Google Scholar]
  65. Mathur J, Mammone A, Barton KA. 65.  2012. Organelle extensions in plant cells. J. Integr. Plant Biol. 54:851–67 [Google Scholar]
  66. Mayer H, Bauer H, Breuss J, Ziegler S, Prohaska R. 66.  2001. Characterization of rat LANCL1, a novel member of the lanthionine synthetase C-like protein family, highly expressed in testis and brain. Gene 269:73–80 [Google Scholar]
  67. Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N. 67.  2007. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J. 51:656–59 [Google Scholar]
  68. Moriyama EN, Kim J. 68.  2005. Protein family classification with discriminant function analysis. Genome Exploitation: Data Mining the Genome JP Gustafson, R Shoemaker, JW Snape 121–32 New York: Springer [Google Scholar]
  69. Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM. 69.  2006. Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol. 7:R96 [Google Scholar]
  70. Moussatche P, Lyons T. 70.  2012. Non-genomic progesterone signalling and its non-canonical receptor. Biochem. Soc. Trans. 40:200–4 [Google Scholar]
  71. Moutinho A, Hussey PJ, Trewavas AJ, Malhó R. 71.  2001. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc. Natl. Acad. Sci. USA 98:10481–86 [Google Scholar]
  72. Mudgil Y, Ghawana S, Jones AM. 72.  2013. N-MYC DOWN-REGULATED-LIKE proteins regulate meristem initiation by modulating auxin transport and MAX2 expression. PLoS ONE 8:e77863 [Google Scholar]
  73. Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM. 73.  2009. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein–mediated pathway. Plant Cell 21:3591–609 [Google Scholar]
  74. Munnik T, Nielsen E. 74.  2011. Green light for polyphosphoinositide signals in plants. Curr. Opin. Plant Biol. 14:489–97 [Google Scholar]
  75. Nakao M, Nakamura R, Kita K, Inukai R, Ishikawa A. 75.  2011. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci. Rep. 1:171 [Google Scholar]
  76. Noel JP, Hamm HE, Sigler PB. 76.  1993. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366:654–63 [Google Scholar]
  77. Nordström KJV, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB. 77.  2011. Independent HHsearch, Needleman-Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol. Biol. Evol. 28:2471–80 [Google Scholar]
  78. Oldham WM, Hamm HE. 78.  2008. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9:60–71 [Google Scholar]
  79. Pandey S, Chen J-G, Jones AM, Assmann SM. 79.  2006. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol. 141:243–56 [Google Scholar]
  80. Pandey S, Nelson DC, Assmann SM. 80.  2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–48 [Google Scholar]
  81. Phan N, Urano D, Srba M, Fischer L, Jones AM. 81.  2012. Sugar-induced endocytosis of plant 7TM-RGS proteins. Plant Signal. Behav. 8:e22814 [Google Scholar]
  82. Pirkov I, Norbeck J, Gustafsson L, Albers E. 82.  2008. A complete inventory of all enzymes in the eukaryotic methionine salvage pathway. FEBS J. 275:4111–20 [Google Scholar]
  83. Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A. 83.  2013. Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. Mol. Plant Pathol. 14:44–57 [Google Scholar]
  84. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY. 84.  et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55 [Google Scholar]
  85. Rolland F, Moore B, Sheen J. 85.  2002. Sugar sensing and signaling in plants. Plant Cell 14:Suppl. 1S185–205 [Google Scholar]
  86. Seo H, Choi CH, Lee S-Y, Cho M-J, Bahk J-D. 86.  1997. Biochemical characteristics of a rice (Oryza sativa L. IR-36) G-protein α-subunit expressed in Escherichia coli. Biochem. J. 324:273–81 [Google Scholar]
  87. Shenoy SK, Lefkowitz RJ. 87.  2011. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 32:521–33 [Google Scholar]
  88. Siderovski DP, Willard FS. 88.  2005. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int. J. Biol. Sci. 1:51–66 [Google Scholar]
  89. Spiegel S, Milstien S. 89.  2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4:397–407 [Google Scholar]
  90. Sprang SR. 90.  1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66:639–78 [Google Scholar]
  91. Steffens B, Sauter M. 91.  2009. Heterotrimeric G protein signaling is required for epidermal cell death in rice. Plant Physiol. 151:732–40 [Google Scholar]
  92. Strotmann R, Schröck K, Böselt I, Stäubert C, Russ A, Schöneberg T. 92.  2011. Evolution of GPCR: change and continuity. Mol. Cell. Endocrinol. 331:170–78 [Google Scholar]
  93. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. 93.  2002. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 99:13307–12 [Google Scholar]
  94. Tang YT, Hu T, Arterburn M, Boyle B, Bright JM. 94.  et al. 2005. PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol. 61:372–80 [Google Scholar]
  95. Temple BRS, Jones AM. 95.  2007. The plant heterotrimeric G protein complex. Annu. Rev. Plant Mol. Biol. 58:249–66 [Google Scholar]
  96. Tesmer JJG. 96.  2009. Structure and function of regulator of G protein signaling homology domains. Molecular Biology of RGS Proteins AF Rory 75–113 Prog. Mol. Biol. Transl. Sci 86 Amsterdam: Elsevier [Google Scholar]
  97. Testerink C, Munnik T. 97.  2011. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62:2349–61 [Google Scholar]
  98. Thomas P. 98.  2008. Characteristics of membrane progestin receptor α (mPRα) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions.. Front. Neuroendocrinol. 29:292–312 [Google Scholar]
  99. Thomas P, Dressing G, Pang Y, Berg H, Tubbs C. 99.  et al. 2006. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads. Steroids 71:310–16 [Google Scholar]
  100. Thomas P, Pang Y, Dong J, Groenen P, Kelder J. 100.  et al. 2007. Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor α subtypes and their evolutionary origins. Endocrinology 148:705–18 [Google Scholar]
  101. Thung L, Trusov Y, Chakravorty D, Botella JR. 101.  2012. Gγ1 + Gγ2 + Gγ3 = Gβ: The search for heterotrimeric G-protein γ subunits in Arabidopsis is over. J. Plant Physiol. 169:542–45 [Google Scholar]
  102. Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL. 102.  2013. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Mol. Plant-Microbe Interact. 26:686–94 [Google Scholar]
  103. Trusov Y, Chakravorty D, Botella JR. 103.  2012. Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res. Notes 5:608 [Google Scholar]
  104. Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. 104.  2006. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol. 140:210–20 [Google Scholar]
  105. Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG. 105.  et al. 2007. Heterotrimeric G protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. Plant Cell 19:1235–50 [Google Scholar]
  106. Tsugama D, Liu H, Liu S, Takano T. 106.  2012. Arabidopsis heterotrimeric G protein β subunit interacts with a plasma membrane 2C-type protein phosphatase, PP2C52. Biochim. Biophys. Acta 1823:2254–60 [Google Scholar]
  107. Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM. 107.  et al. 2003. The β subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409 [Google Scholar]
  108. Ullah H, Chen J-G, Wang S, Jones AM. 108.  2002. Role of G protein in regulation of Arabidopsis seed germination. Plant Physiol. 129:897–907 [Google Scholar]
  109. Ullah H, Chen J-G, Young J, Im K-H, Sussman MR, Jones AM. 109.  2001. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–69 [Google Scholar]
  110. Umino Y, Herrmann R, Chen C-K, Barlow R, Arshavsky V, Solessio E. 110.  2012. The relationship between slow photoresponse recovery rate and temporal resolution of vision. J. Neurosci. 32:14364–73 [Google Scholar]
  111. Urano D, Chen J-G, Botella JR, Jones AM. 111.  2013. Heterotrimeric G protein signalling in the plant kingdom. Open Biol. 3:120186 [Google Scholar]
  112. Urano D, Jones AM. 112.  2013. “Round up the usual suspects”: a comment on nonexistent plant G protein-coupled receptors. Plant Physiol. 161:1097–102 [Google Scholar]
  113. Urano D, Jones JC, Wang H, Matthews M, Bradford W. 113.  et al. 2012. G protein activation without a GEF in the plant kingdom. PLoS Genet. 8:e1002756 [Google Scholar]
  114. Urano D, Phan N, Jones JC, Yang J, Huang J. 114.  et al. 2012. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat. Cell Biol. 14:1079–88 [Google Scholar]
  115. Utsunomiya Y, Samejima C, Fujisawa Y, Kato H, Iwasaki Y. 115.  2012. Rice transgenic plants with suppressed expression of the β subunit of the heterotrimeric G protein.. Plant Signal. Behav. 7:443–46 [Google Scholar]
  116. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE. 116.  et al. 2003. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 100:4903–8 [Google Scholar]
  117. Villa NY, Kupchak BR, Garitaonandia I, Smith JL, Alonso E. 117.  et al. 2009. Sphingolipids function as downstream effectors of a fungal PAQR. Mol. Pharmacol. 75:866–75 [Google Scholar]
  118. Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T. 118.  et al. 2010. Kinetic scaffolding mediated by a phospholipase C–β and Gq signaling complex. Science 330:974–80 [Google Scholar]
  119. Wang HX, Perdue T, Weerasinghe R, Taylor JP, Cakmakci NG. 119.  et al. 2006. A Golgi hexose transporter is involved in heterotrimeric G protein regulated early development in Arabidopsis. Mol. Biol. Cell 17:4257–69 [Google Scholar]
  120. Wang S, Assmann SM, Fedoroff NV. 120.  2008. Characterization of the Arabidopsis heterotrimeric G protein. J. Biol. Chem. 283:13913–22 [Google Scholar]
  121. Wang X-Q, Ullah H, Jones AM, Assmann SM. 121.  2001. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–72 [Google Scholar]
  122. Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim S-Y. 122.  et al. 2009. Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett. 583:2521–26 [Google Scholar]
  123. Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J. 123.  2008. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell Res. 18:949–60 [Google Scholar]
  124. Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H. 124.  1994. Isolation of cDNAs encoding guanine nucleotide-binding protein β-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc. Natl. Acad. Sci. USA 91:9554–58 [Google Scholar]
  125. Westfield GH, Rasmussen SGF, Su M, Dutta S, DeVree BT. 125.  et al. 2011. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex.. Proc. Natl. Acad. Sci. USA 108:16086–91 [Google Scholar]
  126. Whorton MR, MacKinnon R. 126.  2013. X-ray structure of the mammalian GIRK2–βγ G-protein complex. Nature 498:190–97 [Google Scholar]
  127. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T. 127.  et al. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–69 [Google Scholar]
  128. Zhang L, Hu G, Cheng Y, Huang J. 128.  2008. Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev. Biol. 324:68–75 [Google Scholar]
  129. Zhang W, He SY, Assmann SM. 129.  2008. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J. 56:984–96 [Google Scholar]
  130. Zhao J, Wang X. 130.  2004. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279:1794–800 [Google Scholar]
  131. Zhong H, Wade SM, Woolf PJ, Linderman JJ, Traynor JR, Neubig RR. 131.  2003. A spatial focusing model for G protein signals: regulator of G protein signaling (RGS) protein-mediated kinetic scaffolding. J. Biol. Chem. 278:7278–84 [Google Scholar]
  132. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG. 132.  et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error