1932

Abstract

Photosynthetic organisms are continuously subjected to changes in light quantity and quality, and must adjust their photosynthetic machinery so that it maintains optimal performance under limiting light and minimizes photodamage under excess light. To achieve this goal, these organisms use two main strategies in which light-harvesting complex II (LHCII), the light-harvesting system of photosystem II (PSII), plays a key role both for the collection of light energy and for photoprotection. The first is energy-dependent nonphotochemical quenching, whereby the high-light-induced proton gradient across the thylakoid membrane triggers a process in which excess excitation energy is harmlessly dissipated as heat. The second involves a redistribution of the mobile LHCII between the two photosystems in response to changes in the redox poise of the electron transport chain sensed through a signaling chain. These two processes strongly diminish the production of damaging reactive oxygen species, but photodamage of PSII is unavoidable, and it is repaired efficiently.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-040226
2014-04-29
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-040226.html?itemId=/content/journals/10.1146/annurev-arplant-050213-040226&mimeType=html&fmt=ahah

Literature Cited

  1. Allorent G, Tokutsu R, Roach T, Peers G, Cardol P. 1.  et al. 2013. A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–57 [Google Scholar]
  2. Amunts A, Drory O, Nelson N. 2.  2007. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63 [Google Scholar]
  3. Andersson B, Andersson J. 3.  1980. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochem. Biophys. Acta 593:427–40 [Google Scholar]
  4. Andersson J, Walters RG, Horton P, Jansson S. 4.  2001. Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13:1193–204 [Google Scholar]
  5. Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV. 5.  et al. 2003. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II—effects on photosynthesis, grana stacking and fitness. Plant J. 35:350–61 [Google Scholar]
  6. Armbruster U, Labs M, Pribil M, Viola S, Xu W. 6.  et al. 2013. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–78 [Google Scholar]
  7. Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V. 7.  et al. 2005. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J. Exp. Bot. 56:347–56 [Google Scholar]
  8. Aseeva E, Ossenbuhl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC. 8.  2004. Complex formation of Vipp1 depends on its α-helical PspA-like domain. J. Biol. Chem. 279:35535–41 [Google Scholar]
  9. Ballottari M, Dall'Osto L, Morosinotto T, Bassi R. 9.  2007. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282:8947–58 [Google Scholar]
  10. Barber J. 10.  1982. Influence of surface charges on thylakoid structure and function. Annu. Rev. Plant Physiol. 33:261–95 [Google Scholar]
  11. Barneche F, Winter V, Crevecoeur M, Rochaix JD. 11.  2006. ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J. 25:5907–18 [Google Scholar]
  12. Bassi R, Giacometti GM, Simpson DJ. 12.  1988. Changes in the organization of stroma membranes induced by in vivo state 1–state 2 transition. Biochim. Biophys. Acta 935:152–65 [Google Scholar]
  13. Bassi R, Machold O, Simpson DJ. 13.  1985. Chlorophyll-proteins of two photosystem I preparations from maize. Carlsberg Res. Commun. 50:145–62 [Google Scholar]
  14. Bellafiore S, Barneche F, Peltier G, Rochaix JD. 14.  2005. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–95 [Google Scholar]
  15. Bellafiore S, Ferris P, Naver H, Gohre V, Rochaix JD. 15.  2002. Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14:2303–14 [Google Scholar]
  16. Bennett J. 16.  1979. Chloroplast phosphoproteins: phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex. Eur. J. Biochem. 99:133–37 [Google Scholar]
  17. Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S. 17.  et al. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284:15255–66 [Google Scholar]
  18. Blifernez O, Wobbe L, Niehaus K, Kruse O. 18.  2011. Protein arginine methylation modulates light-harvesting antenna translation in Chlamydomonas reinhardtii. Plant J. 65:119–30 [Google Scholar]
  19. Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T. 19.  et al. 2009. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA 106:12311–16 [Google Scholar]
  20. Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J. 20.  et al. 1995. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc. Natl. Acad. Sci. USA 92:175–79 [Google Scholar]
  21. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R. 21.  et al. 2005. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–82 [Google Scholar]
  22. Bonaventura C, Myers J. 22.  1969. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. Biophys. Acta 189:366–83 [Google Scholar]
  23. Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK. 23.  et al. 2011. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 9:e1000577 [Google Scholar]
  24. Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R. 24.  2008. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J. Biol. Chem. 283:8434–45 [Google Scholar]
  25. Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G. 25.  1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239:201–12 [Google Scholar]
  26. Bulté L, Gans P, Rebeille F, Wollman FA. 26.  1990. ATP control on state transitions in Chlamydomonas. Biochim. Biophys. Acta 1020:72–80 [Google Scholar]
  27. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R. 27.  2009. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28:3052–63 [Google Scholar]
  28. Chow WS, Miller C, Anderson JM. 28.  1991. Surface charges, the heterogeneous lateral distribution of the two photosystems, and thylakoid stacking. Biochim. Biophys. Acta 1057:69–77 [Google Scholar]
  29. Cleland RE, Bendall DS. 29.  1992. Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth. Res. 34:409–18 [Google Scholar]
  30. Coughlan SJ, Hind G. 30.  1986. Purification and characterization of a membrane-bound protein kinase from spinach thylakoids. J. Biol. Chem. 261:11378–85 [Google Scholar]
  31. Coughlan SJ, Hind G. 31.  1987. Phosphorylation of thylakoid proteins by a purified kinase. J. Biol. Chem. 262:8402–8 [Google Scholar]
  32. Croce R, Canino G, Ros F, Bassi R. 32.  2002. Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41:7334–43 [Google Scholar]
  33. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D. 33.  et al. 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–85 [Google Scholar]
  34. Daum B, Nicastro D, Austin J II, McIntosh JR, Kuhlbrandt W. 34.  2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–312 [Google Scholar]
  35. Delosme R, Olive J, Wollman FA. 35.  1996. Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1273:150–58 [Google Scholar]
  36. Depège N, Bellafiore S, Rochaix JD. 36.  2003. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–75 [Google Scholar]
  37. Drop B, Webber-Birungi M, Yadav SK, Filipowicz-Szymanska A, Fusetti F. 37.  et al. 2013. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1837:63–72 [Google Scholar]
  38. Durnford DG, Price JA, McKim SM, Sarchfield ML. 38.  2003. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol. Plant. 118:193–205 [Google Scholar]
  39. Elrad D, Niyogi KK, Grossman AR. 39.  2002. A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–16 [Google Scholar]
  40. Eskling M, Avidsson PO, Akerlund HE. 40.  1997. The xanthophyll cycle, its regulation and components. Physiol. Plant. 100:806–16 [Google Scholar]
  41. Fernyhough P, Foyer C, Horton P. 41.  1983. The influence of metabolic state on the level of phosphorylation of the light-harvesting chlorophyll-protein complex in chloroplasts isolated from maize mesophyll. Biochim. Biophys. Acta 725:155–61 [Google Scholar]
  42. Finazzi G, Furia A, Barbagallo RP, Forti G. 42.  1999. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1413:117–29 [Google Scholar]
  43. Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD. 43.  et al. 2002. Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep. 3:280–85 [Google Scholar]
  44. Flachmann R, Kuhlbrandt W. 44.  1995. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco. Plant Cell 7:149–60 [Google Scholar]
  45. Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F. 45.  et al. 1999. Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J. Biol. Chem. 274:30987–94 [Google Scholar]
  46. Floris M, Bassi R, Robaglia C, Alboresi A, Lanet E. 46.  2013. Post-transcriptional control of light-harvesting genes expression under light stress. Plant Mol. Biol. 82:147–54 [Google Scholar]
  47. Frigerio S, Campoli C, Zorzan S, Fantoni LI, Crosatti C. 47.  et al. 2007. Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J. Biol. Chem. 282:29457–69 [Google Scholar]
  48. Fristedt R, Willig A, Granath P, Crèvecoeur M, Rochaix JD, Vener A. 48.  2009. Phosphorylation of photosystem II controls functional macroscopic folding of plant photosynthetic membranes in Arabidopsis. Plant Cell 21:3950–64 [Google Scholar]
  49. Gao H, Sage TL, Osteryoung KW. 49.  2006. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc. Natl. Acad. Sci. USA 103:6759–64 [Google Scholar]
  50. Gohre V, Ossenbuhl F, Crevecoeur M, Eichacker LA, Rochaix JD. 50.  2006. One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant Cell 18:1454–66 [Google Scholar]
  51. Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW. 51.  2012. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69:289–301 [Google Scholar]
  52. Herbstova M, Tietz S, Kinzel C, Turkina MV, Kirchhoff H. 52.  2012. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. USA 109:20130–35 [Google Scholar]
  53. Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M. 53.  et al. 2013. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49:511–23 [Google Scholar]
  54. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR. 54.  2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–36 [Google Scholar]
  55. Horton P. 55.  2012. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos. Trans. R. Soc. B 367:3455–65 [Google Scholar]
  56. Horton P, Black MT. 56.  1980. Activation of adenosine 5′ triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone. FEBS Lett. 119:141–45 [Google Scholar]
  57. Horton P, Ruban A. 57.  2005. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J. Exp. Bot. 56:365–73 [Google Scholar]
  58. Iwai M, Takahashi Y, Minagawa J. 58.  2008. Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20:2177–89 [Google Scholar]
  59. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J. 59.  2010. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–13 [Google Scholar]
  60. Iwai M, Yokono M, Inada N, Minagawa J. 60.  2010. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl. Acad. Sci. USA 107:2337–42 [Google Scholar]
  61. Jansson S. 61.  1998. A guide to the LHC genes and their relatives in Arabidopsis. Trends Plant Sci. 4:236–40 [Google Scholar]
  62. Johanningmeier U, Howell SH. 62.  1984. Regulation of light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardi: possible involvement of chlorophyll synthesis precursors. J. Biol. Chem. 259:13541–49 [Google Scholar]
  63. Johnson MP, Ruban AV. 63.  2011. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. J. Biol. Chem. 286:19973–81 [Google Scholar]
  64. Joliot P, Joliot A. 64.  2006. Cyclic electron flow in C3 plants. Biochim. Biophys. Acta 1757:362–68 [Google Scholar]
  65. Kargul J, Nield J, Barber J. 65.  2003. Three-dimensional reconstruction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii: insights into light harvesting for PSI. J. Biol. Chem. 278:16135–41 [Google Scholar]
  66. Kargul J, Turkina MV, Nield J, Benson S, Vener AV, Barber J. 66.  2005. Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under State 2 conditions. FEBS J. 272:4797–806 [Google Scholar]
  67. Kato Y, Sakamoto W. 67.  2009. Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. J. Biochem. 146:463–69 [Google Scholar]
  68. Kirchhoff H. 68.  2008. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13:201–7 [Google Scholar]
  69. Kirchhoff H. 69.  2013. Architectural switches in plant thylakoid membranes. Photosynth. Res. 116:481–87 [Google Scholar]
  70. Kirchhoff H, Hall C, Wood M, Herbstova M, Tsabari O. 70.  et al. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA 108:20248–53 [Google Scholar]
  71. Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D. 71.  et al. 1999. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11:87–99 [Google Scholar]
  72. Kovacs L, Damkjaer J, Kereiche S, Ilioaia C, Ruban AV. 72.  et al. 2006. Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–20 [Google Scholar]
  73. Krause GH, Weiss E. 73.  1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313–49 [Google Scholar]
  74. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S. 74.  et al. 2001. VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc. Natl. Acad. Sci. USA 98:4238–42 [Google Scholar]
  75. Kruger TP, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E. 75.  et al. 2012. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys. J. 102:2669–76 [Google Scholar]
  76. Kruse O, Nixon PJ, Schmid GH, Mullineaux CW. 76.  1999. Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth. Res. 61:43–51 [Google Scholar]
  77. Kyle DJ, Staehelin LA, Arntzen CJ. 77.  1983. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222:527–41 [Google Scholar]
  78. Lam E, Ortiz W, Malkin R. 78.  1984. Chlorophyll a/b proteins of photosystem I. FEBS Lett. 168:10–14 [Google Scholar]
  79. Lemeille S, Rochaix JD. 79.  2010. State transitions at the crossroad of thylakoid signalling pathways. Photosynth. Res. 106:33–46 [Google Scholar]
  80. Lemeille S, Turkina MV, Vener AV, Rochaix JD. 80.  2010. Stt7-dependent phosphorylation during state transitions in the green alga Chlamydomonas reinhardtii. Mol. Cell. Proteomics 9:1281–95 [Google Scholar]
  81. Lemeille S, Willig A, Depège-Fargeix N, Delessert C, Bassi R, Rochaix JD. 81.  2009. Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol. 7:e45 [Google Scholar]
  82. Lezhneva L, Meurer J. 82.  2004. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J. 38:740–53 [Google Scholar]
  83. Li HM, Kaneko Y, Keegstra K. 83.  1994. Molecular cloning of a chloroplastic protein associated with both the envelope and thylakoid membranes. Plant Mol. Biol. 25:619–32 [Google Scholar]
  84. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M. 84.  et al. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–95 [Google Scholar]
  85. Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B. 85.  et al. 2005. J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol. Biol. Cell 16:1165–77 [Google Scholar]
  86. Liu Z, Yan H, Wang K, Kuang T, Zhang J. 86.  et al. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–92 [Google Scholar]
  87. Luirink J, Samuelsson T, de Gier JW. 87.  2001. YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett. 501:1–5 [Google Scholar]
  88. Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV. 88.  2000. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–15 [Google Scholar]
  89. Maxwell DP, Laudenbach DE, Huner N. 89.  1995. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109:787–95 [Google Scholar]
  90. Millar AJ, Straume M, Chory J, Chua NH, Kay SA. 90.  1995. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267:1163–66 [Google Scholar]
  91. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M. 91.  et al. 2008. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 582:3625–31 [Google Scholar]
  92. Minagawa J, Takahashi Y. 92.  2004. Structure, function and assembly of photosystem II and its light-harvesting proteins. Photosynth. Res. 82:241–63 [Google Scholar]
  93. Mitra M, Kirst H, Dewez D, Melis A. 93.  2012. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Philos. Trans. R. Soc. B 367:3430–43 [Google Scholar]
  94. Mitra M, Melis A. 94.  2010. Genetic and biochemical analysis of the TLA1 gene in Chlamydomonas reinhardtii. Planta 231:729–40 [Google Scholar]
  95. Moore M, Harrison MS, Peterson EC, Henry R. 95.  2000. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275:1529–32 [Google Scholar]
  96. Moss DA, Bendall DS. 96.  1984. Cyclic electron transport in chloroplasts: the Q-cycle and the site of action of anthocyanin. Biochim. Biophys. Acta 767:389–95 [Google Scholar]
  97. Murata N. 97.  1969. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta 172:242–51 [Google Scholar]
  98. Murchie EH, Niyogi KK. 98.  2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 155:86–92 [Google Scholar]
  99. Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M. 99.  et al. 2005. NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17:3409–21 [Google Scholar]
  100. Nield J, Kruse O, Ruprecht J, da Fonseca P, Buchel C, Barber J. 100.  2000. Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J. Biol. Chem. 275:27940–46 [Google Scholar]
  101. Niyogi KK, Björkman O, Grossman AR. 101.  1997. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–80 [Google Scholar]
  102. Niyogi KK, Grossman AR, Björkman O. 102.  1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–34 [Google Scholar]
  103. Nordhues A, Schottler MA, Unger AK, Geimer S, Schonfelder S. 103.  et al. 2012. Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas. Plant Cell 24:637–59 [Google Scholar]
  104. Nott A, Jung HS, Koussevitzky S, Chory J. 104.  2006. Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57:739–59 [Google Scholar]
  105. Nymark M, Valle KC, Brembu T, Hancke K, Winge P. 105.  et al. 2009. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS ONE 4:e7743 [Google Scholar]
  106. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D. 106.  et al. 2009. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–21 [Google Scholar]
  107. Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R. 107.  et al. 2009. Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–23 [Google Scholar]
  108. Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D. 108.  2010. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8:e1000288 [Google Scholar]
  109. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A. 109.  et al. 2009. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150:889–903 [Google Scholar]
  110. Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT. 110.  et al. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–78 [Google Scholar]
  111. Ruban AV, Johnson MP, Duffy CD. 111.  2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817:167–81 [Google Scholar]
  112. Samol I, Shapiguzov A, Ingelsson B, Fucile G, Crevecoeur M. 112.  et al. 2012. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant Cell 24:2596–609 [Google Scholar]
  113. Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI, Jones JD. 113.  et al. 1998. A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc. Natl. Acad. Sci. USA 95:10312–16 [Google Scholar]
  114. Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F. 114.  et al. 2010. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl. Acad. Sci. USA 107:4782–87 [Google Scholar]
  115. Shikanai T. 115.  2007. Cyclic electron transport around photosystem I: genetic approaches. Annu. Rev. Plant Biol. 58:199–217 [Google Scholar]
  116. Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z. 116.  2005. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–86 [Google Scholar]
  117. Sokolenko A, Fulgosi H, Gal A, Altschmied L, Ohad I, Herrmann RG. 117.  1995. The 64 kDa polypeptide of spinach may not be the LHCII kinase, but a lumen-located polyphenol oxidase. FEBS Lett. 371:176–80 [Google Scholar]
  118. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G. 118.  1997. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–30 [Google Scholar]
  119. Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F. 119.  2013. Cyclic electron flow is redox-controlled but independent of state transition. Nat. Commun. 4:1954 [Google Scholar]
  120. Takahashi H, Iwai M, Takahashi Y, Minagawa J. 120.  2006. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 103:477–82 [Google Scholar]
  121. Tikkanen M, Grieco M, Kangasjärvi S, Aro EM. 121.  2010. Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol. 152:723–35 [Google Scholar]
  122. Tokutsu R, Kato N, Bui KH, Ishikawa T, Minagawa J. 122.  2012. Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii. J. Biol. Chem 287:31574–81 [Google Scholar]
  123. Vainonen JP, Hansson M, Vener AV. 123.  2005. STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J. Biol. Chem. 280:33679–86 [Google Scholar]
  124. Vener AV, van Kan PJ, Rich PR, Ohad II, Andersson B. 124.  1997. Plastoquinol at the quinol oxidation site of reduced cytochrome b6f mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc. Natl. Acad. Sci. USA 94:1585–90 [Google Scholar]
  125. Wang Q, Sullivan RW, Kight A, Henry RL, Huang J. 125.  et al. 2004. Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136:3594–604 [Google Scholar]
  126. Wientjes E, Drop B, Kouril R, Boekema EJ, Croce R. 126.  2013. During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J. Biol. Chem. 288:32821–26 [Google Scholar]
  127. Wientjes E, van Amerongen H, Croce R. 127.  2013. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta 1827:420–26 [Google Scholar]
  128. Willig A, Shapiguzov A, Goldschmidt-Clermont M, Rochaix JD. 128.  2011. The phosphorylation status of the chloroplast protein kinase STN7 of Arabidopsis affects its turnover. Plant Physiol. 157:2102–7 [Google Scholar]
  129. Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O. 129.  2009. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc. Natl. Acad. Sci. USA 106:13290–95 [Google Scholar]
  130. Wollman FA. 130.  2001. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20:3623–30 [Google Scholar]
  131. Wunder T, Liu Q, Aseeva E, Bonardi V, Leister D, Pribil M. 131.  2013. Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. Planta 237:541–58 [Google Scholar]
  132. Yamamoto HY, Nakayama TO, Chichester CO. 132.  1962. Studies on the light and dark interconversions of leaf xanthophylls. Arch. Biochem. Biophys. 97:168–73 [Google Scholar]
  133. Zhu XG, Ort DR, Whitmarsh J, Long SP. 133.  2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot. 55:1167–75 [Google Scholar]
  134. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA. 134.  1999. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 18:2961–69 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-040226
Loading
/content/journals/10.1146/annurev-arplant-050213-040226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error