Plant stature and development are governed by cell proliferation and directed cell growth. These parameters are determined largely by cell wall characteristics. Cellulose microfibrils, composed of hydrogen-bonded β-1,4 glucans, are key components for anisotropic growth in plants. Cellulose is synthesized by plasma membrane–localized cellulose synthase complexes. In higher plants, these complexes are assembled into hexameric rosettes in intracellular compartments and secreted to the plasma membrane. Here, the complexes typically track along cortical microtubules, which may guide cellulose synthesis, until the complexes are inactivated and/or internalized. Determining the regulatory aspects that control the behavior of cellulose synthase complexes is vital to understanding directed cell and plant growth and to tailoring cell wall content for industrial products, including paper, textiles, and fuel. In this review, we summarize and discuss cellulose synthesis and regulatory aspects of the cellulose synthase complex, focusing on .

Associated Article

There are media items related to this article:
The Cell Biology of Cellulose Synthesis: Video 1

Associated Article

There are media items related to this article:
The Cell Biology of Cellulose Synthesis: Video 2

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albenne C, Canut H, Jamet E. 1.  2013. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front. Plant Sci. 4:111 [Google Scholar]
  2. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP. 2.  1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92:9353–57 [Google Scholar]
  3. Andème-Onzighi C, Sivaguru M, Judy-March J, Baskin TI, Driouich A. 3.  2002. The reb1-1 mutation of Arabidopsis alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical microtubules. Planta 215:949–58 [Google Scholar]
  4. Anderson CT, Carroll A, Akhmetova L, Somerville C. 4.  2010. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152:787–96 [Google Scholar]
  5. Anderson CT, Wallace IS, Somerville CR. 5.  2012. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc. Natl. Acad. Sci. USA 109:1329–34 [Google Scholar]
  6. Ariizumi T, Toriyama K. 6.  2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62:437–60 [Google Scholar]
  7. Arioli T, Peng L, Betzner AS, Burn J, Wittke W. 7.  et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–20 [Google Scholar]
  8. Atanassov II, Pittman JK, Turner SR. 8.  2009. Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J. Biol. Chem. 284:3833–41 [Google Scholar]
  9. Atmodjo MA, Hao Z, Mohnen D. 9.  2013. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64:747–79 [Google Scholar]
  10. Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G. 10.  et al. 2012. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc. Natl. Acad. Sci. USA 109:321–26 [Google Scholar]
  11. Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N. 11.  et al. 2009. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci. USA 106:13124–29 [Google Scholar]
  12. Bashline L, Li S, Anderson CT, Lei L, Gu Y. 12.  2013. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin mediated endocytosis adaptin. Plant Physiol. 163:150–60 [Google Scholar]
  13. Baskin TI. 13.  2001. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–71 [Google Scholar]
  14. Beisson F, Li-Beisson Y, Pollard M. 14.  2012. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr. Opin. Plant Biol. 15:329–37 [Google Scholar]
  15. Benschop JJ, Mohammed S, O'Flaherty M, Heck AJR, Slijper M, Menke FLH. 15.  2007. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6:1198–214 [Google Scholar]
  16. Bessueille L, Sindt N, Guichardant M, Djerbi S, Teeri TT, Bulone V. 16.  2009. Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochem. J. 420:93–103 [Google Scholar]
  17. Bischoff V, Desprez T, Mouille G, Vernhettes S, Gonneau M, Höfte H. 17.  2011. Phytochrome regulation of cellulose synthesis in Arabidopsis. Curr. Biol. 21:1822–27 [Google Scholar]
  18. Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C. 18.  1998. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network.. Plant J. 15:441–47 [Google Scholar]
  19. Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND. 19.  et al. 2005. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137:104–16 [Google Scholar]
  20. Bouton S, Leboeuf E, Mouille G, Leydecker M-T, Talbotec J. 20.  et al. 2002. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–90 [Google Scholar]
  21. Bowling AJ, Brown RM. 21.  2008. The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma 233:115–27 [Google Scholar]
  22. Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser M-T, Persson S. 22.  2012. Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci. 17:666–74 [Google Scholar]
  23. Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S. 23.  2012. POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–77 [Google Scholar]
  24. Brüx A, Liu T-Y, Krebs M, Stierhof Y-D, Lohmann JU. 24.  et al. 2008. Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–100 [Google Scholar]
  25. Burch-Smith TM, Zambryski PC. 25.  2012. Plasmodesmata paradigm shift: regulation from without versus within. Annu. Rev. Plant Biol. 63:239–60 [Google Scholar]
  26. Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M. 26.  2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–62 [Google Scholar]
  27. Carpita NC. 27.  2011. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1→4)-β-d-glycans. Plant Physiol. 155:171–84 [Google Scholar]
  28. Carroll A, Mansoori N, Li S, Lei L, Vernhettes S. 28.  et al. 2012. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol. 160:726–37 [Google Scholar]
  29. Chan J, Crowell E, Eder M, Calder G, Bunnewell S. 29.  et al. 2010. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls. J. Cell Sci. 123:3490–95 [Google Scholar]
  30. Chan J, Eder M, Crowell EF, Hampson J, Calder G, Lloyd C. 30.  2011. Microtubules and CESA tracks at the inner epidermal wall align independently of those on the outer wall of light-grown Arabidopsis hypocotyls. J. Cell Sci. 124:1088–94 [Google Scholar]
  31. Chen S, Ehrhardt DW, Somerville CR. 31.  2010. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc. Natl. Acad. Sci. USA 107:17188–93 [Google Scholar]
  32. Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N. 32.  et al. 2007. Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143:213–24 [Google Scholar]
  33. Coleman HD, Yan J, Mansfield SD. 33.  2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. USA 106:13118–23 [Google Scholar]
  34. Collings DA, Gebbie LK, Howles PA, Hurley UA, Birch RJ. 34.  et al. 2008. Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. J. Exp. Bot. 59:361–76 [Google Scholar]
  35. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D. 35.  et al. 2009. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–54 [Google Scholar]
  36. Crowell EF, Gonneau M, Stierhof Y-D, Höfte H, Vernhettes S. 36.  2010. Regulated trafficking of cellulose synthases. Curr. Opin. Plant Biol. 13:700–5 [Google Scholar]
  37. Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons A-M. 37.  et al. 2011. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23:2592–605 [Google Scholar]
  38. Debolt S, Scheible W-R, Schrick K, Auer M, Beisson F. 38.  et al. 2009. Mutations in UDP-glucose:sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds. Plant Physiol. 151:78–87 [Google Scholar]
  39. Delmer DP. 39.  1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:245–76 [Google Scholar]
  40. Depuydt S, Hardtke CS. 40.  2011. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 21:R365–73 [Google Scholar]
  41. Deslauriers SD, Larsen PB. 41.  2010. FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol. Plant 3:626–40 [Google Scholar]
  42. Desprez TT, Juraniec MM, Crowell EFE, Jouy HH, Pochylova ZZ. 42.  et al. 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104:15572–77 [Google Scholar]
  43. Ding L, Zhu JK. 43.  1997. A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203:289–94 [Google Scholar]
  44. Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J. 44.  et al. 2011. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 22:413–24 [Google Scholar]
  45. Duan Q, Kita D, Li C, Cheung AY, Wu H-M. 45.  2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl. Acad. Sci. USA 107:17821–26 [Google Scholar]
  46. Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T. 46.  et al. 2006. Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 103:6518–23 [Google Scholar]
  47. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D. 47.  et al. 2009. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res. 38:D828–34 [Google Scholar]
  48. Ellis M, Egelund J, Schultz CJ, Bacic A. 48.  2010. Arabinogalactan-proteins: key regulators at the cell surface?. Plant Physiol. 153:403–19 [Google Scholar]
  49. Endo S, Pesquet E, Yamaguchi M, Tashiro G, Sato M. 49.  et al. 2009. Identifying new components participating in the secondary cell wall formation of vessel elements in Zinnia and Arabidopsis. Plant Cell 21:1155–65 [Google Scholar]
  50. Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G. 50.  et al. 2011. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21:338–43 [Google Scholar]
  51. Fisher D, Cyr R. 51.  1998. Extending the microtubule/microfibril paradigm. Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol. 116:1043–51 [Google Scholar]
  52. Fujii S, Hayashi T, Mizuno K. 52.  2010. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol. 51:294–301 [Google Scholar]
  53. Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO. 53.  2011. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J. 66:915–28 [Google Scholar]
  54. Galway ME, Eng RC, Schiefelbein JW, Wasteneys GO. 54.  2011. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth. Planta 233:985–99 [Google Scholar]
  55. Geldner N. 55.  2013. The endodermis. Annu. Rev. Plant Biol. 64:531–58 [Google Scholar]
  56. Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A. 56.  et al. 2013. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25:2633–46 [Google Scholar]
  57. Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H. 57.  1997. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114:295–305 [Google Scholar]
  58. Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T. 58.  et al. 2005. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17:1128–40 [Google Scholar]
  59. Green PB. 59.  1962. Mechanism for plant cellular morphogenesis. Science 138:1404–5 [Google Scholar]
  60. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A. 60.  et al. 2010. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA 107:12866–71 [Google Scholar]
  61. Guerriero G, Fugelstad J, Bulone V. 61.  2010. What do we really know about cellulose biosynthesis in higher plants?. J. Integr. Plant Biol. 52:161–75 [Google Scholar]
  62. Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. 62.  2009. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 106:7648–53 [Google Scholar]
  63. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW. 63.  2009. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11:797–806 [Google Scholar]
  64. Haigler CH, Brown RM Jr. 64.  1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–20 [Google Scholar]
  65. Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M. 65.  et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–55 [Google Scholar]
  66. Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B. 66.  et al. 2011. Cellulose synthesis via the FEI2 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis.. Plant J. 68:941–53 [Google Scholar]
  67. Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T. 67.  et al. 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17:922–31 [Google Scholar]
  68. Himmelspach R, Williamson RE, Wasteneys GO. 68.  2003. Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J. 36:565–75 [Google Scholar]
  69. Howell SH. 69.  2013. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64:477–99 [Google Scholar]
  70. Ishida T, Thitamadee S, Hashimoto T. 70.  2007. Twisted growth and organization of cortical microtubules. J. Plant Res. 120:61–70 [Google Scholar]
  71. Kang B-H, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. 71.  2011. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–29 [Google Scholar]
  72. Kimura S, Laosinchai W, Itoh T, Cui X, Linder C, Brown R. 72.  1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–86 [Google Scholar]
  73. Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J. 73.  2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–81 [Google Scholar]
  74. Kopka J, Pical C, Hetherington AM, Müller-Röber B. 74.  1998. Ca2+/phospholipid-binding (C2) domain in multiple plant proteins: novel components of the calcium-sensing apparatus.. Plant Mol. Biol. 36:627–37 [Google Scholar]
  75. Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D. 75.  2002. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc. Natl. Acad. Sci. USA 99:11109–14 [Google Scholar]
  76. Lai-Kee-Him J, Chanzy H, Müller M, Putaux J-L, Imai T, Bulone V. 76.  2002. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J. Biol. Chem. 277:36931–39 [Google Scholar]
  77. Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS. 77.  et al. 2004. SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–40 [Google Scholar]
  78. Landrein B, Hamant O. 78.  2013. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J. 75:324–38 [Google Scholar]
  79. Landrein B, Lathe R, Bringmann M, Vouillot C, Ivakov A. 79.  et al. 2013. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis. Curr. Biol. 23:895–900 [Google Scholar]
  80. Lertpiriyapong K, Sung ZR. 80.  2003. The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Mol. Biol. 53:581–95 [Google Scholar]
  81. Li S, Lei L, Somerville CR, Gu Y. 81.  2012. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl. Acad. Sci. USA 109:185–90 [Google Scholar]
  82. Liu L, Shang-Guan K, Zhang B, Liu X, Yan M. 82.  et al. 2013. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9:e1003704 [Google Scholar]
  83. Manzano C, Abraham Z, López-Torrejón G, Pozo JC. 83.  2008. Identification of ubiquitinated proteins in Arabidopsis. Plant Mol. Biol. 68:145–58 [Google Scholar]
  84. Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L. 84.  et al. 2012. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. USA 109:12805–10 [Google Scholar]
  85. Mei Y, Gao H-B, Yuan M, Xue H-W. 85.  2012. The Arabidopsis ARCP protein, CSI1, which is required for microtubule stability, is necessary for root and anther development. Plant Cell 24:1066–80 [Google Scholar]
  86. Men S, Boutté Y, Ikeda Y, Li X, Palme K. 86.  et al. 2008. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat. Cell Biol. 10:237–44 [Google Scholar]
  87. Mendu V, Griffiths JS, Persson S, Stork J, Downie AB. 87.  et al. 2011. Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiol. 157:441–53 [Google Scholar]
  88. Miura K, Hasegawa PM. 88.  2010. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol. 20:223–32 [Google Scholar]
  89. Morel J, Claverol S, Mongrand S, Furt F, Fromentin J. 89.  et al. 2006. Proteomics of plant detergent-resistant membranes. Mol. Cell. Proteomics 5:1396–411 [Google Scholar]
  90. Morgan JLW, Strumillo J, Zimmer J. 90.  2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–86 [Google Scholar]
  91. Mueller SC, Brown RM. 91.  1980. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84:315–26 [Google Scholar]
  92. Mueller SC, Brown RM, Scott TK. 92.  1976. Cellulosic microfibrils: nascent stages of synthesis in a higher plant cell. Science 194:949–51 [Google Scholar]
  93. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. 93.  1998. A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17:5563–76 [Google Scholar]
  94. Nishiyama Y. 94.  2009. Structure and properties of the cellulose microfibril. J. Wood Sci. 55:241–49 [Google Scholar]
  95. Nühse TS, Stensballe A, Jensen ON, Peck SC. 95.  2004. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–405 [Google Scholar]
  96. Oda Y, Fukuda H. 96.  2012. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–36 [Google Scholar]
  97. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T. 97.  et al. 2002. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–13 [Google Scholar]
  98. Paredez AR, Persson S, Ehrhardt DW, Somerville CR. 98.  2008. Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol. 147:1723–34 [Google Scholar]
  99. Paredez AR, Somerville CR, Ehrhardt DW. 99.  2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–95 [Google Scholar]
  100. Paradez AR, Wright A, Ehrhardt DW. 100.  2006. Microtubule cortical array organization and plant cell morphogenesis. Curr. Opin. Plant Biol. 9:571–78 [Google Scholar]
  101. Park J-I, Ishimizu T, Suwabe K, Sudo K, Masuko H. 101.  et al. 2010. UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol. 51:981–96 [Google Scholar]
  102. Park S, Szumlanski AL, Gu F, Guo F, Nielsen E. 102.  2011. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat. Cell Biol. 13:973–80 [Google Scholar]
  103. Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J. 103.  et al. 2012. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol. 159:12–26 [Google Scholar]
  104. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA. 104.  et al. 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153:514–25 [Google Scholar]
  105. Pauly M, Albersheim P, Darvill A, York WS. 105.  1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants.. Plant J. 20:629–39 [Google Scholar]
  106. Pauly M, Keegstra K. 106.  2010. Plant cell wall polymers as precursors for biofuels. Curr. Opin. Plant Biol. 13:305–12 [Google Scholar]
  107. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. 107.  1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93:12637–42 [Google Scholar]
  108. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. 108.  2011. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21:1720–26 [Google Scholar]
  109. Peng L, Kawagoe Y, Hogan P, Delmer D. 109.  2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295:147–50 [Google Scholar]
  110. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M. 110.  et al. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:15566–71 [Google Scholar]
  111. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT. 111.  et al. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567–90 [Google Scholar]
  112. Powell AE, Lenhard M. 112.  2012. Control of organ size in plants. Curr. Biol. 22:R360–67 [Google Scholar]
  113. Richmond TA, Somerville CR. 113.  2000. The cellulose synthase superfamily. Plant Physiol. 124:495–98 [Google Scholar]
  114. Richter S, Voss U, Jürgens G. 114.  2009. Post-Golgi traffic in plants. Traffic 10:819–28 [Google Scholar]
  115. Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH. 115.  et al. 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–63 [Google Scholar]
  116. Rudolph U. 116.  1987. Occurrence of rosettes in the ER membrane of young Funaria hygrometrica protonemata. Naturwissenschaften 74:439 [Google Scholar]
  117. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J. 117.  et al. 2013. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol. 162:675–88 [Google Scholar]
  118. Samuels AL, Giddings TH, Staehelin LA. 118.  1995. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J. Cell Biol. 130:1345–57 [Google Scholar]
  119. Sanchez-Rodriguez C, Bauer S, Hematy K, Saxe F, Ibanez AB. 119.  et al. 2012. CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 24:589–607 [Google Scholar]
  120. Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S. 120.  2010. Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci. 15:291–301 [Google Scholar]
  121. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C. 121.  2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proc. Natl. Acad. Sci. USA 98:10079–84 [Google Scholar]
  122. Scheller HV, Ulvskov P. 122.  2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89 [Google Scholar]
  123. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC. 123.  et al. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15:1115–27 [Google Scholar]
  124. Schrick K, Fujioka S, Takatsuto S, Stierhof Y-D, Stransky H. 124.  et al. 2004. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 38:227–43 [Google Scholar]
  125. Schuetz M, Smith R, Ellis B. 125.  2013. Xylem tissue specification, patterning, and differentiation mechanisms. J. Exp. Bot. 64:11–31 [Google Scholar]
  126. Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J. 126.  1999. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev. 13:3259–70 [Google Scholar]
  127. Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D. 127.  et al. 2013. Tertiary model of a plant cellulose synthase. Proc. Natl. Acad. Sci. USA 110:7512–17 [Google Scholar]
  128. Shaw SL, Ehrhardt DW. 128.  2013. Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu. Rev. Plant Biol. 64:351–75 [Google Scholar]
  129. Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR. 129.  2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 153:485–513 [Google Scholar]
  130. Somerville C. 130.  2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78 [Google Scholar]
  131. Song D, Shen J, Li L. 131.  2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol. 187:777–90 [Google Scholar]
  132. Sperling P, Franke S, Lüthje S, Heinz E. 132.  2005. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?. Plant Physiol. Biochem. 43:1031–38 [Google Scholar]
  133. Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K. 133.  et al. 2010. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc. Natl. Acad. Sci. USA 107:5220–25 [Google Scholar]
  134. Tan L, Eberhard S, Pattathil S, Warder C, Glushka J. 134.  et al. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–87 [Google Scholar]
  135. Taylor NG. 135.  2007. Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation. Plant Mol. Biol. 64:161–71 [Google Scholar]
  136. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR. 136.  2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA 100:1450–55 [Google Scholar]
  137. Taylor NG, Laurie S, Turner SR. 137.  2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–40 [Google Scholar]
  138. Tian M, Xie Q. 138.  2013. Non-26S proteasome proteolytic role of ubiquitin in plant endocytosis and endosomal trafficking. J. Integr. Plant Biol. 55:54–63 [Google Scholar]
  139. Timmers J, Vernhettes S, Desprez T, Vincken J-P, Visser RGF, Trindade LM. 139.  2009. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Lett. 583:978–82 [Google Scholar]
  140. Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K. 140.  2009. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–29 [Google Scholar]
  141. Turner SR, Somerville CR. 141.  1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701 [Google Scholar]
  142. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 142.  2010. Lignin biosynthesis and structure. Plant Physiol. 153:895–905 [Google Scholar]
  143. Viotti C, Bubeck J, Stierhof Y-D, Krebs M, Langhans M. 143.  et al. 2010. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–57 [Google Scholar]
  144. Wang J, Howles PA, Cork AH, Birch RJ, Williamson RE. 144.  2006. Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls.. Plant Physiol. 142:685–95 [Google Scholar]
  145. Wang T, Zabotina O, Hong M. 145.  2012. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–56 [Google Scholar]
  146. Wightman R, Marshall R, Turner SR. 146.  2009. A cellulose synthase-containing compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiol. 50:584–94 [Google Scholar]
  147. Wolf S, Hématy K, Höfte H. 147.  2012. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63:381–407 [Google Scholar]
  148. Worden N, Park E, Drakakaki G. 148.  2012. Trans-Golgi network—an intersection of trafficking cell wall components. J. Integr. Plant Biol. 54:875–86 [Google Scholar]
  149. Xu S-L, Rahman A, Baskin TI, Kieber JJ. 149.  2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–79 [Google Scholar]
  150. Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B. 150.  et al. 2011. The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Mol. Plant 4:1024–37 [Google Scholar]
  151. Yin Y, Huang J, Xu Y. 151.  2009. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 9:99 [Google Scholar]
  152. Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T. 152.  et al. 2010. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J. 64:657–67 [Google Scholar]
  153. Zykwinska AW, Ralet M-CJ, Garnier CD, Thibault J-FJ. 153.  2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol. 139:397–407 [Google Scholar]

Data & Media loading...

    GFP-CesA3 signal in the plasma membrane of dark-grown hypocotyl cells. Small particles of GFP-CesA3 signal at the plasma membrane presumably represent cellulose synthase (CesA) complexes (CSCs) that probably include multiple copies of the GFP-tagged CesA3 subunit. These particles move at a constant speed along a linear trajectory as the CSC synthesizes cellulose. Individual particles appear, representing CSC deliveries to the membrane, and other particles eventually disappear from the plasma membrane, implying that the CSC may be recycled after some time. The scale bar represents 10 μm, the time stamp shows minutes:seconds, and the video covers 12.5 min of imaging.

Supplementary Data

    GFP-CesA3 signal in the Golgi apparatus of dark-grown hypocotyl cells. Ring-shaped aggregations of GFP-CesA3 signal inside the cell represent cellulose synthases (CesAs) as they traffic through the Golgi apparatus. Golgi stacks undergo salutatory movement or rapid cytosolic streaming. The scale bar represents 10 μm, the time stamp shows minutes:seconds, and the video covers 100 s of imaging.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error