Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell–like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agusti J, Greb T. 1.  2013. Going with the wind: adaptive dynamics of plant secondary meristems. Mech. Dev. 130:34–44 [Google Scholar]
  2. Aloni R. 2.  1987. Differentiation of vascular tissues. Annu. Rev. Plant Physiol. 38:179–204 [Google Scholar]
  3. Alonso-Peral MM, Candela H, del Pozo JC, Martínez-Laborda A, Ponce MR, Micol JL. 3.  2006. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. Development 133:3755–66 [Google Scholar]
  4. Avci U, Petzold HE, Ismail IO, Beers EP, Haigler CH. 4.  2008. Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J. 56:303–15 [Google Scholar]
  5. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G. 5.  1995. The expression of the ATHB8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–82 [Google Scholar]
  6. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM. 6.  et al. 2001. The Arabidopsis ATHB8 HD-ZIP protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126:643–55 [Google Scholar]
  7. Barratt DH, Kolling K, Graf A, Pike M, Calder G. 7.  et al. 2011. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol. 155:328–41 [Google Scholar]
  8. Baskin TI. 8.  2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22 [Google Scholar]
  9. Bauby H, Divol F, Truernit E, Grandjean O, Palauqui JC. 9.  2007. Protophloem differentiation in early Arabidopsis thaliana development. Plant Cell Physiol. 48:97–109 [Google Scholar]
  10. Baumberger N, Baulcombe DC. 10.  2005. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 102:11928–33 [Google Scholar]
  11. Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M. 11.  et al. 2009. Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev. 23:373–84 [Google Scholar]
  12. Benítez M, Hejátko J. 12.  2013. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana. PLoS ONE 8:e63108 [Google Scholar]
  13. Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL. 13.  2007. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6:1198–214 [Google Scholar]
  14. Berleth T, Jürgens G. 14.  1993. The role of the MONOPTEROS gene in organising the basal body region of the Arabidopsis embryo. Development 118:575–87 [Google Scholar]
  15. Berleth T, Mattsson J, Hardtke CS. 15.  2000. Vascular continuity and auxin signals. Trends Plant Sci. 5:387–93 [Google Scholar]
  16. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM. 16.  et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956–60 [Google Scholar]
  17. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B. 17.  et al. 2011. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21:917–26 [Google Scholar]
  18. Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S. 18.  et al. 2011. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr. Biol. 21:927–32 [Google Scholar]
  19. Bollhoner B, Prestele J, Tuominen H. 19.  2012. Xylem cell death: emerging understanding of regulation and function. J. Exp. Bot. 63:1081–94 [Google Scholar]
  20. Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y. 20.  2003. APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–86 [Google Scholar]
  21. Bowman JL, Floyd SK. 21.  2008. Patterning and polarity in seed plant shoots. Annu. Rev. Plant Biol. 59:67–88 [Google Scholar]
  22. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J. 22.  et al. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–6 [Google Scholar]
  23. Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E. 23.  et al. 2011. A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7:459 [Google Scholar]
  24. Brown DM, Wightman R, Zhang Z, Gomez LD, Atanassov I. 24.  et al. 2011. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J. 66:401–13 [Google Scholar]
  25. Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR. 25.  2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J. 57:732–46 [Google Scholar]
  26. Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH. 26.  2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–27 [Google Scholar]
  27. Busse JE, Evert RF. 27.  1999. Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana. Int. J. Plant Sci. 160:1–16 [Google Scholar]
  28. Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S. 28.  et al. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–51 [Google Scholar]
  29. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T. 29.  2002. The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–58 [Google Scholar]
  30. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S. 30.  et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–21 [Google Scholar]
  31. Chen MK, Wilson RL, Palme K, Ditengou FA, Shpak ED. 31.  2013. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol. 162:1978–91 [Google Scholar]
  32. Cosgrove DJ. 32.  2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–61 [Google Scholar]
  33. Crafts AS. 33.  1932. Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol. 7:183–225 [Google Scholar]
  34. De Rybel B, Breda AS, Weijers D. 34.  2014. Prenatal plumbing—vascular tissue formation in the plant embryo. Physiol. Plant. In press. doi: 10.1111/ppl.12091
  35. De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P. 35.  et al. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24:426–37 [Google Scholar]
  36. Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A. 36.  et al. 2012. A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr. Biol. 22:1699–704 [Google Scholar]
  37. Dixon RA, Chen F, Guo D, Parvathi K. 37.  2001. The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units?. Phytochemistry 57:1069–84 [Google Scholar]
  38. Donner TJ, Sherr I, Scarpella E. 38.  2009. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–46 [Google Scholar]
  39. Eames AJ, MacDaniels LH. 39.  1947. An Introduction to Plant Anatomy New York: McGraw-Hill, 2nd ed..
  40. Edwards KL, Davies KL, Axe L. 40.  1992. A vascular conducting strand in the early land plant Cooksonia. Nature 357:683–85 [Google Scholar]
  41. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP. 41.  et al. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13:1768–74 [Google Scholar]
  42. Engstrom EM, Izhaki A, Bowman JL. 42.  2004. Promoter bashing, microRNAs, and Knox genes. New insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity in Arabidopsis. Plant Physiol. 135:685–94 [Google Scholar]
  43. Esau K. 43.  1965. Plant Anatomy. New York: Wiley and Sons
  44. Esau K. 44.  1965. Vascular Differentiation in Plants New York: Holt, Rinehart and Winston
  45. Esau K. 45.  1977. Anatomy of Seed Plants New York: Wiley and Sons, 2nd ed..
  46. Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. 46.  2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131:2997–3006 [Google Scholar]
  47. Etchells JP, Provost CM, Mishra L, Turner SR. 47.  2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–34 [Google Scholar]
  48. Etchells JP, Provost CM, Turner SR. 48.  2012. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genet. 8:e1002997 [Google Scholar]
  49. Etchells JP, Turner SR. 49.  2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–74 [Google Scholar]
  50. Fàbregas N, Ibañes M, Caño-Delgado AI. 50.  2010. A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana. Plant Signal. Behav. 5:903–6 [Google Scholar]
  51. Feugier FG, Mochizuki A, Iwasa Y. 51.  2005. Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J. Theor. Biol. 236:366–75 [Google Scholar]
  52. Fisher K, Turner S. 52.  2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17:1061–66 [Google Scholar]
  53. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 53.  1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–14 [Google Scholar]
  54. Floyd SK, Zalewski CS, Bowman JL. 54.  2006. Evolution of class III homeodomain-leucine zipper genes in streptophytes. Genetics 173:373–88 [Google Scholar]
  55. Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA. 55.  et al. 2011. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell 23:4428–45 [Google Scholar]
  56. Fujita H, Mochizuki A. 56.  2006. Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier. J. Theor. Biol. 241:541–51 [Google Scholar]
  57. Fukuda H. 57.  2000. Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 44:245–53 [Google Scholar]
  58. Fukuda H, Komamine A. 58.  1980. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol. 65:57–60 [Google Scholar]
  59. Funk V, Kositsup B, Zhao C, Beers EP. 59.  2002. The Arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol. 128:84–94 [Google Scholar]
  60. Furuta K, Lichtenberger R, Helariutta Y. 60.  2012. The role of mobile small RNA species during root growth and development. Curr. Opin. Cell Biol. 24:211–16 [Google Scholar]
  61. Gabaldón C, Gómez Ros LV, Pedreño MA, Ros Barceló A. 61.  2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol. 165:121–30 [Google Scholar]
  62. Gagne JM, Clark SE. 62.  2010. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22:729–43 [Google Scholar]
  63. Gandotra N, Coughlan SJ, Nelson T. 63.  2013. The Arabidopsis leaf provascular cell transcriptome is enriched in genes with roles in vein patterning. Plant J. 74:48–58 [Google Scholar]
  64. Gardiner J, Sherr I, Scarpella E. 64.  2010. Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. Int. J. Dev. Biol. 54:1389–96 [Google Scholar]
  65. Garnett P, Steinacher A, Stepney S, Clayton R, Leyser O. 65.  2010. Computer simulation: the imaginary friend of auxin transport biology. BioEssays 32:828–35 [Google Scholar]
  66. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W. 66.  et al. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–30 [Google Scholar]
  67. Gerrienne P, Dilcher DL, Bergamaschi S, Milagres I, Pereira E, Rodrigues MAC. 67.  2006. An exceptional specimen of the early land plant Cooksonia paranensis, and a hypothesis on the life cycle of the earliest eutracheophytes. Rev. Palaeobot. Palynol. 142:123–30 [Google Scholar]
  68. Groover A, Jones AM. 68.  1999. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol. 119:375–84 [Google Scholar]
  69. Guenot B, Bayer E, Kierzkowski D, Smith RS, Mandel T. 69.  et al. 2012. PIN1-independent leaf initiation in Arabidopsis. Plant Physiol. 159:1501–10 [Google Scholar]
  70. Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. 70.  2002. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16:1610–15 [Google Scholar]
  71. Han JJ, Lin W, Oda Y, Cui KM, Fukuda H, He XQ. 71.  2012. The proteasome is responsible for caspase-3-like activity during xylem development. Plant J. 72:129–41 [Google Scholar]
  72. Hardtke CS, Berleth T. 72.  1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17:1405–11 [Google Scholar]
  73. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV. 73.  et al. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15:1899–911 [Google Scholar]
  74. Hirakawa Y, Kondo Y, Fukuda H. 74.  2010. Regulation of vascular development by CLE peptide-receptor systems. J. Integr. Plant Biol. 52:8–16 [Google Scholar]
  75. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I. 75.  et al. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl. Acad. Sci. USA 105:15208–13 [Google Scholar]
  76. Ibañes M, Fàbregas N, Chory J, Caño-Delgado AI. 76.  2009. Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc. Natl. Acad. Sci. USA 106:13630–35 [Google Scholar]
  77. Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L. 77.  et al. 2010. Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137:975–84 [Google Scholar]
  78. Ingram P, Dettmer J, Helariutta Y, Malamy JE. 78.  2011. Arabidopsis LATERAL ROOT DEVELOPMENT 3 is essential for early phloem development and function, and hence for normal root system development. Plant J. 68:455–67 [Google Scholar]
  79. Ito J, Fukuda H. 79.  2002. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–11 [Google Scholar]
  80. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S. 80.  et al. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–45 [Google Scholar]
  81. Izhaki A, Bowman JL. 81.  2007. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508 [Google Scholar]
  82. Jones L, Ennos AR, Turner SR. 82.  2001. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J. 26:205–16 [Google Scholar]
  83. Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM. 83.  et al. 2012. The microRNA pathway genes AGO1, HEN1 and HYL1 participate in leaf proximal-distal, venation and stomatal patterning in Arabidopsis. Plant Cell Physiol. 53:1322–33 [Google Scholar]
  84. Kang J, Dengler N. 84.  2002. Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta 216:212–19 [Google Scholar]
  85. Kang J, Dengler N. 85.  2004. Vein pattern development in adult leaves of Arabidopsis thaliana. Int. J. Plant Sci. 165:231–42 [Google Scholar]
  86. Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG. 86.  2007. Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana. Planta 226:1207–18 [Google Scholar]
  87. Kang J, Tang J, Donnelly P, Dengler N. 87.  2003. Primary vascular pattern and expression of ATHB-8 in shoots of Arabidopsis. New Phytol. 158:443–54 [Google Scholar]
  88. Kenrick P, Crane PR. 88.  1997. The origin and early evolution of plants on land. Nature 389:33–39 [Google Scholar]
  89. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. 89.  2001. KANADI regulates organ polarity in Arabidopsis. Nature 411:706–9 [Google Scholar]
  90. Kim HS, Kim SJ, Abbasi N, Bressan RA, Yun DJ. 90.  et al. 2010. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting REVOLUTA transcription in Arabidopsis. Plant J. 64:524–35 [Google Scholar]
  91. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S. 91.  et al. 2010. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–20 [Google Scholar]
  92. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I. 92.  et al. 2003. ATP-independent contractile proteins from plants. Nat. Mater. 2:600–3 [Google Scholar]
  93. Knoblauch M, Peters WS, Ehlers K, van Bel AJ. 93.  2001. Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–30 [Google Scholar]
  94. Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T. 94.  et al. 2005. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–711 [Google Scholar]
  95. Koizumi K, Sugiyama M, Fukuda H. 95.  2000. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127:3197–204 [Google Scholar]
  96. Konishi M, Yanagisawa S. 96.  2007. Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant Physiol. Biochem. 45:623–29 [Google Scholar]
  97. Kramer EM. 97.  2008. Computer models of auxin transport: a review and commentary. J. Exp. Bot. 59:45–53 [Google Scholar]
  98. Krupinski P, Jonsson H. 98.  2010. Modeling auxin-regulated development. Cold Spring Harb. Perspect. Biol. 2:a001560 [Google Scholar]
  99. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M. 99.  et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19:1855–60 [Google Scholar]
  100. Kuriyama H, Fukuda H. 100.  2002. Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 5:568–73 [Google Scholar]
  101. Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. 101.  2010. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 64:151–64 [Google Scholar]
  102. Le Hir R, Bellini C. 102.  2013. The plant-specific Dof transcription factors family: new players involved in vascular system development and functioning in Arabidopsis. Front. Plant Sci. 4:164 [Google Scholar]
  103. Lehmann K, Hause B, Altmann D, Kock M. 103.  2001. Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination, and senescence. Plant Physiol. 127:436–49 [Google Scholar]
  104. Leopold AC, Hall OF. 104.  1966. Mathematical model of polar auxin transport. Plant Physiol. 41:1476–80 [Google Scholar]
  105. Li X, Wu HX, Southerton SG. 105.  2010. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants. BMC Evol. Biol. 10:190 [Google Scholar]
  106. Ligrone R, Duckett JG, Gambardella R. 106.  1996. Development and liberation of cauline gemmae in the moss Aulacomnium androgynum (Hedw.) Schwaegr. (Bryales): an ultrastructural study. Ann. Bot. 78:559–68 [Google Scholar]
  107. Ligrone R, Duckett JG, Renzaglia KS. 107.  2000. Conducting tissues and phyletic relationships of bryophytes. Philos. Trans. R. Soc. B 355:795–813 [Google Scholar]
  108. Ligrone R, Duckett JG, Renzaglia KS. 108.  2012. Major transitions in the evolution of early land plants: a bryological perspective. Ann. Bot. 109:851–71 [Google Scholar]
  109. Liu L, Liu C, Hou X, Xi W, Shen L. 109.  et al. 2012. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 10:e1001313 [Google Scholar]
  110. Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H. 110.  2009. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J. 58:27–40 [Google Scholar]
  111. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR. 111.  et al. 2013. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55:294–388 [Google Scholar]
  112. Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K. 112.  et al. 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98 [Google Scholar]
  113. Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. 113.  2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14:2938–43 [Google Scholar]
  114. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD. 114.  et al. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23:3356–64 [Google Scholar]
  115. Mansfield SG, Briarty LG. 115.  1991. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69:461–76 [Google Scholar]
  116. Martínez-Navarro AC, Galván-Gordillo SV, Xoconostle-Cázares B, Ruiz-Medrano R. 116.  2013. Vascular gene expression: a hypothesis. Front. Plant Sci. 4:261 [Google Scholar]
  117. Mattsson J, Ckurshumova W, Berleth T. 117.  2003. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 131:1327–39 [Google Scholar]
  118. Mattsson J, Sung ZR, Berleth T. 118.  1999. Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–91 [Google Scholar]
  119. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 119.  2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–13 [Google Scholar]
  120. Mitchison GJ. 120.  1980. A model for vein formation in higher plants. Proc. R. Soc. B 207:79–109 [Google Scholar]
  121. Mitchison GJ. 121.  1981. The polar transport of auxin and vein pattern in plants. Philos. Trans. R. Soc. B 295:461–71 [Google Scholar]
  122. Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S. 122.  2008. The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol. 49:1752–57 [Google Scholar]
  123. Miyashima S, Koi S, Hashimoto T, Nakajima K. 123.  2011. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–13 [Google Scholar]
  124. Motose H, Sugiyama M, Fukuda H. 124.  2004. A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–78 [Google Scholar]
  125. Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F. 125.  et al. 2008. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–82 [Google Scholar]
  126. Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T. 126.  et al. 2010. ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc. Natl. Acad. Sci. USA 107:21890–95 [Google Scholar]
  127. Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T. 127.  et al. 2009. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136:1529–38 [Google Scholar]
  128. Neuberger DS, Evert RF. 128.  1974. Structure and development of sieve-element protoplast in the hypocotyl of Pinus resinosa. Am. J. Bot. 61:360–74 [Google Scholar]
  129. Nodine MD, Yadegari R, Tax FE. 129.  2007. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev. Cell 12:943–56 [Google Scholar]
  130. Obara K, Kuriyama H, Fukuda H. 130.  2001. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 125:615–26 [Google Scholar]
  131. Oda Y, Fukuda H. 131.  2012. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–36 [Google Scholar]
  132. Oda Y, Fukuda H. 132.  2012. Secondary cell wall patterning during xylem differentiation. Curr. Opin. Plant Biol. 15:38–44 [Google Scholar]
  133. Offler CE, McCurdy DW, Patrick JW, Talbot MJ. 133.  2003. Transfer cells: cells specialized for a special purpose. Annu. Rev. Plant Biol. 54:431–54 [Google Scholar]
  134. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. 134.  2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294 [Google Scholar]
  135. Ohashi-Ito K, Bergmann DC. 135.  2007. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–68 [Google Scholar]
  136. Ohashi-Ito K, Demura T, Fukuda H. 136.  2002. Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol. 43:1146–53 [Google Scholar]
  137. Ohashi-Ito K, Kubo M, Demura T, Fukuda H. 137.  2005. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol. 46:1646–56 [Google Scholar]
  138. Ohashi-Ito K, Matsukawa M, Fukuda H. 138.  2013. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 54:398–405 [Google Scholar]
  139. Ohashi-Ito K, Oda Y, Fukuda H. 139.  2010. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22:3461–73 [Google Scholar]
  140. Ohashi-Ito K, Oguchi M, Kojima M, Sakakibara H, Fukuda H. 140.  2013. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development 140:765–69 [Google Scholar]
  141. Paciorek T, Zazímalová E, Ruthardt N, Petrásek J, Stierhof YD. 141.  et al. 2005. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–56 [Google Scholar]
  142. Parker G, Schofield R, Sundberg B, Turner S. 142.  2003. Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–48 [Google Scholar]
  143. Pavy N, Boyle B, Nelson C, Paule C, Giguère I. 143.  et al. 2008. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytol. 180:766–86 [Google Scholar]
  144. Pekker I, Alvarez JP, Eshed Y. 144.  2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–910 [Google Scholar]
  145. Pélissier HC, Peters WS, Collier R, van Bel AJ, Knoblauch M. 145.  2008. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol. 49:1699–710 [Google Scholar]
  146. Peret B, Swarup K, Ferguson A, Seth M, Yang Y. 146.  et al. 2012. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874–85 [Google Scholar]
  147. Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M. 147.  et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–18 [Google Scholar]
  148. Pineau C, Freydier A, Ranocha P, Jauneau A, Turner S. 148.  et al. 2005. hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. Plant J. 44:271–89 [Google Scholar]
  149. Prigge MJ, Clark SE. 149.  2006. Evolution of the class III HD-Zip gene family in land plants. Evol. Dev. 8:350–61 [Google Scholar]
  150. Prouse MB, Campbell MM. 150.  2012. The interaction between MYB proteins and their target DNA binding sites. Biochim. Biophys. Acta 1819:67–77 [Google Scholar]
  151. Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. 151.  1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–37 [Google Scholar]
  152. Pyo H, Demura T, Fukuda H. 152.  2007. TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J. 51:955–65 [Google Scholar]
  153. Ratcliffe OJ, Riechmann JL, Zhang JZ. 153.  2000. INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell 12:315–17 [Google Scholar]
  154. Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM. 154.  et al. 2010. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant Physiol. 152:1357–72 [Google Scholar]
  155. Rojo E, Martin R, Carter C, Zouhar J, Pan S. 155.  et al. 2004. VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897–906 [Google Scholar]
  156. Rolland-Lagan AG, Coen E, Impey SJ, Bangham JA. 156.  2005. A computational method for inferring growth parameters and shape changes during development based on clonal analysis. J. Theor. Biol. 232:157–77 [Google Scholar]
  157. Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, Prusinkiewicz P. 157.  2005. Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24:702–11 [Google Scholar]
  158. Ruping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR. 158.  et al. 2010. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol. 10:219 [Google Scholar]
  159. Sachs T. 159.  1969. Polarity and induction of organized vascular tissues. Ann. Bot. 33:263–75 [Google Scholar]
  160. Sachs T. 160.  1981. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9:151–62 [Google Scholar]
  161. Sachs T. 161.  1991. Cell polarity and tissue patterning in plants. Development 113:83–93 [Google Scholar]
  162. Sawa S, Demura T, Horiguchi G, Kubo M, Fukuda H. 162.  2005. The ATE genes are responsible for repression of transdifferentiation into xylem cells in Arabidopsis. Plant Physiol. 137:141–48 [Google Scholar]
  163. Sawchuk MG, Donner TJ, Scarpella E. 163.  2008. Auxin transport-dependent, stage-specific dynamics of leaf vein formation. Plant Signal. Behav. 3:286–89 [Google Scholar]
  164. Sawchuk MG, Edgar A, Scarpella E. 164.  2013. Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet. 9:e1003294 [Google Scholar]
  165. Sawchuk MG, Head P, Donner TJ, Scarpella E. 165.  2007. Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. New Phytol. 176:560–71 [Google Scholar]
  166. Scarpella E, Barkoulas M, Tsiantis M. 166.  2010. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2:a001511 [Google Scholar]
  167. Scarpella E, Francis P, Berleth T. 167.  2004. Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–55 [Google Scholar]
  168. Scarpella E, Marcos D, Friml J, Berleth T. 168.  2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20:1015–27 [Google Scholar]
  169. Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K. 169.  et al. 1995. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62 [Google Scholar]
  170. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C. 170.  1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–87 [Google Scholar]
  171. Schlereth A, Möller B, Liu W, Kientz M, Flipse J. 171.  et al. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–16 [Google Scholar]
  172. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T. 172.  2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–44 [Google Scholar]
  173. Schuetz M, Smith R, Ellis B. 173.  2013. Xylem tissue specification, patterning, and differentiation mechanisms. J. Exp. Bot. 64:11–31 [Google Scholar]
  174. Sieburth LE. 174.  1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121:1179–90 [Google Scholar]
  175. Skirycz A, Radziejwoski A, Busch W, Hannah MA, Czeszejko J. 175.  et al. 2008. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J. 56:779–92 [Google Scholar]
  176. Smith RS, Bayer EM. 176.  2009. Auxin transport-feedback models of patterning in plants. Plant Cell Environ. 32:1258–71 [Google Scholar]
  177. Song SK, Hofhuis H, Lee MM, Clark SE. 177.  2008. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev. Cell 15:98–109 [Google Scholar]
  178. Soyano T, Thitamadee S, Machida Y, Chua NH. 178.  2008. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 20:3359–73 [Google Scholar]
  179. Stahl Y, Wink RH, Ingram GC, Simon R. 179.  2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19:909–14 [Google Scholar]
  180. Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C. 180.  2008. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput. Biol. 4:e1000207 [Google Scholar]
  181. Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 181.  2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23:3247–59 [Google Scholar]
  182. Szyjanowicz PM, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR. 182.  2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37:730–40 [Google Scholar]
  183. Tanaka H, Kitakura S, Rakusova H, Uemura T, Feraru MI. 183.  et al. 2013. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genet. 9:e1003540 [Google Scholar]
  184. Truernit E, Bauby H, Belcram K, Barthélémy J, Palauqui JC. 184.  2012. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139:1306–15 [Google Scholar]
  185. Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J. 185.  et al. 2008. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–503 [Google Scholar]
  186. Tucker MR, Hinze A, Tucker EJ, Takada S, Jürgens G, Laux T. 186.  2008. Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:2839–43 [Google Scholar]
  187. Turgeon R, Wolf S. 187.  2009. Phloem transport: cellular pathways and molecular trafficking. Annu. Rev. Plant Biol. 60:207–21 [Google Scholar]
  188. Turner SR, Hall M. 188.  2000. The gapped xylem mutant identifies a common regulatory step in secondary cell wall deposition. Plant J. 24:477–88 [Google Scholar]
  189. Turner SR, Somerville CR. 189.  1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701 [Google Scholar]
  190. Twumasi P, Iakimova ET, Qian T, van Ieperen W, Schel JH. 190.  et al. 2010. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures. BMC Plant Biol. 10:162 [Google Scholar]
  191. Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S. 191.  et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21:1144–55 [Google Scholar]
  192. Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P. 192.  et al. 2004. Type II metacaspases ATMC4 and ATMC9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J. Biol. Chem. 279:45329–36 [Google Scholar]
  193. Verma DP, Hong Z. 193.  2001. Plant callose synthase complexes. Plant Mol. Biol. 47:693–701 [Google Scholar]
  194. Weigel D, Jürgens G. 194.  2002. Stem cells that make stems. Nature 415:751–54 [Google Scholar]
  195. Wenzel CL, Marrison J, Mattsson J, Haseloff J, Bougourd SM. 195.  2012. Ectopic divisions in vascular and ground tissues of Arabidopsis thaliana result in distinct leaf venation defects. J. Exp. Bot. 63:5351–64 [Google Scholar]
  196. Wenzel CL, Schuetz M, Yu Q, Mattsson J. 196.  2007. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J. 49:387–98 [Google Scholar]
  197. Woffenden BJ, Freeman TB, Beers EP. 197.  1998. Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol. 118:419–30 [Google Scholar]
  198. Xie B, Wang X, Zhu M, Zhang Z, Hong Z. 198.  2011. CALS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 65:1–14 [Google Scholar]
  199. Xu L, Xu Y, Dong A, Sun Y, Pi L. 199.  et al. 2003. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–107 [Google Scholar]
  200. Xu P, Kong Y, Li X, Li L. 200.  2013. Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems. BMC Genomics 14:217 [Google Scholar]
  201. Yamaguchi M, Kubo M, Fukuda H, Demura T. 201.  2008. Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. 55:652–64 [Google Scholar]
  202. Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. 202.  2011. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66:579–90 [Google Scholar]
  203. Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M. 203.  et al. 2010. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–63 [Google Scholar]
  204. Yamamoto R, Demura T, Fukuda H. 204.  1997. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol. 38:980–83 [Google Scholar]
  205. Ye ZH. 205.  2002. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53:183–202 [Google Scholar]
  206. Yin H, Yan B, Sun J, Jia P, Zhang Z. 206.  et al. 2012. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J. Exp. Bot. 63:4219–32 [Google Scholar]
  207. Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. 207.  2010. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc. Natl. Acad. Sci. USA 107:13532–37 [Google Scholar]
  208. Zhao C, Avci U, Grant EH, Haigler CH, Beers EP. 208.  2008. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 53:425–36 [Google Scholar]
  209. Zhong R, Ye ZH. 209.  1999. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–52 [Google Scholar]
  210. Zhong R, Ye ZH. 210.  2001. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol. 126:549–63 [Google Scholar]
  211. Zhong R, Ye ZH. 211.  2004. Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol. 45:369–85 [Google Scholar]
  212. Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH. 212.  2007. Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol. 48:391–404 [Google Scholar]
  213. Zhou J, Wang X, Lee JY, Lee JY. 213.  2013. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. Plant Cell 25:187–201 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error