Chronic disease is a major social challenge of the twenty-first century. In this review, we examine the evidence for discordance between modern diets and those on which humankind evolved as the cause of the increasing incidence of chronic diseases, and the evidence supporting consumption of plant foods as a way to reduce the risk of chronic disease. We also examine the evidence for avoiding certain components of plant-based foods that are enriched in Western diets, and review the mechanisms by which different phytonutrients are thought to reduce the risk of chronic disease. This body of evidence strongly suggests that consuming more fruits and vegetables could contribute both to medical nutrition therapies, as part of a package of treatments for conditions like type 2 diabetes, heart disease, cancer, and obesity, and to the prevention of these diseases. Plant science should be directed toward improving the quality of plant-based foods by building on our improved understanding of the complex relationships between plants, our diet, and our health.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acton KJ, Burrows NR, Wang J, Thompson T. 1.  2006. Diagnosed diabetes among American Indians and Alaska natives aged <35 years—United States, 1994–2004. Morb. Mortal. Wkly. Rep. 55:1201–3 [Google Scholar]
  2. Aggarwal BB, Shishodia S. 2.  2004. Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann. N. Y. Acad. Sci. 1030:434–41 [Google Scholar]
  3. Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. 3.  2011. Starches, sugars and obesity. Nutrients 3:341–69 [Google Scholar]
  4. Altorf-van der Kuil W, Engberink MF, Brink EJ, van Baak MA, Bakker SJL. 4.  et al. 2010. Dietary protein and blood pressure: a systematic review. PLoS ONE 5:e12102 [Google Scholar]
  5. Angel LJ. 5.  1984. Health as a crucial factor in the changes from hunting to developed farming in the Eastern Mediterranean. Paleopathology at the Origins of Agriculture MN Cohen, GJ Armelagos 51–73 Orlando, FL: Academic [Google Scholar]
  6. Arts ICW, Jacobs DR, Gross M, Harnack LJ, Folsom AR. 6.  2002. Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women's Health Study (United States). Cancer Causes Control 13:373–82 [Google Scholar]
  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T. 7.  et al. 2012. Enterotypes of the human gut microbiome. Nature 473:174–80 [Google Scholar]
  8. Aune D, Chan DSM, Lau R, Viera R, Greenwood DC. 8.  et al. 2011. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343:d6617 [Google Scholar]
  9. Awad AB, Fink CS. 9.  2000. Phytosterols as anticancer dietary components: evidence and mechanism of action. Anticancer Res. 20:821–24 [Google Scholar]
  10. Backhed F, Ding H, Wang T, Hooper LV, Koh GY. 10.  et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:15718–23 [Google Scholar]
  11. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG. 11.  et al. 2008. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31:S61–78 [Google Scholar]
  12. Baur JA, Sinclair DA. 12.  2006. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. 5:493–506 [Google Scholar]
  13. Beliveau R, Gingras D. 13.  2007. Role of nutrition in preventing cancer. Can. Fam. Physician 53:1905–11 [Google Scholar]
  14. Benetou V, Orfanos P, Lagiou P, Trichopoulos D, Boffetta P, Trichopoulou A. 14.  2008. Vegetables and fruits in relation to cancer risk: evidence from the Greek EPIC cohort study. Cancer Epidemiol. Biomark. Prev. 17:387–92 [Google Scholar]
  15. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. 15.  2008. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2008:CD007176 [Google Scholar]
  16. Bodinham CL, Frost GS, Robertson MD. 16.  2010. Acute ingestion of resistant starch reduces food intake in healthy adults. Br. J. Nutr. 103:917–22 [Google Scholar]
  17. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. 17.  2008. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J. Nutr. 138:1677–83 [Google Scholar]
  18. Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM. 18.  2000. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors α and β. Endocrinology 141:3657–67 [Google Scholar]
  19. Brausi M, Rizzi F, Bettuzzi S. 19.  2008. Chemoprevention of human prostate cancer by green tea catechins: two years later—a follow-up update. Eur. Urol. 54:472–73 [Google Scholar]
  20. Bray GA, Nielsen SJ, Popkin BM. 20.  2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79:537–43 [Google Scholar]
  21. Brehm BJ, D'Alessio DA. 21.  2008. Benefits of high-protein weight loss diets: enough evidence for practice?. Curr. Opin. Endocrinol. Diabetes 15:416–21 [Google Scholar]
  22. Brynes AE, Edwards CM, Ghatei MA, Dornhorst A, Morgan LM. 22.  et al. 2003. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br. J. Nutr. 89:207–18 [Google Scholar]
  23. Butelli E, Titta L, Giorgio M, Mock HP, Matros A. 23.  et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26:1301–8 [Google Scholar]
  24. Butt MS, Sultan MT. 24.  2009. Green tea: nature's defense against malignancies. Crit. Rev. Food Sci. Nutr. 49:463–73 [Google Scholar]
  25. Calder JF, Wachira MW, van Sant T, Malik MS, Bonny RN. 25.  1980. Diverticular disease, carcinoma of the colon and diet in urban and rural Kenyan Africans. Diagn. Imaging Clin. Med. 42:23–28 [Google Scholar]
  26. Calvez J, Poupin N, Chesneau C, Lassale C, Tome D. 26.  2012. Protein intake, calcium balance and health consequences. Eur. J. Clin. Nutr. 66:281–95 [Google Scholar]
  27. Carrera-Bastos P, Fontes-Villalba M, O'Keefe JH, Lindeberg S, Cordain L. 27.  2011. The Western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol. 2:15–35 [Google Scholar]
  28. Centritto F, Iacoviello L, di Giuseppe R, De Curtis A, Costanzo S. 28.  et al. 2000. Dietary patterns, cardiovascular risk factors and C-reactive protein in a healthy Italian population. Nutr. Metab. Cardiovasc. Dis. 19:697–706 [Google Scholar]
  29. Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G. 29.  2007. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol. 101:427–33 [Google Scholar]
  30. Cho I, Blaser MJ. 30.  2012. The human microbiome: at the interface of health and disease. Nat. Rev. 13:260–70 [Google Scholar]
  31. Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH. 31.  et al. 2009. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 69:583–92 [Google Scholar]
  32. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. 32.  2010. Regulation of SIRT1 in cellular functions: role of polyphenols. Arch. Biochem. Biophys. 501:79–90 [Google Scholar]
  33. Clifton PM, Keogh J. 33.  2007. Metabolic effects of high protein diets. Curr. Atheroscler. Rep. 9:472–78 [Google Scholar]
  34. Closa D, Folch-Puy E. 34.  2004. Oxygen free radicals and the systemic inflammatory response. IUBMB Life 56:185–91 [Google Scholar]
  35. Cohen JH, Kristal AR, Stanford JL. 35.  2000. Fruit and vegetable intakes and prostate cancer risk. J. Nat. Cancer Inst. 92:61–68 [Google Scholar]
  36. Conlon MA, Kerr CA, McSweeney CS, Dunne RA, Shaw JM. 36.  et al. 2012. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J. Nutr. 142:832–40 [Google Scholar]
  37. Conney AH. 37.  2003. Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the seventh DeWitt S. Goodman lecture. Cancer Res. 63:7005–31 [Google Scholar]
  38. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S. 38.  et al. 2005. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 85:341–54 [Google Scholar]
  39. Cornwall T, Cohick W, Raskin I. 39.  2004. Dietary phytoestrogens and health. Phytochemistry 65:995–1016 [Google Scholar]
  40. Couzin-Frankel J. 40.  2010. Bacteria and asthma: untangling the links. Science 330:1168–69 [Google Scholar]
  41. Curtis R, Geesaman BJ, DiStefano PS. 41.  2005. Ageing and metabolism: drug discovery opportunities. Nat. Rev. Drug Discov. 4:569–80 [Google Scholar]
  42. Daar AS, Singer PA, Persad DL, Pramming SK, Matthews DR. 42.  et al. 2007. Grand challenges in chronic non-communicable diseases. Nature 450:494–96 [Google Scholar]
  43. Dave B, Eason RR, Till SR, Geng Y, Velarde MC. 43.  et al. 2005. The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis 26:1793–803 [Google Scholar]
  44. Davignon J. 44.  1978. The lipid hypothesis: pathophysiological basis. Arch. Surg. 113:28–34 [Google Scholar]
  45. De Castro JM. 45.  1993. The effects of the spontaneous ingestion of particular foods or beverages on the meal pattern and overall nutrient intake of humans. Physiol. Behav. 53:1133–44 [Google Scholar]
  46. de Kleijn MJ, van der Schouw YT, Wilson PW, Adlercreutz H, Mazur W. 46.  et al. 2001. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study. J. Nutr. 131:1826–32 [Google Scholar]
  47. de Kok TM, van Breda SG, Manson MM. 47.  2008. Mechanisms of combined action of different chemopreventive dietary compounds. Eur. J. Nutr. 47:51–59 [Google Scholar]
  48. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL. 48.  et al. 1994. Mediterranean alpha-linoleic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–59 [Google Scholar]
  49. de Lorgeril M, Salen P, Martin JL, Boucher F, de Leiris J. 49.  2008. Interactions of wine drinking with omega-3 fatty acids in patients with coronary heart disease: a fish-like effect of moderate wine drinking. Am. Heart J. 155:175–81 [Google Scholar]
  50. di Giuseppe R, de Lorgeril M, Salen P, Laporte F, di Castelnuovo A. 50.  et al. 2009. Alcohol drinking and n-3 polyunsaturated fatty acids in healthy men and women from 3 European populations. Am. J. Clin. Nutr. 89:354–62 [Google Scholar]
  51. Dixon R, Ferreira D. 51.  2002. Genistein.. Phytochemistry 60:205–11 [Google Scholar]
  52. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. 52.  2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114:567–72 [Google Scholar]
  53. Doll R, Peto R. 53.  1981. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 66:1191–308 [Google Scholar]
  54. Eastwood MA. 54.  1999. Interaction of dietary antioxidants in vivo: how fruit and vegetables prevent disease. Q. J. Med. 92:527–30 [Google Scholar]
  55. Eaton SB, Konnor M. 55.  1985. Paleolithic nutrition: a consideration of its nature and current implications. N. Engl. J. Med. 312:283–89 [Google Scholar]
  56. Eberhardt MV, Lee CY, Liu RH. 56.  2000. Nutrition: antioxidant activity of fresh apples. Nature 405:903–4 [Google Scholar]
  57. Ells LJ, Seal CJ, Kettlitz B, Bal W, Mathers JC. 57.  2005. Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br. J. Nutr. 94:948–55 [Google Scholar]
  58. Erkkila AT, Lehto S, Pyorala K, Uusitupa MIJ. 58.  2003. n-3 fatty acids and 5-y risks of death and cardiovascular disease events in patients with coronary artery disease. Am. J. Clin. Nutr. 78:65–71 [Google Scholar]
  59. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. 59.  2005. Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin. Cancer Res. 11:7033–41 [Google Scholar]
  60. Fang MZ, Chen D, Yang CS. 60.  2007. Dietary polyphenols may affect DNA methylation. J. Nutr. 137:223S–8S [Google Scholar]
  61. Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC. 61.  et al. 2007. Dietary flavonoid intake and breast cancer risk among women on Long Island. Am. J. Epidemiol. 165:514–23 [Google Scholar]
  62. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F. 62.  et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102:10604–9 [Google Scholar]
  63. Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC, Sebastian A. 63.  2009. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur. J. Clin. Nutr. 63:947–55 [Google Scholar]
  64. Fuentes-Zaragoza E, Sanchez-Zapata E, Sendra E, Sayas E, Navarro C. 64.  et al. 2011. Resistant starch as a prebiotic: a review. Starch 63:406–15 [Google Scholar]
  65. Galgani JE, Uauy RD, Aguirre CA, Diaz EO. 65.  2008. Effect of the dietary fat quality on insulin sensitivity. Br. J. Nutr. 100:471–79 [Google Scholar]
  66. Gallagher EJ, LeRoith D. 66.  2011. Is growth hormone resistance/IGF-1 reduction good for you?. Cell Metab. 13:355–56 [Google Scholar]
  67. Gao X, Wilde PE, Lichtenstein AH, Bermudez OI, Tucker KL. 67.  2006. The maximal amount of dietary α-tocopherol intake in U.S. adults (NHANES 2001–2002). J. Nutr. 136:1021–26 [Google Scholar]
  68. Gingras D, Beliveau R. 68.  2007. Towards a global assessment of the anticancer properties of fruits and vegetables: the Montreal anticancer nutrinome project. Proceedings of the 1st International Symposium on Human Health Effects of Fruits and Vegetables ISHS Acta Horticulturae 744, ed. Y Desjardins 157–63 Leuven, Belg.: Int. Soc. Hortic. Sci. [Google Scholar]
  69. Giovannucci E. 69.  2005. Tomato products, lycopene, and prostate cancer: a review of the epidemiological literature. J. Nutr. 135:2030S–31S [Google Scholar]
  70. Glynn RJ, Ridker PM, Goldhaber SZ, Zee RYL, Buring JE. 70.  2007. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: report from the Women's Health Study. Circulation 116:1497–503 [Google Scholar]
  71. Goodyear-Bruch C, Pierce JD. 71.  2002. Oxidative stress in critically ill patients. Am. J. Crit. Care 11:543–51 [Google Scholar]
  72. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F. 72.  et al. 2011. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. 3:1–9 [Google Scholar]
  73. Halton TL, Hu FB. 73.  2004. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J. Am. Coll. Nutr. 23:373–85 [Google Scholar]
  74. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M. 74.  et al. 2011. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11:1365–402 [Google Scholar]
  75. Harcombe Z. 75.  2011. This cynical five-a-day myth: nutrition expert claims we've all been duped. Dly. Mail Jan. 24. http://www.dailymail.co.uk/femail/food/article-1349960/5-day-fruit-vegetables-myth-claims-nutrition-expert.html [Google Scholar]
  76. He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ. 76.  et al. 2002. Fish consumption and risk of stroke in men. JAMA 288:3130–36 [Google Scholar]
  77. Herrera E, Barbas C. 77.  2001. Vitamin E: action, metabolism and perspectives. J. Physiol. Biochem. 57:43–56 [Google Scholar]
  78. Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S. 78.  et al. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 60:3882–90 [Google Scholar]
  79. Higgins JA, Higbee DR, Donahoo WT, Brown IL, Bell ML, Bessesen DH. 79.  2004. Resistant starch consumption promotes lipid oxidation. Nutr. Metab. 1:8 [Google Scholar]
  80. Hord NG. 80.  2008. Eukaryotic-microbiota crosstalk: potential mechanisms for health benefits of prebiotics and probiotics. Annu. Rev. Nutr. 28:215–31 [Google Scholar]
  81. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA. 81.  et al. 1997. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 337:1491–99 [Google Scholar]
  82. Hu FB, Willett WC. 82.  2002. Optimal diets for prevention of coronary heart disease. JAMA 288:2569–78 [Google Scholar]
  83. Hwang JT, Kwon DY, Yoon SH. 83.  2009. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. Nat. Biotechnol. 26:17–22 [Google Scholar]
  84. Islam S. 84.  2006. Sweetpotato (Ipomoea batatas L.) leaf: its potential effect on human health and nutrition. J. Food Sci. 71:R13–21 [Google Scholar]
  85. Jacobs DR, Gross MD, Tapsell LC. 85.  2009. Food synergy: an operational concept for understanding nutrition. Am. J. Clin. Nutr. 89:1543S–48S [Google Scholar]
  86. Jacobs DR, Steffen LM. 86.  2003. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am. J. Clin. Nutr. 78:508S–13S [Google Scholar]
  87. Jacobs DR, Tapsell LC. 87.  2007. Food, not nutrients, is the fundamental unit in nutrition. Nutr. Rev. 65:439–50 [Google Scholar]
  88. Jacobs EJ, Henion AK, Briggs PJ, Connell CJ, McCullough ML. 88.  et al. 2002. Vitamin C and vitamin E supplement use and bladder cancer mortality in a large cohort of US men and women. Am. J. Epidemiol. 156:1002–10 [Google Scholar]
  89. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF. 89.  et al. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–20 [Google Scholar]
  90. Jenkins DJA, Kendall CWC, Marchie A, Jenkins AL, Connelly PW. 90.  et al. 2003. The Garden of Eden—plant-based diets, the genetic drive to conserve cholesterol and its implications for heart disease in the 21st century. Comp. Biochem. Physiol. A 136:141–51 [Google Scholar]
  91. Jenkins DJA, Kendall CWC, Popovich DG, Vidgen E, Mehling CC. 91.  et al. 2001. Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism 50:494–503 [Google Scholar]
  92. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M. 92.  et al. 2012. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–63 [Google Scholar]
  93. Jones PJ, Raeini-Sarjaz M, Ntanios FY, Vanstone CA, Feng JY, Parsons WE. 93.  2000. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J. Lipid Res. 41:697–705 [Google Scholar]
  94. Jonsson T, Granfeldt Y, Ahren B, Brandell U-C, Palsson G. 94.  et al. 2009. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc. Diabetol. 8:35 [Google Scholar]
  95. Jung EM, Park JW, Choi KS, Park JW, Lee HI. 95.  et al. 2006. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis 27:2008–17 [Google Scholar]
  96. Karunagaran D, Rashmi R, Kumar TR. 96.  2005. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets 5:117–29 [Google Scholar]
  97. Kendall CWC, Esfahani A, Jenkins DJA. 97.  2010. The link between dietary fibre and human health. Food Hydrocoll. 24:42–48 [Google Scholar]
  98. Keppler K, Humpf H-U. 98.  2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 13:5195–205 [Google Scholar]
  99. Khan BB, Alquier T, Carling D, Hardie DG. 99.  2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25 [Google Scholar]
  100. Klein E, Thompson I, Tangen C. 100.  et al. 2011. Vitamin E and the risk of prostate cancer. JAMA 14:1549–56 [Google Scholar]
  101. Klonoff DC. 101.  2009. The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J. Dis. Sci. Technol. 3:1229–32 [Google Scholar]
  102. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M. 102.  et al. 2002. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76:560–68 [Google Scholar]
  103. Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H. 103.  et al. 1995. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Counties Study. Prev. Med. 24:308–15 [Google Scholar]
  104. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnfried W. 104.  et al. 2012. American Cancer Society guidelines on nutrition and physical activity for cancer prevention. CA 62:30–67 [Google Scholar]
  105. Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y. 105.  et al. 2005. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary derived phenolic compound. Carcinogenesis 26:821–26 [Google Scholar]
  106. Lamy S, Blanchette M, Michaud-Levesque J, Lafleur R, Durocher Y. 106.  et al. 2006. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27:989–96 [Google Scholar]
  107. Lamy S, Gingras D, Beliveau R. 107.  2002. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res. 62:381–85 [Google Scholar]
  108. Larsson SC, Bergkvist L, Wolk A. 108.  2009. Glycemic load, glycemic index and breast cancer risk in a prospective cohort of Swedish women. Int. J. Cancer 125:153–57 [Google Scholar]
  109. Lee WJ, Shim JY, Zhu BT. 109.  2005. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol. Pharmacol. 68:1018–30 [Google Scholar]
  110. Lee WJ, Zhu BT. 110.  2006. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27:269–77 [Google Scholar]
  111. Lemaitre RN, King IB, Raghunathan TE, Pearce RM, Weinmann S. 111.  et al. 2002. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation 105:697–701 [Google Scholar]
  112. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 112.  2006. Human gut microbes associated with obesity. Nature 444:1022–23 [Google Scholar]
  113. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S. 113.  et al. 2006. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114:82–96 [Google Scholar]
  114. Lindeberg S. 114.  2012. Paleolithic diets as a model for prevention and treatment of Western disease. Am. J. Hum. Biol. 24:110–15 [Google Scholar]
  115. Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J. 115.  et al. 2007. A Paleolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 50:1975–807 [Google Scholar]
  116. Link A, Balaguer F, Goel A. 116.  2010. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol. 80:1771–92 [Google Scholar]
  117. Lippi G, Franchini M, Guidi GC. 117.  2010. Red wine and cardiovascular health: the “French paradox” revisited. Int. J. Wine Res. 2:1–7 [Google Scholar]
  118. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM. 118.  et al. 2009. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51 [Google Scholar]
  119. Liu HL, Chen Y, Cui GH, Zhou JF. 119.  2005. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin. 26:603–9 [Google Scholar]
  120. Liu RH. 120.  2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78:517S–20S [Google Scholar]
  121. Liu RH. 121.  2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 134:3479S–85S [Google Scholar]
  122. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S. 122.  et al. 2009. Curcumin is a potent DNA hypomethylation agent. Bioorg. Med. Chem. Lett. 19:706–9 [Google Scholar]
  123. Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. 123.  2006. Epigenetics, disease, and therapeutic interventions. Ageing Res. Rev. 5:449–67 [Google Scholar]
  124. Ludwig DS, Peterson KE, Gortmaker SL. 124.  2001. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective observational study. Lancet 357:505–8 [Google Scholar]
  125. Maillard V, Bougnoux P, Ferrari P, Jourdan ML, Pinault M. 125.  et al. 2002. n-3 and n-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int. J. Cancer 98:78–83 [Google Scholar]
  126. Mandal S, Davie JR. 126.  2010. Estrogen regulated expression of the p21 Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J. Cell. Physiol. 224:28–32 [Google Scholar]
  127. Martin C, Butelli E, Petroni K, Tonelli C. 127.  2011. How can research on plants contribute to promoting human health?. Plant Cell 23:1685–99 [Google Scholar]
  128. Mattes RD. 128.  1996. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol. Behav. 59:179–87 [Google Scholar]
  129. McCullough ML, Feskanich D, Stampfer MJ, Giovannucci EL, Rimm EB. 129.  et al. 2002. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am. J. Clin. Nutr. 76:1261–71 [Google Scholar]
  130. Melnik BC, John SM, Schmitz G. 130.  2011. Over stimulation of insulin/IGF-1 signaling by Western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr. Metab. 8:41 [Google Scholar]
  131. Mensink RP, Zock PL, Kester AD, Katan MB. 131.  2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146–55 [Google Scholar]
  132. Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR. 132.  2000. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 71:921–30 [Google Scholar]
  133. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP. 133.  et al. 2007. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am. J. Clin. Nutr. 85:895–909 [Google Scholar]
  134. Morgan H, Sutherland H, Martin D, Whitelaw E. 134.  1999. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23:314–18 [Google Scholar]
  135. Moruisi KG, Oosthuizen W, Opperman AM. 135.  2006. Phytosterols/stanols lower cholesterol concentrations in familial hypercholesterolemic subjects: a systematic review with meta-analysis. J. Am. Coll. Nutr. 25:41–48 [Google Scholar]
  136. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. 136.  2006. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354:1601–13 [Google Scholar]
  137. Mozaffarian D, Rimm EB, King IB, Lawler RL, McDonald GB, Levy WC. 137.  2004. Trans fatty acids and systemic inflammation in heart failure. Am. J. Clin. Nutr. 80:1521–28 [Google Scholar]
  138. Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. 138.  2013. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr. 109:802–9 [Google Scholar]
  139. Normen L, Holmes D, Frohlich J. 139.  2005. Plant sterols and their role in combined use with statins for lipid lowering. Curr. Opin. Investig. Drugs 6:307–16 [Google Scholar]
  140. Osterdahl M, Kocturk T, Koochek A, Wandell PE. 140.  2008. Effects of short-term intervention with a paleolithic diet in healthy volunteers. Eur. J. Clin. Nutr. 62:682–85 [Google Scholar]
  141. Packer L, Weber SU, Rimbach G. 141.  2001. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 131:369S–73S [Google Scholar]
  142. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O. 142.  et al. 2003. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22:18–35 [Google Scholar]
  143. Painter RC, Rosebooma TJ, Bleker OP. 143.  2005. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod. Toxicol. 20:345–52 [Google Scholar]
  144. Park SJ, Ahmad F, Philp A, Baar K, Williams T. 144.  et al. 2012. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–33 [Google Scholar]
  145. Pavkov ME, Narayan KMV, Nelson RG, Hanson RL, Knowler WC. 145.  2008. Non-Caucasian North American populations: Native Americans. The Epidemiology of Diabetes Mellitus J-M Ekoé, M Rewers, R Williams, P Zimmet 255–72 Chichester, UK: Wiley, 2nd ed.. [Google Scholar]
  146. Pennisi E. 146.  2011. Girth and the gut bacteria. Science 332:32–33 [Google Scholar]
  147. Plagemann A, Roepke K, Harder T. 147.  et al. 2010. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J. Perinat. Med. 38:393–400 [Google Scholar]
  148. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J. 148.  1998. Vitamin C exhibits pro-oxidant properties. Nature 392:559 [Google Scholar]
  149. Prior RL, Wu XL, Gu LW, Hager TJ, Hager A, Howard LR. 149.  2008. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J. Agric. Food Chem. 56:647–53 [Google Scholar]
  150. Pritchard JK. 150.  2010. How we are evolving. Sci. Am. 303:40–47 [Google Scholar]
  151. Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M. 151.  et al. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95:1323–34 [Google Scholar]
  152. Raben A, Vasilaras TH, Moller AC, Astrup A. 152.  2002. Sucrose compared to artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am. J. Clin. Nutr. 76:721–29 [Google Scholar]
  153. Ramsden CE, Faurot KR, Carrera-Bastos P, Cordain L, de Lorgeril M, Sperling LS. 153.  2009. Dietary fat quality and coronary heart disease prevention: a unified theory based on evolutionary, historical, global and modern perspectives. Curr. Treat. Options Cardiovasc. Med. 11:289–301 [Google Scholar]
  154. Rao AV, Rao LG. 154.  2007. Carotenoids and human health. Pharmacol. Res. 55:207–16 [Google Scholar]
  155. Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR. 155.  et al. 2005. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol. Ecol. 52:145–52 [Google Scholar]
  156. Reik W, Dean W, Walter J. 156.  2001. Epigenetic reprogramming in mammalian development. Science 293:1089–93 [Google Scholar]
  157. Renaud S, de Lorgeril M. 157.  1989. Dietary lipids and their relation to ischaemic heart disease: from epidemiology to prevention. J. Intern. Med. 225:39–46 [Google Scholar]
  158. Renaud S, de Lorgeril M. 158.  1992. Wine, alcohol, platelets and the French paradox for coronary heart disease. Lancet 339:1523–26 [Google Scholar]
  159. Riccioni G, Bucciarelli T, D'Orazio N, Palumbo N, di Ilio E. 159.  et al. 2008. Plasma antioxidants and asymptomatic carotid atherosclerotic disease. Ann. Nutr. Metab. 53:86–90 [Google Scholar]
  160. Rice S, Whitehead SA. 160.  2006. Phytoestrogens and breast cancer—promoters or protectors?. Endocr. Relat. Cancer 13:995–1015 [Google Scholar]
  161. Rice-Evans C, Miller N, Paganga G. 161.  1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152–59 [Google Scholar]
  162. Richer S, Stiles W, Statkute L, Pulido J, Frankowski J. 162.  et al. 2004. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75:216–30 [Google Scholar]
  163. Rissanen TH, Voutilainen S, Nyyssonen K, Lakka TA, Sivenius J. 163.  et al. 2001. Low serum lycopene concentration is associated with an excess incidence of acute coronary events and stroke: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 85:749–54 [Google Scholar]
  164. Saarinen NM, Mäkelä S, Penttinen P, Wärri A, Lorenzetti S. 164.  et al. 2006. Tools to evaluate estrogenic potency of dietary phytoestrogens: a consensus paper from the EU Thematic Network “Phytohealth” (QLKI-2002–2453). Genes Nutr. 1:143–58 [Google Scholar]
  165. Saini S, Majid S, Dahiya R. 165.  2010. Diet, microRNAs and prostate cancer. Pharm. Res. 27:1014–26 [Google Scholar]
  166. San Giovanni JP, Chew EY, Clemons TE, Ferris FL, Gensler G. 166.  et al. 2007. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch. Ophthalmol. 125:1225–32 [Google Scholar]
  167. Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R. 167.  et al. 2012. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 66:780–88 [Google Scholar]
  168. Seeram NP, Adams LS, Hardy ML, Heber D. 168.  2004. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J. Agric. Food Chem. 52:2512–17 [Google Scholar]
  169. Seren S, Lieberman R, Bayraktar UD, Heath E, Sahin K. 169.  et al. 2008. Lycopene in cancer prevention and treatment. Am. J. Ther. 15:66–81 [Google Scholar]
  170. Shewry PR, Ward JL. 170.  2012. Exploiting genetic variation to improve wheat composition for the prevention of chronic diseases. Food Energy Secur. 1:47–60 [Google Scholar]
  171. Shufelt C, Merz CNB, Yang YC. 171.  2012. Red versus white wine as a nutritional aromatase inhibitor in premenopausal women: a pilot study. J. Women's Health 21:281–84 [Google Scholar]
  172. Simopoulos AP. 172.  2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56:365–79 [Google Scholar]
  173. Smith RD, Kelly CN, Fielding BA, Hauton D, Silva KD. 173.  et al. 2003. Long-term monounsaturated fatty acid diets reduce platelet aggregation in healthy young subjects. Br. J. Nutr. 90:597–606 [Google Scholar]
  174. Soobrattee MA, Bahorun T, Aruoma OI. 174.  2006. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35 [Google Scholar]
  175. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG. 175.  2012. Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br. J. Pharmacol. 167:279–97 [Google Scholar]
  176. Steuerman R, Shevah O, Laron Z. 176.  2011. Congenital IGF-I deficiency tends to confer protection against post-natal development of malignancies. Eur. J. Endocrinol. 164:485–89 [Google Scholar]
  177. Surh YJ. 177.  2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3:768–80 [Google Scholar]
  178. Talalay P, Fahey JW. 178.  2001. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr. 131:3027S–33S [Google Scholar]
  179. Tennen RI, Michishita-Kioi E, Chua KF. 179.  2012. Finding a target for resveratrol. Cell 148:387–89 [Google Scholar]
  180. Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K. 180.  et al. 2010. Blood orange juice inhibits fat accumulation in mice. Int. J. Obes. 34:578–88 [Google Scholar]
  181. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H. 181.  et al. 2009. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18:4046–53 [Google Scholar]
  182. Toufektsian MC, de Lorgeril M, Salen P, Nagy N, Donati MB. 182.  et al. 2008. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J. Nutr. 138:747–52 [Google Scholar]
  183. Toufektsian MC, Salen P, Laporte F, Tonelli C, de Lorgeril M. 183.  2011. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr. 141:37–41 [Google Scholar]
  184. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 184.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  185. Turner LB. 185.  2011. A meta-analysis of fat intake, reproduction, and breast cancer risk: an evolutionary perspective. Am. J. Hum. Biol. 23:601–8 [Google Scholar]
  186. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 186.  2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160:1–40 [Google Scholar]
  187. Vanstone CA, Raeini-Sarjaz M, Parsons WE, Jones PJH. 187.  2002. Unesterified plant sterols and stanols lower LDL-cholesterol concentrations equivalently in hypercholesterolemic persons. Am. J. Clin. Nutr. 76:1272–78 [Google Scholar]
  188. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE. 188.  2008. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 3:115–26 [Google Scholar]
  189. Vina J, Gomez-Cabrera MC, Borras C. 189.  2007. Fostering antioxidant defences: up-regulation of antioxidant genes or antioxidant supplementation?. Br. J. Nutr. 98:S36–40 [Google Scholar]
  190. Virgili F, Marino M. 190.  2008. Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity. Free Radic. Biol. Med. 45:1205–16 [Google Scholar]
  191. Vucetic Z, Carlin JL, Totoki K, Reyes TM. 191.  2012. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J. Neurochem. 120:891–98 [Google Scholar]
  192. Wada L, Ou B. 192.  2002. Antioxidant activity and phenolic content of Oregon caneberries. J. Agric. Food Chem. 50:3495–500 [Google Scholar]
  193. Wanders AJ, van den Borne JJGC, de Graaf C, Hulshof T, Jonathan MC. 193.  et al. 2011. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes. Rev. 12:724–39 [Google Scholar]
  194. Wang W, Goodman MT. 194.  1999. Antioxidant property of dietary phenolic agents in a human LDL-oxidation ex vivo model: interaction of protein binding activity. Nutr. Res. 19:191–202 [Google Scholar]
  195. Waterland RA, Jirtle R. 195.  2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23:5293–300 [Google Scholar]
  196. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. 196.  2008. Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. 32:1373–79 [Google Scholar]
  197. Willett WC. 197.  2012. Dietary fats and coronary heart disease. J. Intern. Med. 272:13–24 [Google Scholar]
  198. 198. World Health Organ 1998. Obesity: preventing and managing the global epidemic Rep. WHO Consult. Obes., June 3–5, World Health Organ., Geneva [Google Scholar]
  199. 199. World Health Organ 2005. Preventing chronic diseases: a vital investment Rep., World Health Organ., Geneva [Google Scholar]
  200. 200. World Health Organ 2009. Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO global database on vitamin A deficiency Rep., World Health Organ., Geneva [Google Scholar]
  201. Yach D, Hawkes C, Gould CL, Hoffman KJ. 201.  2004. The global burden of chronic disease. JAMA 291:2616–22 [Google Scholar]
  202. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG. 202.  et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  203. Yonekura L, Nagao A. 203.  2007. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 51:107–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error